• Goldsmiths, University of London Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Arden University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
King’s College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Cass Business School Featured Masters Courses
Northumbria University Featured Masters Courses
United Kingdom ×
0 miles
Engineering×

Masters Degrees in Integrated Engineering, United Kingdom

  • Engineering×
  • Integrated Engineering×
  • United Kingdom ×
  • clear all
Showing 1 to 10 of 10
Order by 
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering. Read more
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and including such famous people as James Watt.
◾This programme is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in any combination of a wide range of Mechanical Engineering areas.
◾This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Engineering Design whilst simultaneously enabling the students to deepen their knowledge of certain engineering disciplines, which have largely been chosen on the basis of the research and design teaching strengths of the Discipline. The choice includes Materials and Mechanics, Dynamics and Control, Desalination Technology and Thermal Science.
◾The compulsory design part deals with innovation aspects of industrial and mechanical design and the integration of design methods and techniques. Not only is design taught in this way, but also practised in its research activities, both explicitly and implicitly. It is practised explicitly through research in, for instance rapid design and manufacture, and implicitly through the design of, for instance, heart assist devices, paraplegic assist devices and mountain bike components together with apparatus for experiments and for demonstration.
◾You will broaden and/or deepen your knowledge of selected engineering disciplines, which have been chosen on the basis of our research strengths, including materials, vibration, control and desalination.
◾This programme has a September and January intake*.

*For suitable qualified candidates

Programme structure

Modes of delivery of the MSc in Mechanical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Core courses

◾Advanced manufacture
◾Integrated engineering design project.

Optional courses

◾Advanced thermal engineering
◾Control
◾Desalination technology
◾Dynamics
◾Lasers
◾Materials engineering
◾Mechanics of solids and structures
◾Vibration.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Mechanical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The MSc in Mechanical Engineering has been developed for students with different training backgrounds or from different educational origins; and it is particularly suitable if you currently work or intend to work in Mechanical Engineering industries.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcock, Howdens, Doosan & Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in a wide range of industries.

Career prospects

Career opportunities include positions in engineering design, materials and mechanics, dynamics, control, desalination technology and thermal science.

Graduates of this programme have gone on to positions such as:
Technical Engineer at Bridon International Ltd
Mechanical Engineer in a university
Mechanical Engineer for Oil and Gas at AKER Solutions
Project Engineer in state government.

Accreditation

The MSc Mechanical Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more
The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of integrated design.

Degree information

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of integrated design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of one core module, (60 credits), four optional modules (60 credits) and a research project (60 credits). A Postgraduate Diploma, one core module (60 credits), four optional modules (60 credits) is also offered.

Core modules
-Integrated Design Project

Optional modules - students choose four from the following:
-Advanced Soil Mechanics
-Advanced Structures
-Anatomy of a Railway
-Applied Building Information Modelling
-Building Engineering Physics
-Coastal Engineering
-Data Analysis
-Engineering and International Development
-Environmental Modelling
-Environmental Systems
-GIS Principles and Technology
-Introduction to Seismic Design of Structures
-Natural and Environmental Disasters
-Principles and Practices of Surveying
-Roads and Underground Infrastructure
-Systems, Society and Sustainability
-Structural Dynamics
-Urban Flooding and Drainage

Please note: combinations of different modules will be limited/determined by timetable constraints.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 10–15,000 words.

Teaching and learning
The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability
There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Read less
The Masters in Product Design Engineering, taught in collaboration with the School of Design, Glasgow School of Art will develop your ability to design products with significant engineering content, address user needs, and optimise solutions for specific markets. Read more
The Masters in Product Design Engineering, taught in collaboration with the School of Design, Glasgow School of Art will develop your ability to design products with significant engineering content, address user needs, and optimise solutions for specific markets.

Why this programme

◾This exciting programme will enable you to benefit from the combined resources and complementary expertise of staff of two top ranking Scottish institutions, University of Glasgow and Glasgow School of Art.
◾Studio-based, student-centered learning based around design project activities. Students have access to state-of-the-art product design engineering prototyping and manufacturing processes in the PDE workshops at GSA and University of Glasgow.
◾There are increasing pressures, from both existing and emerging world marketplaces, for products which not only respond to the needs of function, user and society, but which can be brought to market ever more rapidly through state-of-the-art development and manufacturing processes. Industries which develop, manufacture and market today's products need high-caliber graduates equipped to handle these processes with management skill and creative drive, and this programme develops graduates with these skills.
◾The studio programme explores cultural, management, perceptual, process and psychological issues, offering a curriculum relevant to the needs of industry and an understanding of the role of the design engineer in society.
◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.

Programme structure

You will attend lectures, seminars and tutorials and take part in lab, project, team and studio work, industrial visits, and workshops.

Core courses
◾Advanced manufacture
◾Core research skills for postgraduates
◾Human factors
◾Integrated engineering design
◾Micro-electronics in consumer products
◾Product design engineering introduction project
◾MSc project.

Optional courses
◾Instrumentation and data systems
◾Software engineering
◾The Glasgow School of Art elective (you will choose from a list of options).

Background/Aims

The MSc in Product Design Engineering aims to:
◾Offer each individual student the opportunity to critically develop his or her own work in the context of a rigorous but supportive intellectual climate;
◾Acquire key skills in the areas of user-centred design, product design, mechanical engineering, and electronic and electrical engineering;
◾Encourage students to identify and explore key contextual issues relevant to their practice;
◾Develop students' awareness and knowledge base in design philosophy, theory, practice and research in the context of innovative forms of design;
◾Enable students to achieve the highest possible standards in their work, so that graduates have the confidence, maturity and intellectual and interpersonal skills necessary to function successfully in the design engineering field;
◾Equip students with the highly developed intellectual, practical and interpersonal skills deemed necessary for their career.

Graduates destinations should expect to follow a similar pattern to our integrated masters programme which include Apple Computers (USA), BAESystems, Cambridge Consultants, Dyson, Hoover-Candy, JCB, Nokia, Philips, Polaroid, Schlumberger and Terex. Graduates could also establish their own companies.

Career prospects

Career opportunities include product research and development, system design, product manufacture and engineering design. The programme aims to provide opportunities to work on live projects with industry: this can lead to employment opportunities. Examples of companies that employ our Product Design Engineering graduates are Apple, DELL, Dyson, Jaguar-Land Rover, TomTom and Smart.

Accreditation

The MSc Product Design Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations. Read more
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations.

The course specialises in enabling students to produce mechatronic components which increase performance and energy efficiency, as sought after by industries worldwide.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Mechatronics you will learn to:

- implement the concepts of mechatronics design principles to the solution of complex multi-physics engineering systems
- apply artificial intelligence and modern control and computer engineering techniques to improve the performance of modern equipments and devices

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/mechatronics/index.html

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

You will complete your MSc through an individual research project under the supervision of two supervisors; one from the Department of Electronic & Electrical Engineering (http://www.bath.ac.uk/elec-eng/) and one from Mechanical Engineering (http://www.bath.ac.uk/mech-eng/), assigned to one of our leading research centres (http://www.bath.ac.uk/engineering/research/index.html).

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#H) for more detail on individual units.

Semester 1 (October-January):
The first semester covers the fundamental principles of computational artificial intelligence, integrated engineering control techniques and mechatronic systems modelling and simulation.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Further advanced options will give you an in depth knowledge of how electrical and mechanical engineering can be integrated to effect state of the art technologies.

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation, done under the supervision of two supervisors, one from the Department of Electronic & Electrical Engineering and one from Mechanical Engineering

- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

- Examples of typical projects include the design and control of autonomous robots; undersea tidal wave power generators; and the design and control of high speed mechanisms.

Subjects covered

- Computational intelligence
- Control engineering
- Engineering systems simulation
- Power systems control
- Professional skills for engineering practice
- Signals & information

Career Options

Graduates with knowledge and training in both electrical and mechanical engineering are very much in demand in aerospace, automotive and manufacturing industries.

More and more of the hydraulic and mechanical aspects of these industries are being replaced by mechatronics components to reduce weight and increase performance and energy efficiency.

The career opportunities in the UK and worldwide are very significant. Jobs our recent graduates have secured include:

Product Research Development Engineer, KTP Associate, University of Bath, UK
Project Manager, Guandong Best Control Technology, PR China
Software Engineer, DIAGNOS, UK
Engineer, MAN Diesel & Turbo, USA

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
If you are a busy professional this online advanced degree is an ideal method of studying structural engineering. The programme is fully accredited by the Energy Institute, Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE) and Institution of Mechanical Engineers (IMechE). Read more

Your programme of study

If you are a busy professional this online advanced degree is an ideal method of studying structural engineering. The programme is fully accredited by the Energy Institute, Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE) and Institution of Mechanical Engineers (IMechE). This level of credibility really assists you to gain new career opportunities and advance your job prospects internationally. The area is constantly being improved in terms of design and understanding. You learn with University of Aberdeen, situated in the heart of the European oil and gas industry since its inception and rise in the 1970s. Many multinational headquarters are situated in Aberdeen and the academic and business community have worked together over this time to provide a great deal of knowledge, expertise and vocational training at advanced level to offer very advanced degrees at master's level.

The programme offers you a full range of knowledge in structural engineering to understand brown field engineering, petrochemical structures, conceptual design of structures and management of structures. You understand how load and natural forces can affect structures and the elements of time.

Courses listed for the programme

Semester 1
Design of Connections
Concept of Design Topside Modules

Semester 2
Brown Field Structural Engineering
Petrochemical Structural Engineering
Finite Element Methods

Semester 3
Conceptual Design of Jackets and Subsea Structures
Design of Stiffened Plates
Re-Design of Existing Structures by Structural Reliability Analysis
Design of Jacket Attachments


Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/217/oil-and-gas-structural-engineering/

Why study at Aberdeen?

• This programme is specifically aimed at practising Structural Engineers to improve your knowledge for the industry
• You study in Aberdeen City with academics spanning knowledge of the industry since its inception in the 1970s
• We work closely with employers to develop our degrees and ensure they offer you a robust set of skills and tools
• Half of the programme is taught by practising structural engineers

Where you study

• Online
• Part Time
• September or January

International Student Fees 2017/2018

Find out about fees:
https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:
• Your Accommodation
• Campus Facilities
• Aberdeen City
• Student Support
• Clubs and Societies

Find out more about living in Aberdeen:
https://abdn.ac.uk/study/student-life

Living costs
https://www.abdn.ac.uk/study/international/finance.php

Read less
Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. Read more

Your programme of study

Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. It often informs other industries in terms of best practise knowledge which can provide useful learning to other industries.The knowledge gained in the North Sea has also been transferred to other sites globally to ensure risks are minimised when extracting energy. There are numerous risks associated with energy extraction such as the environment in which operators work in, failure in facilities and machinery, human factors which need process and safety factors designing in, and a very large ignition source. The energy industry can be one of the most hazardous industries to work in but due to the risks involved it can often provide a highly safe environment to work in due to the amount of measures in place to protect everything on site and that is where the discipline of Process Safety can ensure a very high level of safety in which to extract minerals.

If you want to become qualified in Process Safety Engineering and are from a Chemical Engineering background, or a Petroleum or Mechanical Engineering background but with good chemical/chemistry knowledge and you are interested in safety and process in this industry the programme will develop advanced skills in assessing risk, processes and analysis to continuously improve safety in the industry. The programme is offered in Aberdeen city in the heart of the oil and gas industry within Europe and often worldwide and it is informed by close links and support from the industry to ensure it is robust and relevant. Aberdeen has offered advanced knowledge and learning in this area since the inception of the oil and gas industry which cover the entire physical and business supply chain.

Courses listed for the programme

Semester 1
Process Risk Identification and Management
Upstream Oil and Gas Processing
Loss of Containment
Computational Fluid Dynamics

Semester 2
Applied Risk Analysis and Management
Process, Plant, Equipment and Operations
Process Design, Layout and Materials
Human Factors Engineering

Semester 3
Process Safety Individual Project

Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/

Why study at Aberdeen?

• You can study this programme full time or part time to fit around your life
• The programme offers one of the few opportunities to study this area of oil and gas production with direct links to industry
• You study in the oil and gas capital of Europe and often the world in Aberdeen City
• Graduates move into senior industry roles globally

Where you study

• University of Aberdeen
• Full Time and Part Time
• September

International Student Fees 2017/2018

Find out about fees:
https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:
• Your Accommodation
• Campus Facilities
• Aberdeen City
• Student Support
• Clubs and Societies

Find out more about living in Aberdeen:
https://abdn.ac.uk/study/student-life

Living costs
https://www.abdn.ac.uk/study/international/finance.php

Read less
The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1
Fundamental Safety Engineering, and Risk Management Concepts
Statistics and Probability for Safety, Reliability and Quality
Fire and Explosion Engineering
Subsea Integrity

Semester 2
Advanced Methods for Risk and Reliability Assessments
Applied Risk Analysis and Management
Process Design, Layout and Materials
Human Factors Engineering

Semester 3
Safety Engineering Project

Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/
or online:
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1078/safety-and-reliability-engineering/

Why study at Aberdeen?

• This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
• Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in
the city
• This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
• You are taught by industry professionals with worldwide industry experience

Where you study

• University of Aberdeen
• Full Time or Part Time
• September
*• There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about fees:
https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:
• Your Accommodation
• Campus Facilities
• Aberdeen City
• Student Support
• Clubs and Societies

Find out more about living in Aberdeen:
https://abdn.ac.uk/study/student-life

Living costs
https://www.abdn.ac.uk/study/international/finance.php

Read less
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability. Read more
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability.

With this MSc, students are fully embedded within an engineering faculty, benefiting from unrivalled access to a broad range of industrial collaborations and pioneering research.

Spanning engineering, mathematics and computer science, this programme would suit graduates from any related discipline who would like to become versatile at solving multi-disciplinary challenges.

Upon completion, you will meet the increasing demand from the industrial, government and service sectors for maths-savvy graduates who can work across traditional boundaries and drive high-tech innovation. From designing formula one cars, to biomedicine and development of renewable energy technologies, our engineering graduates go on to a wide range of exciting careers.

Programme structure

The units are organised around three key strands: engineering, computational science and mathematical and statistical training.

In order to tailor to the needs of the student, each strand is agreed based on previous experience and prior learning. Based on taught content, appropriate units are aligned with each strand.

Cross-references are carefully designed throughout the three stands to ensure that all graduates obtain a uniform level of background knowledge and appropriate specialisation.

Teaching consists of core units on:

- Applied statistics
- Artificial intelligence
- Engineering mathematics
- Nonlinear dynamics and chaos
- Numerical methods
- Optimisation theory and applications
- Partial differential equations

Real-world problem solving is integral to each unit and spans many different application areas - from robotics and social media to medicine and environmental modelling. Problems come from our industrial collaborators or address challenges in current research.

Having successfully completed the taught units, you will prepare a 60-credit MSc thesis during the summer term, to be submitted at the end of the academic year.

Careers

This programme provides a highly creative, challenging and enjoyable experience, which will be excellent preparation for your future career. It will give you the tools to be successful in a variety of careers, many of which enable you to apply your knowledge and skills.

Our extensive connections with industry, through collaborative research and consultancy, makes the MSc in Engineering Mathematics very relevant professionally. Many graduates from this department have gone on to work for companies that recruit mathematicians as well as engineers, such as Airbus, Goldman Sachs and Red Bull Racing.

Read less
If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. Read more

Your programme of study

If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. It is a great way to study a degree from a known and trusted brand with exactly the same content as the on campus version but delivered entirely online.

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas. Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/
or if you want to study on campus:
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/278/renewable-energy-engineering/

Why study at Aberdeen?

• You are taught by industry professionals and the engineering department each are highly regarded in their fields
• The programme is delivered flexibly so you can choose how best to study with various options at your disposal
• You cover energy harvesting methods and their integration into the grid plus planning and economics, ideal for enterprise and
innovation
• The sector is driven by a need which shows no signs of stopping in terms of necessity to life so there are plenty of opportunities

Where you study

• Online

International Student Fees 2017/2018

Find out about fees from the product page:
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Related Degrees

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/258/project-management/
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/283/reservoir-engineering/
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/288/safety-and-reliability-engineering-for-oil-and-gas/
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/317/subsea-engineering/

Read less
The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1
Fundamental Safety Engineering, and Risk Management Concepts
Statistics and Probability for Safety, Reliability and Quality
Fire and Explosion Engineering
Subsea Integrity

Semester 2
Advanced Methods for Risk and Reliability Assessments
Applied Risk Analysis and Management
Process Design, Layout and Materials
Human Factors Engineering

Semester 3
Safety Engineering Project

Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/
or online:
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1078/safety-and-reliability-engineering/

Why study at Aberdeen?

• This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
• Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in
the city
• This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
• You are taught by industry professionals with worldwide industry experience

Where you study

• University of Aberdeen
• Full Time or Part Time
• September
*• There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about fees:
https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:
• Your Accommodation
• Campus Facilities
• Aberdeen City
• Student Support
• Clubs and Societies

Find out more about living in Aberdeen:
https://abdn.ac.uk/study/student-life

Living costs
https://www.abdn.ac.uk/study/international/finance.php

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X