• University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Swansea University Featured Masters Courses
King’s College London Featured Masters Courses
University of Leeds Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
University of Leeds Featured Masters Courses
United Kingdom ×
0 miles
Geology×

Full Time Masters Degrees in Geology, United Kingdom

  • Geology×
  • United Kingdom ×
  • Full Time×
  • clear all
Showing 1 to 15 of 113
Order by 
This programme is the only applied structural geology Masters in the UK. It provides advanced training in the practical application of structural geology, preparing you either for employment in the hydrocarbon or mining industries or for postgraduate study (PhD). Read more

Overview

This programme is the only applied structural geology Masters in the UK. It provides advanced training in the practical application of structural geology, preparing you either for employment in the hydrocarbon or mining industries or for postgraduate study (PhD).

You’ll gain a skillset combining advanced structural techniques and interpreting seismic data, an understanding of structural systems in time and space, and an appreciation of both the geological and geophysical constraints of seismic interpretation and model building. This will allow you to use a combination of structural and geophysical techniques to solve geological problems. As a capable seismic interpreter you’ll be able to contribute in an industry role from day one.

Our teaching is research led, with direct links to active applied research. You’ll be taught by a range of research and industry experts, as well as through industry-led workshops. Strong industry links are a feature of this programme.

Course highlights:

• The only applied structural geology masters in the UK, offering you a route to both industry or a PhD.
• Unlike other petroleum/ ore geoscience courses in the UK, which only provide you with broad training in all aspects of petroleum and ore geology. At Leeds, apply your skills, tools, and knowledge in structural geology and tectonics to exploration settings, datasets, and problems.
• A key focus of this masters is on understanding structural evolution in various settings and the use of 3D and 4D thinking in geological contexts. Skills that are essential for your employment in industry.
• Gain an international standard of Masters qualification in 12 months rather than 24. We deliver focused, advanced teaching linked to a research project (in contrast to the more research-oriented US Masters).
• Undertake FREE fieldwork in the UK and EU that is directly linked to your classroom learning.
• Depending on your interests, choose from hydrocarbon andmining module options.
• Access industry-standard computing facilities and software.
• In your final year produce an industry or research focused dissertation.

Read less
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. Read more
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. It is suitable for those who already have an honours degree in geology, mining/minerals engineering or a related subject.

You will attain a comprehensive understanding of the role of a geoscientist working in the mining industry. New skills include underground geological and geotechnical mapping, surveying, mineral exploration, ore microscopy, ore deposit modelling and mine planning. In-depth coverage of mineral resource estimation and grade control, mineral extraction and management, mining law and the environmental impact of mining, enable skills in quantifying the economic value of an ore body and assessing its potential for exploitation to be attained. There is emphasis on acquiring knowledge of the geological characteristics and genesis, methods of exploration, extraction and processing techniques of the major types of metalliferous ore deposit, bulk commodities and industrial minerals.

Taught modules are presented over two semesters and individual projects are undertaken throughout the summer vacation, often as industrial placements with a mining/exploration company. Recent projects have been carried out in all major mining countries on six continents, including Australia, Tanzania, Mongolia, Chile as well as in the UK.

Programme Structure

You will study 180 credits to obtain an MSc and 120 credits for a PgDip

Compulsory modules

The compulsory modules can include; Research Project and Dissertation; Resource Estimation; Ore Deposit Geology and Industrial Minerals; Techniques in Mining Geology ; Excavation and Geomechanics ; Economics, Processing & Environment

Optional modules

Some examples of the optional modules are; Advanced Techniques for Mineral Analysis and Mine Wastes: Principles, Monitoring and Remediation.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

Formal teaching ends in late April/May with a field excursion to examine the geology and visit mines in an area of the world famous for its mining activity. Extensive use is made of Camborne School of Mines' underground mine facilities, laboratories, mineral processing pilot plant, and the superb field geology and extractive industry operations in South West England.

Read less
Our geotechnical engineering and engineering geology research is revolutionary worldwide. You will work with academics who are leaders in their field so that your research has a real impact on civil engineering. Read more
Our geotechnical engineering and engineering geology research is revolutionary worldwide. You will work with academics who are leaders in their field so that your research has a real impact on civil engineering.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on geotechnical engineering and geology. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Within the School of Civil Engineering and Geosciences we have a research group focussed on geotechnics and structures, which deals with the fundamental concepts of material behaviour, construction and design technology. Our research has a central theme of Earth systems science engineering and management, focussing on the concepts of:
-Sustainability in construction
-Climate change and the effects on civil engineering

We provide MPhil and PhD supervision within the broad disciplines of geotechnical engineering and engineering geology. Our current research areas are:
-Seismic engineering and extreme loadings
-Slope stability
-Multi-phase flow and coupled multi-field analysis
-Soil modelling
-Waste minimisation and reuse
-Ground improvement
-Site characterisation

We also encourage multidisciplinary research, such as:
-Ground improvement and remediation
-In situ testing
-Geotechnical design
-Geotechnical processes in construction and the natural environment.

As a result of our research we have been able to revolutionise electrokinetic geosynthetics, self-boring pressuremeters, geothermal testing and construct a full-scale embankment for field experimentation.

Delivery

Off-campus study may be available in some circumstances, particularly if you have industrial sponsorship. Our programme includes intensive subject-specific supervision and training in research methodologies and core skills. You will also have an opportunity to undertake paid laboratory demonstrations and tutoring to gain teaching experience.

You will be taught by eminent academics who are experts in the field, such as:
-Dr Colin Davie, Lecturer in Geotechnical Engineering
-Professor Peter Gosling, Professor of Computational Structural Mechanics
-Professor Stephanie Glendinning, Professor of Civil Engineering

Read less
This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering. Read more

Overview

This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering.

It gives you a grounding in the application of geological principles to a wide range of fields within civil and mining engineering.

Studying engineering geology will provide you with excellent job opportunities as a result of high calibre academic training, as well as the development of strong skills in terms of both critical and independent thought and team work. Most of our graduates join environmental consulting companies and consulting engineers, while others go on to PhD studies.

Engineering Geologists

Engineering Geologists are found worldwide working on a wide range of problems, from foundation and mine design to the assessment of seismic and landslide risk.

Their understanding of how groundwater and pollutants travel through the ground may impact on the safe design and construction of excavations and waste disposal sites. They use geological and geomorphological mapping to identify geological hazards and allow for safe development. Their understanding of the ground and how it responds to static and dynamic loads can influence safe and sustainable siting and design of engineering structures.

It is vital that we design and build in a manner which is safe, environmentally friendly, cost effective and sensitive to climate change. Engineering geologists, with a unique understanding of the ground, and a broad appreciation of rates of geological processes over engineering time, are intimately involved in this process.

Course highlights:

• Your teaching will be delivered by the School of Earth and Environment with substantial input from the School of Civil Engineering.
• Attend a series of School seminars and wider university events. The University frequently hosts the Yorkshire Geotechnical Group (Institution of Civil Engineers) and is involved with the Yorkshire Regional Group of the Geological Society
• Benefit from our strong connections with industry:
- We have been training Engineering Geologists over 40 years and maintain links with alumni who can be found in many companies across the globe.
- Industry colleagues contribute to teaching and an Industry Advisory Board informs the content of this course.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
Professional geologists working in consultancies, regulatory authorities and government environmental agencies are required to apply a wide range of transferrable skills to their jobs. Read more
Professional geologists working in consultancies, regulatory authorities and government environmental agencies are required to apply a wide range of transferrable skills to their jobs. Candidates who are able to demonstrate skills in public engagement, communication, professional research and report-writing, in addition to academic knowledge and field skills, are therefore highly sought after in these professions.

This full-time MSc Applied Environmental Geology is part taught and part professional project. We aim to develop your transferrable skills in a professional context and give you a head start in the geology profession of your choice or starting a PhD.

Read less
The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. Read more
The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. It provides you with advanced conceptual understanding, detailed factual knowledge, specialist technical skills and an awareness of responsibilities to society and the environment.

Your degree will cover areas such as:
-Engineering geology principles and applications
-Site investigation, testing, interpretation and reporting processes
-Analysing diverse geological evidence to assess hazards and risks arising from natural and man-made phenomena
-Geotechnical design

By studying at Newcastle you undertake research with students from civil engineering, geological and other scientific backgrounds. Cross-pollination of academic training and experience is actively encouraged.

Delivery

You will study compulsory modules with a choice of optional modules in blocks of one or two weeks. Assessment is by formal written examinations, course work and oral presentations. You will write up your research project as a dissertation. A full range of teaching methods are used on the course:
-Lectures
-Tutorials
-Seminars
-Open learning
-Group projects
-Computing workshops
-Laboratory
-Fieldwork
-Site visits

Numerous contributions are made to the course by prominent visitors from the construction industry.

At the end of semester two you will benefit from an overseas residential field trip. This allows you to apply your technical knowledge and explore a wide range of exemplar sites.

Accreditation

The course is accredited by the Joint Board of Moderators (JBM) (comprising ICE, IStructE, CIHT and IHIE), as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for students with an Accredited CEng (Partial) BEng Honours degree or Accredited IEng (Full) BEng/BSc Honours.

It is also accredited by the Geological Society (GeolSoc).

Read less
Birkbeck’s Department of Earth and Planetary Sciences shares resources, facilities and expertise with UCL’s Department of Earth Sciences, thus offering you access to a unique, world-class research environment. Read more
Birkbeck’s Department of Earth and Planetary Sciences shares resources, facilities and expertise with UCL’s Department of Earth Sciences, thus offering you access to a unique, world-class research environment. This programme provides an excellent opportunity for you to develop and enhance your general, transferable and specialist research skills. You will gain insight into different research methods and acquire valuable experience of conducting large-scale research projects.

Our key research interests include: igneous petrology and geochemistry; sedimentology; environmental geochemistry and mineralogy; stratigraphy and palaeontology; structural geology; geophysics; palaeoclimatology; planetary geology; and earthquake studies.

Our research

Birkbeck is one of the world’s leading research-intensive institutions. Our cutting-edge scholarship informs public policy, achieves scientific advances, supports the economy, promotes culture and the arts, and makes a positive difference to society.

Birkbeck’s research excellence was confirmed in the 2014 Research Excellence Framework, which placed Birkbeck 30th in the UK for research, with 73% of our research rated world-leading or internationally excellent.

In our joint submission with UCL, Earth Systems and Environmental Sciences at Birkbeck were rated 6th the UK in the 2014 Research Excellence Framework (REF), while we achieved 100% for an environment conducive to research of the highest quality.

Read less
This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise. Read more

Summary

This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise.

You will gain hands-on research experience through an advanced project with leading international researchers. The MRes focuses less on taught modules and more on the research project (about two-thirds of the year).

Modules

Semester one:

Core modules: Contemporary Topics in Ocean and Earth Science; Introduction to Marine Geology; plus one from Introduction to Chemical Oceanography or Introduction to Physical Oceanography

Optional modules: Applied and Marine Geophysics; Basin Analysis; Coastal Sediment Dynamics; Computational Data Analysis for Geophysicists and Ocean Scientists; Geodynamics and Solid Earth Geophysics; Microfossils, Environments and Time

Semester two:

Optional modules: Applied Coastal Sediment Dynamics; Ecological Modelling; Global Climate Cycles;
High-resolution Marine Geophysics

Plus research project

Visit our website for further information...



Read less
The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment. Read more

Why take this course?

The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment.

This course is designed to provide you with the particular expertise required for dealing with contaminated sites. Such expertise is essential to ensuring we maintain habitable, safe and sustainable communities.

What will I experience?

On this course you can:

Use our state-of-the-art geological and geotechnic labs for practical work
Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by recognised experts with extensive knowledge in groundwater hydrology, environmental geology and contaminated land

What opportunities might it lead to?

We will give you the knowledge and practical skills to ensure an interesting and rewarding career in the specialist area of contaminated land consultancy, regulation and remediation, both in the UK and overseas.

Here are some routes our graduates have pursued:

Environmental organisations
Geotechnical consultancies
Mining companies
Local authorities
Government agencies

Module Details

You can opt to take this course in full-time or part-time mode. The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

This course covers a mixture of topics including: groundwater hydrology, geochemistry, site investigation, geotechnics and contaminated land assessment.

Here are the units you will study:

Soil Mechanics: This unit is fundamental to understanding how contaminants behave and migrate in the ground. You will gain an advanced understanding of the geo-mechanical behaviour of soils, including the description and testing of soils to UK and international standards.

Desk Studies and Ground Models: These are an integral part of any contaminated land assessment. You will have training in the development of geological ground models and geomorphological terrain models through desk studies, walk-over surveys and site investigation.

Ground Investigation Techniques: You will gain advanced knowledge of ground investigation using invasive techniques, in-situ tests and geophysical methods.

Contaminated Land Risk Assessments: You will learn key techniques for site assessment, analytical testing and risk assessment.

Field Reconnaissance and Walk-Over Survey: This unit covers techniques which are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn integration and analysis of spatial datasets using GIS and interpretation of aerial photography and satellite imagery - key tools for terrain evaluation.

Independent Research Project: This provides an opportunity for you to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, workshops and practical laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Essays
Laboratory reports

Student Destinations

Contaminated land is listed as one of the key areas in which the UK has a skills shortage. This fact, combined with the vocational nature of this course, means that you will be in high demand from employers looking for newly qualified contaminated land specialists. You will find the majority of such roles in the environmental consultancy sector.

This course will provide you with a variety of transferable skills such as project planning, literature and data reviewing, report writing, along with the more general skills of presentation, communication and so on. It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. Read more
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. In addition to successful employment in the international petroleum industry graduates from this course are employed in the international mining industry as well as being highly sought after for further PhD research in the geosciences.

● Recognised by Industry - Industry scholarships

● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum and remote sensing industries.

The course covers the applications of tectonics and structural geology to hydrocarbon exploration and production as well as to applied structural geology research in different terranes. The course is modular in form providing intensive learning and training in tectonics, applied structural geology, seismic interpretation of structural styles, tectonostratigraphic analysis, section balancing and reconstruction, remote sensing, crustal fluids and hydrocarbon systems, reservoir geology, and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in –
● Plate tectonics and terrane analysis;
● Applied structural analysis;
● 3D seismic interpretation and 3D visualization of structural styles;
● Fault analysis and fault-sealing;
● Tectonostratigraphic analysis;
● Scaled analogue modelling;
● Numerical modelling of structures;
● Remote sensing analysis of satellite and radar imagery;
● Analysis of gravity and magnetic data;
● Section balancing and reconstruction;
● Applied structural fieldwork.

● Transferable skills learned during the course include
project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available

● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –
● Dedicated Modern Teaching Laboratories
● Internationally Recognised Structural Modelling Laboratories
● 14 Dual Screen Unix Seismic Workstations
● PC and Macintosh Workstations
● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger
● Southeast Asia Research Group – tectonic evolution and basin development in SE Asia – Professor Robert Hall
● Numerical Modelling Research Group – Numerical modelling of tectonics and sedimentation – Dr Dave Waltham
● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

Our Tectonics MSc graduates have gained employment with Shell, BP, ECL, PGS, Sipetrol, PGL, Codelco, and to PhD research in a range of universities including Trieste, Barcelona, and Ulster universities.
Since 2001, 85% of our Petroleum Geosciences MSc graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html

Read less
This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. Read more
This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. In addition our graduates are highly sought after for further PhD research in the petroleum geosciences.

● Recognised by NERC - 5 MSc studentships each year covering fees, fieldwork and maintenance.
● Recognised by Industry - Industry scholarships
● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum industry.

The course covers the applications of basin dynamics and evolution to hydrocarbon exploration and production. The course is modular in form providing intensive learning and training in geophysics, tectonics and structural geology, sequence stratigraphy and sedimentology, hydrocarbon systems, reservoir geology, remote sensing and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in -
● 3D seismic interpretation and 3D visualization;
● Fault analysis and fault-sealing;
● Seismic sequence stratigraphy;
● Applied sedimentology;
● Well log analysis;
● Remote sensing analysis of satellite and radar imagery;
● Analysis of gravity and magnetic data;
● Numerical modelling of sedimentation and tectonics;
● Applied structural geology;
● Geological Fieldwork.

● Transferable skills learned during the course include
project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available


● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –
● Dedicated Modern Teaching Laboratories
● 14 Dual Screen Unix Seismic Workstations
● PC and Macintosh Workstations
● Internationally Recognised Structural Modelling Laboratories
● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger
● Southeast Asia Research Group – Tectonic Evolution and Basin Development in SE Asia – Professor Robert Hall
● Numerical Modelling Research Group – Numerical Modelling of Tectonics and Sedimentation – Dr Dave Waltham
● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

The 2005 MSc graduates went on to employment with Shell, BP, Amerada Hess, Gaz de France, OMV (Austria), Star Energy, First Africa Oil, Badley Ashton, ECL, PGS, Robertsons, PGL, Aceca, and to PhD research at Royal Holloway and Barcelona.
Since 2001, 85% of our graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html

Read less
The MSc in Reservoir Evaluation and Management (REM) is a unique combination of Reservoir Geoscience and Reservoir Engineering centred around the individual reservoir rather than the wider regional geology (which is covered in our sister programme MSc Petroleum Geoscience). Read more
The MSc in Reservoir Evaluation and Management (REM) is a unique combination of Reservoir Geoscience and Reservoir Engineering centred around the individual reservoir rather than the wider regional geology (which is covered in our sister programme MSc Petroleum Geoscience). The REM masters degree focuses on equipping students with the skills and knowledge they need to develop predictive models of the reservoir.

Most development decisions in oil companies are based on the predictions of computer models of the subsurface. The Reservoir Evaluation and Management MSc teaches students the most effective ways to combine the geology, geophysics and reservoir engineering disciplines in order to develop and run computer models which provide the most robust predictions.

More information about the MSc is available in Heriot-Watt's online prospectus:
http://www.postgraduate.hw.ac.uk/prog/msc-reservoir-evaluation-and-management/

About the programme

The main objective of the MSc programme is to provide a thorough training in aspects of reservoir geology, geophysics and engineering related to the appraisal and development of subsurface hydrocarbon resources.

The programme is deliberately intensive, typically consisting of working a full 5 days per week of lectures and practical work, including labs or tutorial exercises designed to teach practical work, in addition to learning theory. The programme also includes two field trips to observe geology in the field for those with and without prior geological experience.

The most challenging and fulfilling aspect of the Reservoir Evaluation and Management programme is the project skills, particularly the team project, where students are tasked to propose a development plan for a real field. The project integrates all the learning in reservoir geosciences and engineering disciplines and reinforces the learning through team work.

Topics covered:
=============
• Reservoir concepts
• Reservoir sedimentology
• Rock mechanics, geomechanics and geophysics
• Formation evaluation
• Well testing and production logging
• Geological Modelling and management
• Reservoir engineering
• Reservoir simulation

For more information on the programme content, including course descriptions, please visit: http://www.postgraduate.hw.ac.uk/prog/msc-reservoir-evaluation-and-management/

Professional recognition

The programme is accredited by the Energy Institute.

Career opportunities

Graduates of the Reservoir Evaluation and Management MSc are highly sought after by all major oil and gas operators and service companies worldwide. They go on to work in a variety of roles, including Geoscience and Reservoir Engineering. The programme also provides an excellent springboard for graduates wishing to pursue a career in research.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent.

We offer a range of English language courses: http://www.hw.ac.uk/study/english.htm

Read less
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics. Read more
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics.

You will receive training in research methods and take a taught course unit in a relevant subject area. The research topic for your project is agreed with a supervisor in advance and can be in any area of the expertise in the department research groups. The project outline will be developed in consultation with your supervisor and project work is carried out in parallel with the taught courses, becoming full-time during the third term.

This Master’s by Research will provide you with a suitable background to work as a research assistant or as the grounding for further study towards a PhD.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscearthsciencesbyresearch.aspx

Why choose this course?

- This course is ideal for graduates in geology and related sciences who wish to carry out independent research over a shorter time period than is possible in a doctorate (PhD) programme. It allows you study at Master's level an aspect of the geological sciences which may not be catered for by specialist MSc programmes.

- You will be involved at every step of the research project - from planning and sample collection, laboratory work, result analysis, to writing your dissertation.

- It is ideal preparation if you are interested in studying for a PhD, but would like to have further preparation and training.

- In the 2008 Research Assessment Exercise (RAE), the Department of Earth Science’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

- The Department has up-to-date computer interpretation facilities, a full range of modern geochemical laboratories including XRF, quadrupole and multicollector ICP Mass Spectrometry, atmospheric chemistry and a new excimer laser ablation facility, excellent structural modelling laboratories, palaeontology and sedimentology laboratories.

Course content and structure

The course consists of the following three components:

A Research Study Skills Course Unit
- Personal research skills (e.g. safety, time and project management, teamwork)
- IT skills (e.g. literature retrieval, web authoring, databases, modelling)
- Data analysis skills (e.g. statistical methods, GIS systems, sampling techniques)
- Communication skills (e.g. posters, oral presentation, writing papers, web pages)
- Subject-specific skills and techniques. These amount to 55% of the research skills assessment, and for example may include parts of specialist taught courses (see below), a training course on the theory and practice of chemical and isotopic analysis, or other training arranged by the project supervisor. This will include training for research in the general field of the research project, not solely what is needed to carry out the project.

A Specialist Taught Course Unit
You will choose an advanced taught course unit relevant to the subject area of your research project. The following taught units are currently offered:
- Applied Sedimentology and Stratigraphy
- Pollution Sources and Pathways
- Oceans and Atmospheres
- Risk and Environmental Management
- Geographical Information Systems
- Environmental Inorganic Analysis
- Contaminants in the Environment
- Advanced Igneous Petrogenesis
- Seismic Processing and Interpretation
- Geodynamics and Plate Tectonics
- Interpretation of Structural Settings
- Coal Geology
- Petroleum Geology and Evaluation
- Terrestrial Palaeoecology
- Palaeoclimates

Research Project
The project may be on any topic which is within the broad research themes of the Department. You will be linked to a potential supervisor at the application stage and, in consultation with the supervisor, you will develop a detailed project outline during the first half of the first term. Project work is then carried out in parallel with taught courses during terms one and two, becoming the full-time activity after Easter. A bound dissertation is submitted for examination in early September.

On completion of the course graduates will have:

- an advanced knowledge and understanding of a variety of analytical, technical, numerical, modelling and interpretive techniques applicable to the specific field of earth sciences

- the articulation of knowledge and the understanding of published work, concepts and theories in the chosen field of earth sciences at an advanced level

- the acquisition of knowledge from published work in the chosen area of earth sciences to a level appropriate for a MSc degree.

Assessment

Research Study Skills: this is assessed by coursework and theory examination and will include short written assignments, a seminar, worksheets and practical tests. These assessments contribute 12.5% of the course marks.

Specialist Taught Course Units: these are mostly assessed by a written, theory examination and coursework. The unit assessment contributes 12.5% of the course marks.

Research Project: the project dissertation must be submitted in early September. It will be marked by both an internal and an external examiner, and will be defended at an oral examination with both examiners. The project assessment contributes 75% of the course marks.

Employability & career opportunities

Subject to agreement and suitable funding, MSc by Research students can transfer to the MPhil/PhD programme at Royal Holloway. They may use the research carried out for the MSc towards the PhD, and count the time spent towards MPhil/PhD registration requirements, provided that the MSc research forms a coherent part of the PhD, and that the transfer is approved prior to submission of the MSc research dissertation.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This course is designed for engineering graduates who intend to enter or enhance their career prospects in the oil or natural gas industry. Read more
This course is designed for engineering graduates who intend to enter or enhance their career prospects in the oil or natural gas industry. It will be re-accredited by the IGEM in 2016.

The course explores the geology, exploration, drilling, production (surface and subsurface), reservoir engineering and management, distribution and transmission of oil and gas from practical and theoretical viewpoints.

Key benefits:

• The first course of its kind in the UK
• Enhances your career prospects in the oil and gas industries
• Gives you the opportunity to become a Chartered Engineer

Visit the website: http://www.salford.ac.uk/pgt-courses/petroleum-and-gas-engineering

Suitable for

Suitable for engineering graduates or engineers and industrial practitioners who are interested in entering or progressing in the petroleum and gas industries.

You may have a first degree in engineering or a scientific discipline including geology and physics and will be keen to enter the gas or oil industry as an engineer.

You may also already have significant experience of working as an engineer in the gas and oil industry and wish to formalise your current position with an academic and professional qualification.

Programme details

You will develop the knowledge and the skills for problem solving in terms of development, design, business and economics management in oil and gas engineering which will assist you to make management and scientific decisions in the workplace.

On completion of this course you may be eligible to join the Institution of Gas Engineers & Managers or Society of Petroleum Engineers which may enable you to qualify as a Chartered Engineer.

Format

Teaching will be carried out as formal lectures, laboratories, tutorials and workshops

Module titles

• Petroleum Economics and Project Management
• Geology, Exploration, Drilling and Production
• Fundamentals of Natural Gas and Production Systems and Design
• Distribution, Transmission Systems and Design
• Gas Flow and Network Analysis
• Experimental and Measurement Methods
• Project/Dissertation

Assessment

Petroleum and Gas Engineering students are required to attend all of the modules. There are seven examination sessions. Students must pass all the modules studied with an overall average of at least 50% in the module programmes and in the course assessed work.

All laboratory and course assessed work must be submitted on time and to the required standard.

Students admitted to the course at Diploma level with examination and coursework of 50 % may proceed to MSc level. (120 Credits)

MSc Students must undertake a dissertation (60 Credits) on any aspect of the natural gas business either experimentally or computationally. The project can frequently relate to research work already in the school and or natural gas engineering and management.

You will be assessed by both coursework 50% and examinations 50%

Career potential

Due to the relative uniqueness of this course in the UK, together with the high demand of graduates with the types of skills and knowledge that this course offers, employment prospects are excellent.

Graduates can expect to enter or progress in industries such as petroleum, gas, process engineering, chemical or steel.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X