• University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Swansea University Featured Masters Courses
University of London International Programmes Featured Masters Courses
Southampton Solent University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Durham University Featured Masters Courses
University of Manchester Featured Masters Courses
United Kingdom ×
0 miles
Materials Science×

Masters Degrees in Engineering Materials, United Kingdom

We have 48 Masters Degrees in Engineering Materials, United Kingdom

  • Materials Science×
  • Engineering Materials×
  • United Kingdom ×
  • clear all
Showing 1 to 15 of 48
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning

Communication Skills for Research Engineers

Aerospace Materials Engineering

Materials Recycling Techniques

Environmental Analysis and Legislation

Physical Metallurgy of Steel

MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

With our main research strengths of aerospace materials, environmental materials and steel technology, Swansea University provides an excellent base for your research as a MSc by Research student in Materials Engineering.

Key Features of MSc by Research in Materials Engineering

Swansea is one of the UK’s leading centres for Materials Engineering in teaching and research. The internationally leading materials research conducted at Swansea is funded by prestigious organisations. These industrial research links provide excellent research opportunities.

Key research areas within Materials Engineering include:

Design against failure by creep, fatigue and environmental damage

Structural metals and ceramics for gas turbine applications

Grain boundary engineering

Recycling of polymers and composites

Corrosion mechanisms in new generation magnesium alloys

Development of novel strip steel grades (IF, HSLA, Dual Phase, TRIP)

Functional coatings for energy generation, storage and release

MSc by research in Materials Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Links with industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
A Masters course providing the foundation for 21st century technologies - from fuel cells to aeroengines. Read more

A Masters course providing the foundation for 21st century technologies - from fuel cells to aeroengines

The complete masters (MSc) course in Advanced Engineering Materials provides you with an in-depth understanding of the key factors that govern the design and selection of materials for use in advanced engineering applications, as well as their processing, properties and stability.

Aims

The programme aims to convey detailed knowledge of state-of-the-art materials systems, with a focus on composites, advanced alloys and functional and engineering ceramics. The students explore the technologies used in the manufacture and processing of advanced materials and develop an understanding of the relationships between composition, microstructure, processing and performance. The student learn how to assess materials performance in service and develop an understanding of the processes of degradation in hostile conditions. They are also trained in the essential skills needed to design and develop the next generation of high performance engineering materials, establishing a strong foundation for a future career in industry or research.

Course unit details

The taught units cover the structure and design of advanced engineering materials and provide graduates with an increased depth and breadth of knowledge of materials science, technology and engineering.

Taught units include:

  • Introduction to Materials Science
  • Advanced Research Methods
  • Principles of Advanced Engineering Materials
  • Superalloys and High Performance Materials
  • Advanced Metals Processing
  • Advanced Composites
  • Graphene and Nanomaterials

Overseas students will require and ATAS certificate for this course. The ATAS certificate will expire after 6 months so please wait until May before applying. For a full list of the course units, please contact  . The JACS code for this course is J511 or J5.

Scholarships and bursaries

Unfortunately, The University of Manchester does not have any funding opportunities at present. There may be external funding opportunities, please see the link for more information:http://www.manchester.ac.uk/study/masters/funding/

Facilities

To underpin the research and teaching activities at the School, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Our graduates of this programme have gone on to fill key posts as materials scientists, engineers, managers and consultants in academia, industry and research and development. You may also be able to advance to PhD programmes within the School.

Accrediting organisations

The MSc in Advanced Engineering Materials is accredited by the Institute of Materials, Minerals and Mining (IoM3) with the award of Further Learning. For more information, visit http://www.iom3.org  



Read less
This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. Read more

This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. The course has considerable variety and offers career opportunities across a wide range of industry sectors, where qualified materials scientists and engineers are highly sought after.

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Core study areas include advanced characterisation techniques, surface engineering, processing and properties of ceramics and metals, design with engineering materials, sustainability and a project.

Optional study areas include plastics processing technology, industrial case studies, materials modelling, adhesive bonding, rubber compounding and processing, and polymer properties.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/

Programme modules

Full-time Modules:

Core Modules

- Advanced Characterisation Techniques (SL)

- Surface Engineering (SL)

- Ceramics: Processing and Properties (SL)

- Design with Engineering Materials (SL)

- Sustainable Use of Materials (OW)

- Metals: Processing and Properties (SL)

- MSc Project

Optional Modules

- Plastics Processing Technology (OW)

- Industrial Case Studies (OW)

- Materials Modelling (SL)

Part-time Modules:

Core Modules

- Ceramics: Processing and Properties (DL)

- Design with Engineering Materials (DL)

- Sustainable Use of Materials (OW or DL)

- Metals: Processing and Properties (DL)

- Surface Engineering (DL)

- Plastics Processing Technology (OW)

- MSc Project

Optional Modules

- Industrial Case Studies (OW)

- Adhesive Bonding (OW)

- Rubber Compounding and Processing (OW or DL)

Alternative modules:*

- Polymer Properties (DL)

- Advanced Characterisation Techniques (SL)

- Materials Modelling (SL)

Key: SL = Semester-long, OW = One week, DL = Distance-learning

Alternative modules* are only available under certain circumstances by agreement with the Programme Director.

Selection

Interviews may be held on consideration of a prospective student’s application form. Overseas students are often accepted on their grades and strong recommendation from suitable referees.

Course structure, assessment and accreditation

The MSc comprises a combination of semester-long and one week modules for full-time students, whilst part-time students study a mix of one week and distance-learning modules.

MSc students undertake a major project many of which are sponsored by our industrial partners. Part-time student projects are often specified in conjunction with their sponsoring company and undertaken at their place of work.

All modules are 15 credits. The MSc project is 60 credits.

MSc: 180 credits – six core and two optional modules, plus the MSc project.

PG Diploma: 120 credits – six core and two optional modules.

PG Certificate: 60 credits – four core modules.

- Assessment

Modules are assessed by a combination of written examination, set coursework exercises and laboratory reports. The project is assessed by a dissertation, literature review and oral presentation.

- Accreditation

Both MSc programmes are accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Careers and further Study

Typical careers span many industrial sectors, including aerospace, power generation, automotive, construction and transport. Possible roles include technical and project management, R&D, technical support to manufacturing as well as sales and marketing.

Many of our best masters students continue their studies with us, joining our thriving community of PhD students engaged in materials projects of real-world significance

Bursaries and Scholarships

Bursaries are available for both UK / EU and international students, and scholarships are available for good overseas applicants.

Why Choose Materials at Loughborough?

The Department has contributed to the advancement and application of knowledge for well over 40 years. With 21 academics and a large support team, we have about 85 full and part-time MSc students, 70 PhD students and 20 research associates.

Our philosophy is based on the engineering application and use of materials which, when processed, are altered in structure and properties.

Our approach includes materials selection and design considerations as well as business and environmental implications.

- Facilities

We are also home to the Loughborough Materials Characterisation Centre – its state of-the-art equipment makes it one of the best suites of its kind in Europe used by academia and our industrial partners.

The Centre supports our research and teaching activities developing understanding of the interactions of structure and properties with processing and product performance.

- Research

Our research activity is organised into 4 main research groups; energy materials, advanced ceramics, surface engineering and advanced polymers. These cover a broad span of research areas working on today’s global challenges, including sustainability, nanomaterials, composites and processing. However, we adopt an interdisciplinary approach to our research and frequently interact with other departments and Research Schools.

- Career prospects

Over **% of our graduates were in employment and / or further study six months after graduating. Our unrivalled links with industry are hugely beneficial to our students. We also tailor our courses according to industrial feedback and needs, ensuring our graduates are well prepared

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/



Read less
Develop a specialised knowledge of materials engineering in this course which is fully accredited by the Institute of Materials, Minerals and Mining. Read more
Develop a specialised knowledge of materials engineering in this course which is fully accredited by the Institute of Materials, Minerals and Mining.

One of very few such courses offered at masters level in the UK. It's information rich but also provides a significant degree of hands-on practical work that utilises a wide range of manufacturing, testing and characterisation equipment. The limited number of graduates in this area, combined with the knowledge, expertise and practical skills developed in this specialised field, gives you a major advantage over other engineering graduates as you seek employment within the materials-related industries.

We have been successfully teaching a masters programme in materials engineering for more than 20 years, leading the way in the study of this field. Staff are very experienced and undertake both academic research and commercial projects, both of which support students’ learning experience.

See the website http://www.napier.ac.uk/en/Courses/MSc-Advanced-Materials-Engineering-Postgraduate-FullTime

What you'll learn

Gain exposure to the latest trends in design, materials, manufacturing processes, testing and advanced applications by taking full advantage of our modern technology and computing facilities.

You'll benefit from our first class research and knowledge transfer partnerships with local, national and international companies. Accredited by the Institute of Materials, Minerals and Mining, we have excellent industry links and encourage you to interact with industry too.

All projects are practically focused, with an emphasis on using industry standard manufacturing and testing equipment. Many projects are live, meaning you'll be working for real clients.

Modules

• Metallic Materials
• Plastics Materials
• Ceramics and Composites
• Smart Materials and Surfaces
• Forensic Materials Engineering and Energy Materials
• MSc Project – a focused piece of industrially relevant research, normally carried out on placement

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

You'll have excellent job prospects with this pedigree of materials engineering skills, expertise and knowledge.

This will give you enhanced employment prospects in almost all engineering, science, design and manufacturing disciplines. In particular, you may find roles in:
• manufacturing
• design, energy engineering and renewables
• chemical engineering
• offshore engineering, materials testing
• advising and assuring companies
• regulatory authorities and automotive
• aerospace and defence industries

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
This programme. brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career. Read more

This programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career.

It focusses on the theory and computational simulation of material structures for application into automotive, aerospace, technology and energy sectors. You will gain a strong understanding of the properties and behaviours of different substances, from raw materials to finished products, identifying their strengths and limitations, enabling you to find solutions to complex contemporary problems.

Our particular research strengths are drawn into the masters programme, in areas including functional materials (those with extra functionality such as electro-magnetic screening, self-sensing and active materials, and materials with negative thermal expansion and Poisson’s ratios), polymers, composites and bio-materials.

The programme will prepare you for an exciting and rewarding career in materials engineering.

Programme Structure

This programme is modular and consists of eight core engineering, modules totalling 165 credits, and one 15-credit option module.

Core modules

The core modules can include;

  • Mechanics of Materials;
  • Software Modelling;
  • Advanced Materials Engineering;
  • Computer Aided Engineering Design;
  • Research Methodology;
  • Sustainable Engineering;
  • New Developments in Materials Engineering
  • Engineering MSc Project

Optional modules

Some examples of the optional modules are

  • Contemporary Advanced Materials Research
  • Functional Materials.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
This exciting programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career. Read more

This exciting programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career.

Alongside the core engineering modules, you will also study three management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

It focusses on the theory and computational simulation of material structures for application into automotive, aerospace, technology and energy sectors. You will gain a strong understanding of the properties and behaviours of different substances, from raw materials to finished products, identifying their strengths and limitations, enabling you to find solutions to complex contemporary problems.

Our particular research strengths are drawn into the programmes, in areas including functional materials (those with extra functionality such as electro-magnetic screening, self-sensing and active materials, and materials with negative thermal expansion and Poisson’s ratios), polymers, composites and bio-materials.

MSc Materials Engineering with Management will prepare you for an exciting and rewarding career, whether you have a desire to lead and manage teams, or wish to progress in a technical materials engineering role.

Programme Structure

This programme is modular and consists of seven core modules totalling 150 credits, and two 15-credit option modules.

Core modules

The core modules can include;

  • Mechanics of Materials;
  • Software Modelling;
  • Advanced Materials Engineering;
  • Computer Aided Engineering Design;
  • Management Concepts;
  • Professional Skills;
  • Engineering MSc Project

Optional modules

Some examples of the optional modules are

  • Contemporary Advanced Materials Research;
  • Functional Materials.
  • Strategic Innovation Management
  • Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
New materials underpin development and progress across a wide variety of sectors. New technologies, from planes to batteries, from hip implants to electronic devices, are made possible, and often limited by, the materials we currently know and use. Read more

New materials underpin development and progress across a wide variety of sectors. New technologies, from planes to batteries, from hip implants to electronic devices, are made possible, and often limited by, the materials we currently know and use.

Materials Scientists and Engineers work hard to understand how and why materials behave the way they do, and exploit this knowledge to develop new materials with amazing properties.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III and summer in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials.

Course details

Studying Materials Science and Engineering, you will develop a fundamental understanding of how the properties of a material, such as strength, electronic properties and biocompatibility, are affected by the material’s structure, such as its crystal structure or microstructure.

This knowledge can then be used to formulate strategies to develop new materials, such as alloys able to operate at higher temperatures for jet engine blades or high-toughness ceramics for armour applications. This programme will equip you with the skills required to join a wide variety of industries in the capacity of materials specialist, or continue your education at a PhD level.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III & summer. In addition to technical modules, the course also provides training for transferable skills such as Communiation Skills and Effective Project Management.

Research projects can be carried out in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials or in industry. The project involves full-time research for one third of the academic year.

Related links

Learning and teaching

All students take twelve modules for a total 120 credits, plus a research project.

The programme is currently delivered through a combination of lectures, seminars, tutorials, project-based and laboratory-based teaching and learning methods.

Employability

Our graduates go on to become engineers and scientists at a wide variety of industrial partners, or opt to continue their studies at PhD level.

Typical employers:

  • BAE Systems
  • Rolls-Royce
  • Royal Air Force
  • British Petroleum

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
This MSc will suit engineering, mathematics and physical sciences graduates who wish to specialise in the maritime engineering science sector. Read more

This MSc will suit engineering, mathematics and physical sciences graduates who wish to specialise in the maritime engineering science sector. The core modules are particularly relevant to the Advanced Materials theme of this course.

Introducing your degree

Maritime Engineering Science is an MSc course designed for graduates, or similarly qualified, with an engineering, scientific or mathematical background, who desire to pursue a career in maritime sector. An introductory module is provided at the start to give students the fundamental knowledge necessary for them to succeed in the course. The masters course in Maritime Engineering Science / Advanced Materials enables the students to specialise in the in-depth study of engineering materials in addition to core naval architecture subject areas.

Overview

This course will enable you to develop a fundamental understanding of maritime engineering. Core modules are particularly relevant to the advanced materials theme where you will explore composites, titanium and aluminium and understand their selection and engineering for maritime applications.

The year is divided into two semesters. Each semester, in addition to a set of specialist modules, you will also have opportunity to select from a range of option modules including marine structures, finite element analysis and composite engineering design. You will also learn the broader principles of marine safety, environmental engineering and management.

The last four months will put your newly developed knowledge into practice. You will complete a major research project and take advantage of our many facilities, including a state-of-the-art Transportation Systems Research Laboratory and wind tunnel complex to support your experimental work.

View the specification document for this course

Career Opportunities

The maritime sector provides many and varied career opportunities in engineering and project management related roles. Maritime Engineering Science graduates are in strong demand with good starting salaries and excellent career progression opportunities.

Our graduates work across many different organisations. The Solent region around Southampton is the main UK hub for the maritime sector with organisations such as Lloyd’s Register, Carnival, BMT Nigel Gee, Maritime and Coastguard agency and many others based nearby. Organisations such BAE Systems, QinetiQ and Babcock support primarily the defence sector and employ a good number of our graduates. The offshore and marine renewable developments are offering excellent prospects both to work in the UK (locally, London or Aberdeen) or worldwide in places such as Singapore, Houston or Perth, etc.



Read less
The latest generation of strong, lightweight and flexible materials is transforming industry. Aviation, aerospace, manufacturing and other sectors rely on our cutting-edge research into composites and other materials. Read more

The latest generation of strong, lightweight and flexible materials is transforming industry. Aviation, aerospace, manufacturing and other sectors rely on our cutting-edge research into composites and other materials.

Introducing your degree

The MSc Engineering Materials is a one-year masters degree. The postgraduate course covers the latest techniques and methods in this dynamic advanced mechanical engineering science subject.

Overview

Material properties, their limitations and engineering context are widely studied in this course. You will develop your knowledge of microstructural and surface characterisation and investigate the performance of structural materials in engineering applications.

The year is divided into two semesters. Each semester, you will study core modules as well as choosing specialist modules, including Biomaterials and Fuel Cells and Photovoltaic Systems. You will advance your understanding of materials manufacture, design and their use in transport applications in the aerospace, marine and automotive sectors. There is also the opportunity to advance your management skills in the first semester.

The final four months will focus on research. You will complete a research project, taking advantage of our many facilities, including a 3D computed tomography imaging laboratory to study internal structures of materials.

View the specification document for this course



Read less
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. Read more

Overview

The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. It is designed for students who may wish to pursue a professional career in Materials Science / Materials Engineering or related areas (in academic or industrial research) and who are already familiar with the subject.

The course allows students to continue a broad Materials Science education across a range of topics : the taught element consists of a series of approximately 16 modular lecture courses, covering a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. A research project is undertaken over 6 months, between October and March.

Specific aims are:
1. to build on the knowledge and ideas gained in prior Materials Science courses;
2. to develop a more specialised and in-depth understanding of Materials Science in selected areas;
3. to further develop analytical and presentational skills, both orally and in writing;
4. to provide training in investigating research problems, including gaining an understanding of relevant research techniques and also of the design and interpretation of experiments.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Learning Outcomes

At the end of the course students should:
1. be able to apply the ideas and concepts introduced in the course to solve problems, do calculations, make predictions and critically evaluate information and ideas;
2. be able to demonstrate an understanding of the courses attended, and of their individual research projects;
3. be able to demonstrate practical, organisational and presentational skills that will enable them to continue successfully with research or in other professional careers;
4. be able to demonstrate the necessary skills and understanding required for a career in Materials Science.

Continuing

Students wishing to continue to PhD studies will usually be required to obtain at least a 'Commendable' result in the MASt.

Teaching

There are approximately 16 lecture modules focusing on advanced topics across a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. Details of the modules available this year can be found at: http://www.msm.cam.ac.uk/teaching/partIII.php.

Students may choose which lecture modules they wish to attend, and must prepare a minimum of 10 courses for examination.

Students also undertake a substantial individual research project, chosen from a set of topics proposed by academic staff. Work on this project accounts for about a third of the final credit.

- Feedback
The MASt is treated as an undergraduate course for the purposes of supervisions, such that on average students should expect to have at least one supervision per week during term, with written and verbal feedback on their work within 24 hours.

Online written reports are provided at the end of each term.

Students should expect to meet daily to weekly with their project demonstrator and weekly to termly with their project supervisor.

Students receive written feedback on all aspects of work submitted for summative assessment (reports, oral presentations, poster), within two weeks of the work being submitted.

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Read less
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. Read more
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. It is designed for students who may wish to pursue a professional career in Materials Science / Materials Engineering or related areas (in academic or industrial research) and who are already familiar with the subject.

The course allows students to continue a broad Materials Science education across a range of topics : the taught element consists of a series of approximately 16 modular lecture courses, covering a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. A research project is undertaken over 6 months, between October and March.

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Course detail

Specific aims are:

- to build on the knowledge and ideas gained in prior Materials Science courses;
- to develop a more specialised and in-depth understanding of Materials Science in selected areas;
- to further develop analytical and presentational skills, both orally and in writing;
- to provide training in investigating research problems, including gaining an understanding of relevant research techniques and also of the design and interpretation of experiments.

Learning Outcomes

At the end of the course students should:

- be able to apply the ideas and concepts introduced in the course to solve problems, do calculations, make predictions and critically evaluate information and ideas;
- be able to demonstrate an understanding of the courses attended, and of their individual research projects;
- be able to demonstrate practical, organisational and presentational skills that will enable them to continue successfully with research or in other professional careers;
- be able to demonstrate the necessary skills and understanding required for a career in Materials Science.

Format

There are approximately 16 lecture modules focusing on advanced topics across a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. Details of the modules available this year can be found at: http://www.msm.cam.ac.uk/teaching/partIII.php.

Students may choose which lecture modules they wish to attend, and must prepare a minimum of 10 courses for examination.

Students also undertake a substantial individual research project, chosen from a set of topics proposed by academic staff. Work on this project accounts for about a third of the final credit.

Assessment

- A final report of up to 7000 words, worth 12% of the total credit.
- An interim report worth 4% of the total credit.
- A project viva worth 4% of the total credit.
- A project poster worth 4% of the total credit.
- A project oral presentation worth 4% of the total credit.
- Termly progress assessments from project supervisor worth 2% of the total credit.
- Vacation project written report worth 1% of the total credit.
- Three 3-hr written examination papers worth a total of 68% of the credit.
An oral presentation of a vacation project worth 1% of the total credit.

Continuing

Students wishing to continue to PhD studies will usually be required to obtain at least a 'Commendable' result in the MASt.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities: http://www.2016.graduate.study.cam.ac.uk/finance/funding

Read less
Offered as part of the. Continuing Professional Development. (CPD) programme. Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials. Read more

Offered as part of the Continuing Professional Development (CPD) programme.

Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials.

The modules cover metals, polymers, ceramics, composites, nanomaterials, bonding, surfaces, corrosion, fracture, fatigue, analytical techniques and general research methods. Each module is followed by an open book assessment of approximately 120 hours.

There is also a materials-based research project, which is made up of the Research Project Planning and the Project modules.

The MSc in Advanced Materials is accredited by the Institute of Materials, Minerals and Mining (IOM3) and by the Institution of Mechanical Engineers (IMechE) when a Project is undertaken.

Programme structure

This programme is studied full-time over one academic year and part-time over five academic years. It consists of eight taught modules and a compulsory Project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

  • To provide students with a broad knowledge of the manufacture, characterisation and properties of advanced materials
  • To address issues of sustainability such as degradation and recycling
  • To equip graduate scientists and engineers with specific expertise in the selection and use of materials for industry
  • To enable students to prepare, plan, execute and report an original piece of research
  • To develop a deeper understanding of a materials topic which is of particular interest (full-time students) or relevance to their work in industry (part-time students) by a project based or independent study based thesis

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The different major classes of advanced materials
  • Routes for manufacturing and processing of advanced materials
  • Characterisation techniques for analysing bonding and microstructure
  • Mechanical, chemical and physical properties of advanced materials
  • Processing -microstructure - property relationships of advanced materials
  • Material selection and use
  • Appropriate mathematical methods

Intellectual / cognitive skills

  • Reason systematically about the behaviour of materials
  • Select materials for an application
  • Predict material properties
  • Understand mathematical relationships relating to material properties
  • Plan experiments, interpret experimental data and discuss experimental results in the context of present understanding in the field

Professional practical skills

  • Research information to develop ideas and understanding
  • Develop an understanding of, and competence, in using laboratory equipment and instrumentation
  • Apply mathematical methods, as appropriate

Key / transferable skills

  • Use the scientific process to reason through to a sound conclusion
  • Write clear reports
  • Communicate ideas clearly and in an appropriate format
  • Design and carry out experimental work

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This course is for practising engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies. Read more

This course is for practising engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies.

It increases your career potential by improving your

  • knowledge and experience of materials engineering
  • technical and problem solving skills
  • management skills
  • ability to take on greater responsibility

You also develop your understanding of current best practice in the theory and application of leading edge technologies, processes and systems in materials engineering.

You study

  • two management modules
  • five technical modules
  • one optional module

Option modules include advanced manufacturing technology • CAD/CAM • engineering for sustainability • equipment engineering and design • finite element / finite difference analysis

The international product development module involves working in multidisciplinary teams to develop a new product within a global market. This develops much sought after advanced technical and business skills. The project provides a supported environment to develop your ability in an area of your interest.

Professional recognition

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), on behalf of the Engineering Council for the purposes of partly meeting the academic requirement for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

Course structure

Core management modules

  • finance and marketing
  • project and quality management

Core technical modules

  • fatigue and fracture mechanics
  • advance investigatory techniques for materials engineers
  • advanced metallic materials
  • competitive materials technology
  • group project – international product development

Option modules

One from

  • advanced manufacturing technology
  • CAD/CAM
  • sustainability energy and environmental management

MSc

  • project and dissertation (60 credits)

Assessment

  • examination
  • coursework
  • project reports

Employability

If you are a new graduate, this course gives you the knowledge and skills to begin a career as a technical specialist in cutting edge materials industries. If you are already employed in materials engineering, it improves you career potential and can lead to roles with greater responsibility. It can also help towards research, consultancy and academic career paths.



Read less
About the course. It is estimated 70 per cent of innovations are due to an advance in materials. This course provides a solid grounding in all types of materials, and aims to prepare you for a career in industry or research by teaching you the concepts and theories that make materials science and engineering possible. Read more

About the course

It is estimated 70 per cent of innovations are due to an advance in materials. This course provides a solid grounding in all types of materials, and aims to prepare you for a career in industry or research by teaching you the concepts and theories that make materials science and engineering possible.

Our research-led teaching introduces you to all the latest developments; you’ll have the option to keep your course general or tailor your degree with optional modules to specialise in the area that interests you the most. Specialist modules include ceramic science and advanced solid state chemistry.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

  • Science of Materials
  • Materials Processing and Characterisation
  • Practical, Modelling and Digital Skills
  • Research project in an area of your choice

Examples of optional modules

  • Functional and Structural Ceramics
  • Glasses and Cements
  • Metallurgical Processing
  • Design and Manufacture of Composites
  • Materials for Energy Applications
  • Metals Processing Case Studies
  • Nanostructures and Nanostructuring


Read less

Show 10 15 30 per page



Cookie Policy    X