• University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
Cranfield University Featured Masters Courses
Cranfield University Featured Masters Courses
EURECOM Featured Masters Courses
Coventry University Featured Masters Courses
Swansea University Featured Masters Courses
United Kingdom ×
0 miles
Geology×

Masters Degrees in Geotechnology, United Kingdom

We have 5 Masters Degrees in Geotechnology, United Kingdom

  • Geology×
  • Geotechnology×
  • United Kingdom ×
  • clear all
Showing 1 to 5 of 5
Order by 
Kingston University offered the first GIS undergraduate degree in the world in 1989, followed by several MSc and PhD research degrees. Read more
Kingston University offered the first GIS undergraduate degree in the world in 1989, followed by several MSc and PhD research degrees. Today, Kingston is considered the UK's foremost centre for GIS education and training, with one of the largest GIS programmes in Europe. This course provides a high level of competency in the principles of GI science and the use of geotechnology, as well as the skills to routinely use professional software for data acquisition, handling, exploration and mapping.

Key features

-Kingston University is recognised within the industry as a premier provider of GIS education with our graduates having amongst the highest employment rates.
-Fieldwork is an important part of our teaching.

What will you study?

The course covers the principles of GI science and geotechnology and the foundations of geographical information handling.

You will learn how to handle spatial entities for data transformations, generalisation and aggregation, and will develop competency in analytical operations, methods and spatial analyses. You will have the chance to implement principles of map design and graphical representation techniques, and will gain an understanding of spatial database systems and application design. You will also perform storage and retrieval operations, and work with alternative data models, 3D modelling and advanced visualisation.

The course is taught partly in distance-learning mode and partly in traditional classroom mode or entirely in distance-learning mode.
Please note that Esri ArcGIS is used in several core modules. Students outside the UK and Ireland will need to use their own licensed copy of the software. Student licences are available for most countries at £100.

Assessment

Coursework, projects, presentations, exams, online tests, online group work.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Data Modelling and Analysis (distance learning)
-Research Methods and Techniques
-Research Project (Dissertation)
-GIS for People and Environments
-Spatial Data and the World-wide Web

Read less
This programme focuses on scientific, technical and computational aspects of Geographical Information Systems (GIS) and Geographical Information Science (GIScience), with particular reference to the socioeconomic and environmental sciences. Read more

This programme focuses on scientific, technical and computational aspects of Geographical Information Systems (GIS) and Geographical Information Science (GIScience), with particular reference to the socioeconomic and environmental sciences. It provides highly qualified and motivated students sought by employers in the sector.

Core modules introduce GIS, a rapidly evolving area in business, health and planning settings, as well as in environmental applications. You will be introduced to GIS packages and database systems, useful for those wanting to undertake social and environmental science research and those wanting to understand the application of geotechnology as practitioners. You’ll study theories and concepts underpinning GIS and explore topics including spatial data models, data capture, spatial analysis and statistical and mathematical modelling. Optional modules allow you to focus on quantitative human geography, environmental applications and programming GIS.

Other Study Options

This programme is available part time, allowing you to combine study with other commitments. You can work to fund your studies, or gain a new qualification without giving up an existing job. We aim to be flexible in helping you to put together a part-time course structure that meets your academic goals while recognising the constraints on your study time.

The programme manager is Dr Paul Norman.

You can also study this subject at Postgraduate Diploma level.



Read less
Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. Read more

Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. For example, they can predict and measure damage caused by natural disasters, and innovate ways to reduce and prevent future issues through the construction of structure such as dams. Our developing world needs safe and stable space, as our infrastructures expand onto new land and those who work in the line of work will ensure that this can happen effectively.

Upon graduation, you will have the skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. It also provides specialist knowledge in tunnel, surface and underground excavation design, and applied hydrogeology and risk assessment.

This programme is taught by the internationally established and world-class Camborne School of Mines (CSM), a combined mining school and geoscience department. It is taught over two semesters and individual projects are undertaken throughout the summer, often as industrial placements. The programme is suitable for geology and engineering graduates wishing to specialise in applied geotechnics

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include;

  • Project and Dissertation;
  • Excavation and Geomechanics;
  • Health and Safety in the Extractive Industry
  • Project Management

Optional modules

Some examples of the optional modules are;

  • Resource Estimation;
  • Economics, Processing & Environment;
  • Hydrogeology;
  • Surface Excavation Design;
  • Tunnelling and Underground Excavation;
  • Production and Cost Estimation;
  • Mine Planning and Design;
  • Geomechanics Computer Modelling for Excavation Design
  • Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

The project is undertaken from June to September, after the second semester examinations. You are encouraged to undertake projects directly linked with industry, which may result in industrial placements for the project period. The projects are normally design-based and allow further specialisation in a topic that is of particular interest to you. This could involve the use of state-of-the-art engineering design software, risk and hazard analysis and other analytical techniques.



Read less
Exploration geology is concerned with the location of ore and other materials found within the earth. Their work is essential to energy and production industries as it acts as a starting point for extraction. Read more

Exploration geology is concerned with the location of ore and other materials found within the earth. Their work is essential to energy and production industries as it acts as a starting point for extraction.

This MSc will equip students with specialist, essential knowledge and skills that are required when exploring and evaluating new mineral deposits around the world. As major orebodies are exhausted, the search for viable deposits in more complex geological terrains and in remote regions has intensified, creating a need for trained geologists able to carry out mineral exploration in varied environments.

The collection, interpretation and reporting of geoscientific data is the major focus of this course; based around a robust understanding of current theories for orebody genesis, exploration techniques and the application of industry-leading software. You will have the opportunity to gain experience in acquiring, synthesising and critically evaluating data from a range of remote sensing, geophysical, geochemical and drill hole sources. The programme provides pathways to careers in the national and international exploration and mining sectors as well as important transferable skills used in the broader geotechnical, site investigation and environmental industries.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Research project and dissertation;
  • Ore deposit geology and industrial minerals;
  • Economics, processing and environment;
  • GIS and remote sensing;
  • Site investigation including near surface geophysics;
  • Advanced geoscientific computing and data management;
  • Exploration targeting;
  • Exploration and mining geology.

Assessment method

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation.

Fieldwork

On this MSc programme you will receive a great deal of practical experience of working within the minerals industry. The programme aims to produce high-quality graduates who can enjoy high employment rates and easy transition into further PhD study. Emphasis remains on applied teaching and research relevant to careers in the earth resources and renewables sectors. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

You will spend a significant proportion of your time in the field during the autumn term. Over the Easter period you are required to participate in an international field trip to visit mines and exploration projects in Scandinavia. This trip will prepare you to undertake typical greenfields and brownfields exploration work, including boulder tracing, stream sediment sampling and glacial till investigations, and link the results back to exploration targeting and existing operating mines.

Research areas

From May to September you will undertake a major research project, usually in association with a mining/exploration company, and present a dissertation. Recent projects have been carried out in West Africa, Canada and Europe.

Examples of recent mineral exploration research projects

  • A Geochemical Assessment of the Exploration Potential for Alkalic (Cu-Au) and Calc-Alkalic (Cu ± Mo ± Au) Porphyries within the Quesnel Terrane, British Columbia, Canada
  • Using stream sediment geochemistry to aid polymetallic-Sn-W exploration targeting in the Vosges Mountains, France
  • Petrographic investigations into the potential for REE-pegmatite and orogenic gold deposits, Sierra Leone
  • A Remote Sensing Study into the mineral potential of the Taimyr Peninsula, Arctic Russia
  • Gold and REE exploration in the Birimian Greenstone Belt, Ivory Coast


Read less
Geotechnical engineering examines the engineering behaviour of earth materials and is relevant to all engineering and construction practices that are concerned with the ground on both a surface level and within it. Read more

Geotechnical engineering examines the engineering behaviour of earth materials and is relevant to all engineering and construction practices that are concerned with the ground on both a surface level and within it. Geotechnical engineers investigate the ground and measure the chemical properties, evaluate the stability of the area and design earthworks and structure foundations enabling projects to take place.

The programme is multi-disciplinary in nature, and provides students with the knowledge of rock engineering, site investigation, data capture and data analysis required to understand the issues facing engineers excavating increasingly ambitious and complex underground spaces. This course is relevant to students entering or working in a range of engineering careers within the construction, environmental and extractive industries.

Featured content draws upon the unique expertise of the Camborne School of Mines, with strengths in the areas of rock mechanics and underground excavation, as well as specialist knowledge of working in extreme conditions and with high-stress or difficult ground.

Delivered by staff with strong research interests directly related to the topics covered, modules involve a broad range of activities and teaching delivery methods. This includes workshops using the latest industry relevant computational tools, practical activities and group and individual exercises.

In support of this research-led teaching, key experts from the extractive and construction industry will provide topical insight to the state of the industry and clarify the context for the theory covered in the lectures.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Project and Dissertation;
  • Excavation and Geomechanics
  • Hydrogeology
  • GIS and Remote Sensing

Optional modules include;

  • Health and safety in the extractive industry
  • Project management
  • Surface extractive design
  • Mine planning design
  • Underground excavation design
  • Soil and water contamination
  • Underground construction
  • Site investigation including near surface geophysics

Learning and teaching

Teaching and assessment

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation. The taught part of the programme is structured into two semesters. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X