• University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Dundee Featured Masters Courses
University of Manchester Featured Masters Courses
United Kingdom ×
0 miles
Engineering×

Masters Degrees in Environmental Engineering, United Kingdom

We have 88 Masters Degrees in Environmental Engineering, United Kingdom

  • Engineering×
  • Environmental Engineering×
  • United Kingdom ×
  • clear all
Showing 1 to 15 of 88
Order by 
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Water, waste and environmental engineering has been traditionally referred to as public health engineering in the United Kingdom. Read more

This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Water, waste and environmental engineering has been traditionally referred to as public health engineering in the United Kingdom.

In this postgraduate course, the technical aspects of both natural and engineering environmental systems will be covered. There will be broad interdisciplinary subjects synthesizing knowledge from a wide spectrum of science and engineering, expanding the content of public health engineering, which in the UK has traditionally been responsible for developing the infrastructure for managing water and waste. 

Students will develop engineering skills and be able to design, develop and apply concepts for water and waste as a resource based on environmental sensitivity and be competent in planning, modelling, design, construction, operations, maintenance and control of both engineered and natural water and earth resources.  

Students who select this postgraduate programme will gain a skill set that will enable them to progress in the fields of:

  • Environmental engineering
  • Desalination and water reuse
  • Water resources engineering
  • Hydraulics and hydrology
  • Environmental fluid hydraulics
  • Environmental remediation
  • Waste management 
  • Other specialities valued in both the private and public sectors.

The MSc in Water, Waste and Environmental Engineering will incorporate solid waste management, contaminated land treatment and the use of geographic information systems (GIS) with emphasis on management of the earth's resources. 

The programme will explain the relationship between different earth resources including:

  • Hydrosystems, both 'engineered': hydro-power plants, water/wastewater treatment plants, sewers, and 
  • 'natural': rivers, lakes, wetlands, irrigation districts, reservoirs etc.,
  • Solid wastes
  • Brownfield land
  • Geo-derived primary resources and their sustainable management.

Outcomes

The aims of the programme are to:

  • Show you how to design, implement and manage sustainable, risk-reduced eco-friendly solutions for reducing the environmental impact of exploitation of earth's resources in the context of environmental engineering-related issues facing global societies
  • Provide you with the skills to further your careers in these areas
  • Support you in understanding the innovative and pioneering approaches in this field and to be able to apply them to the solution of real-world problems in developing novel industrially-relevant solutions.

Full time

Year 1

Students are required to study the following compulsory courses.

Students are required to choose 15 credits from this list of options.

Part time

Year 1

Students are required to study the following compulsory courses.

Year 2

Students are required to study the following compulsory courses.

Students are required to choose 15 credits from this list of options.

Assessment

Project work, assignments and laboratory exercises in addition to substantial written examination of course materials will occur in most modules. The Environmental Engineering Research Project will require submission of a substantial final report/dissertation. Assessment of this module will involve participation in a poster and seminar presentation and a final oral examination.

Careers

Postgraduate students from this programme will find such employment opportunities as engineers, scientist and technical managers in the private sector (engineering design firms, engineering consultancy, project management, risk management and waste management), in the public sector (environmental protection engineering, regulations and standards, local government) and in non-governmental sectors (NGOs, environmental advocacy) or may wish to pursue further qualifications such as a PhD within the Faculty of Engineering and Science at the University of Greenwich to become even more specialised. 

Employers of environmental engineers include engineering consultancies (such as AECOM, Atkins, Mott MacDonald Group, Hyder), government agencies (such as Environment Agency, Scottish Environment Protection Agency) and NGOs (such as Oxfam, Engineers without Boarders, Water Aid).



Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more

The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

About this degree

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits).

A Postgraduate Diploma (120 credits) is offered.

Core modules

  • Collaborative Environmental Systems Project
  • Environmental Systems
  • Systems Engineering and Management
  • Systems Society and Sustainability
  • Environmental Modelling

Optional modules

Options may include the following:

  • Engineering and International Development
  • Industrial Symbiosis
  • Politics of Climate Change
  • Project Management
  • Water and Wastewater Treatment
  • Urban Flooding and Drainage
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Energy Systems Modelling
  • Smart Energy Systems: Theory, Practice and Implementation
  • Indoor Air Quality in Buildings
  • Light, Lighting and Wellbeing in Buildings
  • Building Acoustics
  • Science, Technology and Engineering Advice in Practice
  • Energy Systems and Sustainability
  • Waste and Resource Efficiency

Dissertation/report

All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Further information on modules and degree structure is available on the department website: Environmental Systems Engineering MSc

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Recent career destinations for this degree

  • Air Quality Engineer, National Environment Agency
  • Environmental Engineering Consultant, DOGO
  • Nuclear Analyst, EDF Energy
  • Graduate Flood Risk Engineer, Pell Frischmann
  • Project Manager, Veolia Environmental Services

Employability

The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:

  • design, construct and operate urban water systems
  • develop and implement cleaner production technologies to minimise industrial pollution
  • recycle waste materials into new products and generate energy
  • evaluate and minimise the environmental impact of engineering projects
  • develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Accreditation

The progamme is accredited by the Joint Boad of Moderators, which is made up of the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institutions of Highways and Transportation, and the Institute of Highway Engineers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The environment has an increasingly significant impact on the way we produce materials, structures and generally, how we live. Our course aims to extend your understanding of the core disciplines of civil engineering with the added perspective of environmental factors. Read more

Why take this course?

The environment has an increasingly significant impact on the way we produce materials, structures and generally, how we live.

Our course aims to extend your understanding of the core disciplines of civil engineering with the added perspective of environmental factors. It takes into account the importance of issues such as pollution, public health and resource management which can affect the engineering process.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Gain experience of environmental assessment techniques plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Government agencies
Environmental organisations
Consultancy
Project management

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to social, economic and environmental issues.

Here are the units you will study:

Environmental Management for Civil Engineering: This unit introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study the integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Environmental Engineering Design Project: This unit gives you an opportunity to simulate the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: In this unit you will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

This course is designed to equip you with knowledge and skills that employers in the construction industry expect. Alongside the technical topics, you will develop commercial and interpersonal skills required of construction industry professionals.

This course will also equip you for the real-world challenges within the specialist field of environmental engineering. You will have a specific understanding of environmental considerations within civil engineering projects enabling you to propose and implement environmentally sustainable solutions. You can expect to find roles within areas such as environmental and sustainability assessment, waste management, regulation and consultancy to name a few.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and the expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and the expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of environmental systems.

About this degree

The programme aims to provide students with a solid academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of environmental systems and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Systems, Society and Sustainability
  • Environmental Systems
  • Waste and Wastewater Treatment
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Environmental Systems
  • Roads and Underground Infrastructure
  • Advanced Soil Mechanics
  • Introduction to Seismic Design of Structures
  • Water and Wastewater Treatment
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Principles & Practices of Surveying
  • Finite Element Modelling and Numerical Methods
  • Urban Flooding and Drainage
  • Structural Dynamics
  • Data analysis
  • GIS Principles & Technology
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Design and Analysis of Structural Systems
  • Advanced Civil Engineering Materials
  • Engineering Study of Rail Systems and Infrastructure
  • Building Engineering Physics
  • Financial Aspects of Project Engineering and Contracting

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Environmental Systems) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated in the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond. There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Why this course?. This MSc provides the knowledge and skills to equip you for a career in either environmental engineering or environmental science. Read more

Why this course?

This MSc provides the knowledge and skills to equip you for a career in either environmental engineering or environmental science.

Closely aligned with industry’s demands, this course meets the needs of:

  • urban regeneration
  • land contamination management
  • environmental protection
  • infrastructure investment portfolios in Scotland and worldwide

A distinctive feature of this course is its highly topical nature. Glasgow has been undergoing extensive urban regeneration. This included building on land that's been contaminated in the past. You’ll have challenging 'real world' issues to study close to the University. From this experience, you'll become able to translate the principles of environmental engineering that you have learned into national and international context.

You’ll study

You'll follow a curriculum of five core classes and a wide range of optional classes. Each class is taught for two to three hours per week over eight to 11 weeks.

Following successful completion of the taught component, you’ll undertake a dissertation from June to August. In addition to the dissertation topics proposed by course leaders and industrial partners, you may propose topics that can be of relevance to your future career or your employer.

For part-time study the modules can be taken over two years (attending classes typically one day per week) with the dissertation completed in Years 2 or 3.

Work placement

As part of the class Independent Study in Collaboration with Industry you can apply to work with industry projects. Industrial partners often sponsor projects applicable for student dissertations.

Attendance

One year full-time study involves attendance at classes over two terms, plus a dissertation during the third term.

Part-time (open to UK/EU students only) involves class attendance in Years 1 & 2 and a dissertation in Years 2 or 3.

You can also study this course part-time through online distance learning, over 36 months, offering a flexible learning mode of study.

Facilities

Our £6 million state-of-the-art laboratory facilities are well-equipped with high-technological instrumentation and available space to investigate:

  • environmental & molecular microbiology
  • environmental chemistry
  • analytical chemistry
  • geomechanics & soil quality
  • structural design & material science

Discover more about our laboratory facilities.

Careers

Graduates of the MSc in Environmental Engineering are widely scattered internationally in environmentally related jobs – including a large number of environmental and engineering consultancies, industry, local government and national and international regulatory agencies.

The career prospects of graduates are excellent due to the significant skills shortages in the environmental engineering field both in the UK and overseas.

After graduation, many of our graduates get an Associate membership of IEMA (Institute of Environmental Management & Assessment) by doing the online exam. Becoming an Associate member of IEMA allows you to use the AIEMA suffix after your name — a way to prove to employers, clients and colleagues that you’re on the great career path that the MSc has given you.

Most of our students also become members of the IAIA (International Association for Impact Assessment) as the University offers a bulk discount membership for students. The IAIA launched IAIA Work Experience Program in 2017, which is only available to IAIA members (including student members). This innovative programme allows members who complete specific projects of benefit to the IAIA to be recognised through:

  • a Certificate acknowledging the work
  • the ability to include that project as professional work on their CV

This programme enhances the professional capacity of our students who take on a project; gaining skills that are complementary to the MSc programme.

Where are they now?

Many of our graduates are in work or further study.*

Job titles include:

  • Entry-level Civil Engineer in Landfill Division
  • Environmental Analyst
  • Environmental Health and Safety Analyst
  • Forestry Civil Engineer
  • Graduate Engineer

Employers include:

  • Adrian Laycook Ltd
  • Cairns Intersphere Consulting
  • Crossfield Consulting
  • Forestry Commission Scotland
  • Royal Dutch Shell
  • Scott Partnership Engineering
  • Scottish Water

*Based on the results of the national Destinations of Leavers from Higher Education Survey.

Post Study Work

The University of Strathclyde can endorse graduates on a visa that allows them to engage in business. The is for international students who have an innovative business idea and want to work in the UK (initial permission to stay of 12 months, with a possible extension of 12 months if suitable progress is made). The Strathclyde Entrepreneurial Network (SEN) can give support and guidance to help you develop your business idea.



Read less
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. Read more
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. In addressing these and other environmental challenges, engineers and environmental managers are using sophisticated numerical models for predicting complex hydrodynamic, water quality and sediment transport processes. These models are increasingly complemented with decision support software systems and a wide range of related hydroinformatics software tools.

The MSc in Civil and Water Engineering will offer you the knowledge and expertise that you need for a career as a consulting water engineer within this specialist professional area of civil engineering. The course aims to complement a relevant undergraduate degree by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicators and sediment transport processes in coastal, estuarine and inland waters.

The MSc is aimed at graduates in Civil Engineering, Earth Sciences, Environmental Sciences and Bio-Sciences. Good mathematical skills are an advantage. The degree programme is also aimed at engineers/scientists working in relevant areas wishing to upgrade or refresh their qualifications.

Distinctive features

• The School of Engineering received the highest rating in the UK for its research and its research impact in the Government’s latest Research Excellence Framework (REF 2014).

• The course lecturers have considerable experience of working on a wide range of practical environmental hydraulics project and their models have been mounted by over 35 companies for over 80 world-wide EIA projects and by over 45 universities in 17 countries.

• The MSc in Civil and Water Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The MSc in Civil and Water Engineering is run by the School of Engineering and is designed to provide specialised, postgraduate training in environmental water engineering whilst having a measure of flexibility to permit some study of related subjects in Civil and Geoenvironmental Engineering.

The aim of the programme is to enhance your engineering skills and the completion of an extended project within one of the water engineering fields forms a major part of the programme. Thus, the MSc in Civil and Water Engineering aims to complement an undergraduate degree in Civil Engineering, or similar, by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicator and sediment transport processes in coastal, estuarine and inland waters. You will have the opportunity to work with some of these models in an extended project. The degree programme is available on a one-year full-time basis or on a three-year part-time basis.

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. You must complete 120 credits in Stage 1 in order to progress to the dissertation, for which you will be allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you will be encouraged to put forward your own project ideas.

Assessment

Assessment is conducted via coursework and examinations.

You will be required to undertake an individual research project in a specialist area of Water Engineering, leading to the preparation of a dissertation. Project work is undertaken under the direct supervision of a member of staff in one of the three participating departments.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Water Engineering is excellent, with the majority of graduates joining engineering consultancies. A small number of graduates each year go on to further study, typically a PhD.

Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of seismic design.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of seismic design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Seismic Design of Structures
  • Structural Dynamics
  • Seismic Loss Mitigation
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Seismic Design) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Our MSc Environmental Health two year’s master’s course explores how the environment around us impacts our daily lives and our health through analysing how stressors can affect how our bodies function. Read more
Our MSc Environmental Health two year’s master’s course explores how the environment around us impacts our daily lives and our health through analysing how stressors can affect how our bodies function. We deliver the curriculum of the Chartered Institute of Environmental Health (a world recognised professional body) teaching about hazard and risk in the topics of: housing and health, environmental protection and health, occupational health and safety, food safety and public health. On completing this course you will have a detailed understanding of risks and how to mitigate impacts using technical, scientific or legal interventions to create a safer and healthier environment.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Geography and Environmental Studies Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

Accredited by the Chartered Institute of Environmental Health (CIEH) the first 180 credits of this course course fulfils the academic requirement to gain recognition as an Environmental Health Practitioner. Full professional accreditation, opens up a broad range of career prospects in the public, private and voluntary sectors in the UK and abroad.

Members of the core teaching team sit on CIEH committees at both local and national level and in their accreditation visit, the CIEH commended ‘the excellent channels of communication established between Northumbria University and the CIEH’.

Learn From The Best

This course is delivered by our highly experienced teaching team. Three of the core four teaching staff are Environmental Health Practitioners who bring many combined years of experience gained working across local government, public health, health promotion, private consultancy, advocacy and specialist divisions of the Health Protection Agency (chemical hazard management and health emergency planning) to equip you with specialist knowledge and skills that are at the forefront of the subject.

Our staff are research-active and hold advanced degrees in complimentary subjects (e.g. environmental engineering and sustainable development and public health) and memberships to professional organisations (including the Chartered Institute of Environmental Health, Chartered Institution of Wastes Management, Emergency Planning Society, etc.) to ensure they are aware of the latest trends, research and developments within this field.

Throughout the duration of your course you will benefit from site visits, presentations from guest lecturers and practical tasks to support you in transferring the theory you have learned into practise.

Teaching And Assessment

This course is focused upon the five core CIEH subject areas: food safety, housing, health and safety, environmental protection and public health.

Delivering an excellent postgraduate experience you will be offered the opportunity to question and reflect on how the world around us can impact on public health, whilst developing the skills and knowledge necessary to understand these risks and how to intervene and manage them effectively.

Teaching is delivered through a mix of lectures, seminars and workshops. You will also participate in debates, discussion and critiques of academic papers, field trips, case study scenarios and general discussions of academic and ethical issues.

Assessments for this course are undertaken in the form of essays, reports, audits, presentations and assessed discussions completed as an individual and part of a group.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

At the end of the course you will have also had the chance to complete professional exams in practical food and the integrated professional assessment. In addition, many of our assessments have been devised to be used as a potential basis to complete parts of your Portfolio of Professional Practice submission to the Chartered Institute of Environmental Health (CIEH). Using these brings you closer to gaining recognition as an Environmental Health Practitioner.

Module Overview
Year One
KE7008 - Public Health (Core, 20 Credits)
KE7009 - Environmental Protection and Health (Core, 20 Credits)
KE7010 - Housing and Health (Core, 20 Credits)
KE7011 - Managing for Health and Safety (Core, 20 Credits)
KE7012 - Food Safety Management (Core, 20 Credits)
KE7013 - Foundations for Professional Practice and Research (Core, 20 Credits)
KE7025 - CIEH Integrated Professional Assessment (Core, 0 Credits)

Year Two
KE7015 - Research or Work Related Dissertation (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

When studying the MSc Environmental Health course you will have access to our state-of-the-art learning facilities.

You will take part in practical experiments in our research laboratories, in addition to utilising our industry standard portable monitoring and analytical instrumentation to obtain real-world data for air quality, contaminated land and noise.

Specialist software, such as ADMS for air quality modelling, will allow you to analyse and model your findings. All of these experiences contribute to your understanding of how technology is used in the study and practice of environmental health.

With your course’s supporting documentation being available on our e-Learning Portal, Blackboard, and directed reading listed on the e-Reading Lists, both accessible at all times, this means you can support your own learning and self-development of the subject.

Research-Rich Learning

Our teaching team are research-active, specialising in fields such as health and safety management, compliance management, public health, food and safety standards, risk management, peroxides in aqueous solution, air quality, airborne particulates, environmental management in major incidents, and land contamination.

Research-rich learning is embedded throughout all aspects of this course, drawing on national and international findings to deepen your understanding of environmental health.

Your research experience is further enhanced with a dissertation where you are assigned to one of the core teaching team to undertake substantial research into a specific academic or work-based topic. You are encouraged to publish your findings in an appropriate journal.

In the latest UK-wide research assessment exercise (REF2014), 55% of the Geography Department’s research was ranked as world-leading or internationally excellent, making us a top-30 Geography Research Department based on research power.

Give Your Career An Edge

The MSc Environmental Health degree is highly valued by employers thanks to our accreditation with the Chartered Institute of Environmental Health (CIEH).

Graduates entering the job market benefit from the strength and breadth of the specialised knowledge gained alongside seeing its practical application. This, combined with transferrable skills embedded throughout the course, including written and verbal communication, team working, critical thought, and problem solving, prepare you for future graduate level employment across the public and private sectors.

We boast fantastic links with local employers meaning that there are placement opportunities usually available to help you complete your CIEH Portfolio of Professional Practice (PPP). Many of our students become technical officers and earn a salary whilst they complete their PPP alongside starting to gain experience in their chosen career.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

Your Future

Graduates will leave prepared for employment in roles such as Environmental Health Officers, risk managers, public health specialists/advocates, and health and safety managers.

As a CIEH accredited Environmental Health Practitioner you can find a career in the public, private or voluntary sectors. As a consultant in the private sector you could be working for holiday chains, supermarkets, food manufacturers. In the voluntary sector you could work in housing associations or for charities working to bring sanitation and water to developing countries. The public sector offers roles as a advisor/regulator or as public health advocates in local government, or in central government agencies, for example Public Health England, the Environment Agency or Food Standards Agency.

You will also graduate equipped with the necessary training to support further research around the broad subject of environmental health and could progress to a PhD should you wish to in the future.

Read less
This course is designed to advance analytical skills in the core subject areas of Civil Engineering including Structural Analysis, Sustainability and Hydraulics. Read more

This course is designed to advance analytical skills in the core subject areas of Civil Engineering including Structural Analysis, Sustainability and Hydraulics. Application of modern IT techniques to complex problem solving is a theme that runs through the course. This course also covers broader issues of project and process management in Civil Engineering.

The Internship Course seeks to provide the same rigorous and challenging programme of professional practice as the MSc Civil and Environmental Engineering but has the added advantage of including a 6 months internship incorporated into the period of study. This makes it ideal for students seeking to add a practical dimension to their studies and understand the demands of workplace supervision and management. Internship opportunities exist throughout the civil and construction industry within the UK.

Key benefits

This course is accredited by the Chartered Institution of Civil Engineering Surveyors (ICES). Successful completion of this course satisfies the academic requirements for the grade Member.

Course detail

This course is designed to advance analytical skills in the consideration of the interrelationship of current environmental issues and civil engineering. The course links these studies to the core subject areas of Civil Engineering including Structural Analysis, Sustainability, Geotechnics and Hydraulics.

Whilst there is the opportunity to complete empirical study the application of modern IT techniques to complex problem solving is a theme that runs through the course. The course also covers broader issues of project and process management in Civil Engineering. The internship will come at the end of the course following the successful completion of all taught modules.

During the Internship you will work for 6 months with an employer. The internship allows you to apply your theoretical knowledge to a practical work-based situation. It will allow you to improve existing skills and acquire new ones, explore various career opportunities, network and be part of a team. This will improve your understanding of the world of work and professional practice in the workplace. It will also enhance your career prospects, allowing you to focus on your potential career path.

Modules

• Advanced Structural Analysis

• Construction Project Management

• Advanced Geotechnical Engineering

• Advanced Structural Design

• Hydraulic and Environmental Engineering

• Research Method for Civil and Built Environment

• Dissertation

Format

Diverse methods are used to explore all aspects of the field. A strong supportive culture exists amongst the course tutors which enable students achieve their potential.

Assessment

Course works or mini-projects make 50% of the total assessment. There is practical work, report writing, critical academic writing and the skills and knowledge gained in these contribute to a capacity to deliver a high quality dissertation.

All the core modules have end of term examination as well as mini- project. Module leader provides appropriate support throughout the module to ensure candidates are well prepared.

Career and study progression

Graduate can find employment opportunities with:

- consulting civil engineering companies

- structural engineering firm

- contractors

- local/national government

- utility companies.

Alternatively, you may choose this course as the basis for further education or extensive research.

In completion student can continue their study for PhD in Civil Engineering and PhD in Structural Engineering.

How to apply

Click the following link for information on how to apply to this course.

Scholarships and bursaries

Information about scholarships and bursaries can be found here.



Read less
Offshore exploration has become crucial with the expanding demand for energy resources. Read more

Offshore exploration has become crucial with the expanding demand for energy resources. The MSc Maritime Engineering Sciences / Offshore Engineering course will look at the design and analysis of offshore and marine structures as well as the latest technologies in disaster response, and it is ideally suited to graduates seeking to enter or specialise in Maritime Engineering.

Introducing your degree

Maritime Engineering Science is an MSc course designed for graduates, or similarly qualified, with an engineering, scientific or mathematical background, who desire to pursue a career in maritime sector. An introductory module is provided at the start to give students the fundamental knowledge necessary for them to succeed in the course.

This MSc Maritime Engineering Science / Offshore Engineering course allows students to design and undertake the structural and hydrodynamic analyses for offshore engineering of fixed and floating structures as well as the understanding of design feasibility and the operating climate.

Overview

Offshore engineering is an expanding sector with an even greater demand for skilled engineers. Your compulsory modules will give you a detailed knowledge of offshore engineering and analysis and a professional understanding of maritime robotics for oceanography, offshore exploitation and disaster response.

Your option modules will enable you to broaden your knowledge to cover such topics as renewable energy from environmental flows, design optimisation and thermofluid engineering for low carbon energy.

You will tap into our Southampton Marine and Maritime Institute research network and undertake a final research project using our world-class maritime engineering facilities. The project will involve experimental and practical study and the completion of a dissertation.

View the specification document for this course

Career Opportunities

The maritime sector provides many and varied career opportunities in engineering and project management related roles. Maritime Engineering Science graduates are in strong demand with good starting salaries and excellent career progression opportunities.

Our graduates work across many different organisations. The Solent region around Southampton is the main UK hub for the maritime sector with organisations such as Lloyd’s Register, Carnival, BMT Nigel Gee, Maritime and Coastguard agency and many others based nearby. Organisations such BAE Systems, QinetiQ and Babcock support primarily the defence sector and employ a good number of our graduates. The offshore and marine renewable developments are offering excellent prospects both to work in the UK (locally, London or Aberdeen) or worldwide in places such as Singapore, Houston or Perth, etc.



Read less
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. Read more
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. The course is designed to provide specialist postgraduate professional development in this emerging discipline, encompassing areas traditionally within civil engineering, earth sciences and biology.

Geoenvironmental engineering is an inclusive discipline which recognises that many environmental challenges cannot be solved by one traditional discipline alone. The solutions to environmental challenges relating to human interaction with soil, groundwater and surface water require engineers to possess a broad range of knowledge and expertise. Cardiff University's MSc in Civil and Geoenvironmental Engineering prepares you to meet these challenges.

Civil engineering, earth sciences and the life sciences are all part of the discipline of geoenvironmental engineering. As a geoenvironmental engineer you could be involved in a wide range of activities, including contaminated land management, hydrogeology, water resource management, geochemical analysis, groundwater and surface water contamination fate and transport prediction, environmental impact assessment, environmental risk assessment, and habitat management. Geoenvironmental engineers frequently work in multidisciplinary project teams and developments.

Distinctive features

• Professional practice issues are integrated with the scientific and engineering foundation of the MSc through a series of short, workshop-style training courses covering practical aspects. These short courses are delivered by recognised professional practitioners in the industry.

• The course involves an innovative partnership between the Cardiff School of Engineering, the School of Earth, Ocean and Planetary Sciences and the Cardiff School of Biosciences.

• The MSc in Civil and Geoenvironmental Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The degree programme is available on a one year full-time basis or on a three year part-time basis. The full-time programme is delivered over two taught semesters followed by a research period and preparation of a dissertation. The part-time course is taught over three years. On successful completion of Part 1, the taught part of the course, you will proceed to the research project and dissertation stage.

This MSc is a partnership between the School of Engineering, the School of Earth, Ocean and Planetary Science and the School of Biosciences, and is administered by the School of Engineering.

For a list of the modules taught on the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc

For a list of the modules taught on the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc-part-time

Teaching

Part 1 of your course involves taught classes such as lectures, laboratory sessions and tutorials. You will be taught by leading international researchers in the fields of civil and geoenvironmental engineering.

A feature of the MSc in Civil and Geoenvironmental Engineering is the series of short, workshop style training courses covering practical applications, integrating professional practice issues with the scientific and engineering foundation of the course. These workshops are delivered by recognised professional practitioners in the industry.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Geoenvironmental Engineering is excellent, with the majority of graduates joining engineering consultants. A small number of graduates each year go on to further study, typically a PhD.

Substantial industrial involvement with the design and delivery of the course ensures the continuing relevance of the MSc as preparation for professional employment work in this area.

Read less
There is a growing need for environmental engineers who understand the technologies for pollution control and the commercial opportunities for business. Read more

There is a growing need for environmental engineers who understand the technologies for pollution control and the commercial opportunities for business. This course equips students with the knowledge and skills to solve a wide range of environmental engineering challenges.

Who is it for?

Suitable for graduate scientists and engineers concerned with the protection and enhancement of human life through the improvement and protection of environmental quality at both local and global scales. 

The MSc course comprises eight assessed modules, an integrated group project and an individual project. Students undertaking the Postgraduate Diploma (PgDip) complete the eight modules and the group project. Postgraduate Certificate (PgCert) students are required to complete six of the eight modules.

Why this course?

This course equips students with the knowledge and skills to solve a wide range of environmental engineering challenges. The course covers municipal and hazardous waste management, process emissions, contaminated land, water, wastewater and waste disposal. The programme also addresses energy and resource recovery from waste materials.

The course will provide you with:

  • An advanced theoretical and specialist understanding of processes and practices central to environmental engineering
  • An ability to select and apply appropriate existing and emerging technologies that can achieve lower environmental impact via an integrated and cross-disciplinary approach
  • Scientific, technical and engineering principles, economic consequences and risks of environmental management options as best practice
  • Capacity to undertake successful technical research projects using appropriate methods of critical analysis.

Informed by Industry

This course was developed by the team through engagement with a number of industrial contacts. Industry practitioners contribute directly to the course by teaching alongside academics from Cranfield. This does not only provide evidence of the relevance of the programme but allows students to understand the practical implications of their learning. Sixty percent of the course is focused on applied research projects including group projects (20%) and an individual thesis project (40%); both also supported by industry and environmental sector organisations.

Accreditation

This course is accredited by the Chartered Institution of Water and Environmental Management (CIWEM) and Chartered Institution of Wastes Management (CIWM)

Course details

The modules include lectures and tutorials, and are assessed through examinations and assignments. There is an emphasis on analysis of real problems. Students undertaking the Postgraduate Diploma (PgDip) complete the seven modules and the group project. Postgraduate Certificate (PgCert) students are required to complete six of the eight modules.

Group project

The group project experience is highly valued by both students and prospective employers. It provides students with the opportunity to take responsibility for a consultancy-type project, working within agreed objectives, deadlines and budgets. For part-time students a dissertation or projects portfolio can replace the group project.

Individual project

The individual thesis project, usually in collaboration with an external organisation, offers students the opportunity to develop their research capability and understanding of the subject and their ability to provide solutions to real problems in environmental engineering.

Assessment

Taught modules 40%, group project 20% (dissertation for part-time students), individual project 40%.

Your career

On completion of this MSc, graduates have a broader network of global contacts, increased opportunities for individual specialism and a wide range of careers as professional scientists and engineers in the environment sector.



Read less
Environmental engineering uses science and engineering principles to assess and mitigate pollution for the benefit of human health and the environment. Read more
Environmental engineering uses science and engineering principles to assess and mitigate pollution for the benefit of human health and the environment. This research programme requires an understanding of biology, chemistry, physics, engineering, socio-economics and legislation to develop solutions for the sustainable provision of clean air, land and water for humankind.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on environmental civil engineering. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

This research programme is ideal if you are enthusiastic about environmental engineering research. Our main research themes in environmental engineering are:
-Engineered biological systems
-Mining and metals in the environment
-Biochemical processes in contaminated water, soils and sediments
-Safe water and sanitation in developing countries

We offer MPhil and PhD supervision in the following research areas:
-Anaerobic digestion
-Manipulation of the fate of micro-pollutants
-Pollutant sequestration
-Bioremediation
-Risk assessment
-Sanitation and low-cost water supplies for developing countries
-Waste stabilisation ponds
-Constructed wetlands
-Minewater treatment
-Carbon neutral initiatives
-Geothermal energy

Our microbiological research has a strong emphasis on understanding and engineering biological processes using ecological theory, underpinned by exploration of molecular techniques, eg fluorescent in situ hybridisation, quantitative PCR, and denaturing gradient gel electrophoresis.

Delivery

We have extensive contacts in the UK and overseas to enable research to be carried out in collaboration with industry and government agencies. Research projects are supervised by staff with a wide range of industrial and academic experience. Professor Thomas Curtis and Professor David Graham, both Professors of Environmental Engineering, are a couple of our notable academic staff.

Read less
This MSc attracts UK and overseas graduates who wish to take advantage of the considerable global interest in water, wastewater, sanitation and waste to develop their careers. Read more

This MSc attracts UK and overseas graduates who wish to take advantage of the considerable global interest in water, wastewater, sanitation and waste to develop their careers.

Many graduates from the programme go on to work for consultancies, water utilities, contractors, relief agencies, regulatory bodies and international organisations.

Graduates from the programme also have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

In the past, scholarship students have been accepted from a range of schemes, including: Foreign Office and British Council Chevening, World Bank, Commonwealth, Thames Water, Commonwealth Shared Scholarships, and the Royal Academy of Engineering, together with students from numerous overseas national schemes.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Modes of study

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn).

Distance learning

This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have. Download our distance learning PDF to learn more.

Facilities and resources

Laboratories and pilot plants

In recent years, CEHE has benefited from investment in new equipment in both the small centre facility, which primarily supports fieldwork, and a larger, more extensively equipped microbiology and chemistry laboratory.

The laboratories are equipped with recently acquired state-of- the-art analytical equipment including ICP-OES, GC/MS, TOC, Ion Chromatograph, Particle Counter, water quality loggers, Delagua kits and so on, available for fieldwork.

A water and wastewater research pilot plant is located at Thames Water’s Shalford and Godalming Water Treatment Works, just a few kilometres away from the University campus. Over the years, many MSc dissertation projects have been completed at this facility, most of them to assist in the development or testing of relief agency systems.

A parallel wastewater research pilot plant has recently been established, again with the support of Thames Water, at Godalming Sewage Treatment Works.

Library facilities

The University library is currently resourced for books, journals and electronic resources, as the postgraduate programme in Water and Environmental Engineering has been well established over the last decade.

The programme draws on science, engineering and other areas of knowledge, and the overall diversity of academic groups within the University ensures that there are library resources to answer most needs.

The provision of British Standards online has reduced the copyright requirements and the quantity of photocopying required. Passwords are available from the library web pages for all other electronic resources.

CEHE resource centre

Provision is made within CEHE to access a limited range of textbooks, previously completed MSc dissertations, a selected range of journals and software mounted on PCs in the Catchment Modelling Laboratory or available on CD.

Professional Institution resources

Library and learning resources are available at the Institution of Civil Engineers, the Chartered Institution of Water and Environmental Management and other appropriate professional bodies.

All categories of members of the professional institutions are allowed to borrow books from the institution libraries by post, and in some cases to access other services online.

Computing

There are suitable computing facilities available both within the Faculty of Engineering and Physical Sciences and through central university facilities.

Teaching rooms

Teaching is primarily in flat floor teaching rooms, although there are occasions when formal lecture theatre facilities are used. All of the usual academic support materials and systems are available and pre-printed notes are distributed during every lecture.

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive and robust understanding of key areas of water and environmental engineering 
  • Skills that will enable students to explore, critically assess and evaluate problems and produce systematic and coherent solutions integrating core engineering science with practical applications both independently and within a team structure
  • An understanding of how this knowledge can be articulated around sustainable development practices
  • A sound base for enhanced communication skills both oral and written
  • A pathway that will prepare graduates for successful careers in the field including, where appropriate, progression to Chartered Engineer status

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Build on your current credentials in the field of energy and environmental engineering, or take the first step into this vital industry. Read more
Build on your current credentials in the field of energy and environmental engineering, or take the first step into this vital industry.

Energy and the environment are increasingly taking their place as a major issue in today’s world.

The course emphasises renewable energy techniques and theories, while also addressing the scientific background associated with sustainable construction and renewable and alternative energies.

See the website http://www.napier.ac.uk/en/Courses/MSc-Energy-and-Environmental-Engineering-Postgraduate-FullTime

What you'll learn

As well as advanced engineering principles and practices, you’ll learn to effectively manage projects and develop your research skills. You’ll be given practical experience in applying these principles to the investigation and development of renewable energy sources, such as solar and wind energy.

The course is accredited by both the Institution of Engineering and Technology (IET) and the Energy Institute, UK. Combined with a suitable accredited undergraduate degree, the MSc degree would then satisfy the academic requirements of the UK Engineering Council for Chartered Engineer (CEng) status.

Modules

• Sustainability energy technologies
• Solar energy: technology
• Modelling and analysis
• Sustainable building design
• Research skills and project Management
• Control engineering
• Distributed generation systems
• MSc project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

Career opportunities:
• energy production
• engineering consultancies
• research
• building services
• environmental engineering design

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less

Show 10 15 30 per page



Cookie Policy    X