• University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Bath Spa University Featured Masters Courses
United Kingdom ×
0 miles
Chemistry×

Full Time Masters Degrees in Chemistry, United Kingdom

We have 202 Full Time Masters Degrees in Chemistry, United Kingdom

  • Chemistry×
  • United Kingdom ×
  • Full Time×
  • clear all
Showing 1 to 15 of 202
Order by 
The MChem Analytical Chemistry programme at Plymouth provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels four to seven. Read more
The MChem Analytical Chemistry programme at Plymouth provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels four to seven. Plymouth University is the only university which requires students to work in ISO9001:2015 certified laboratories.

Practical work to the ISO 17025 standard is a requirement at level seven for obtaining the MChem Analytical Chemistry qualification. The programme focuses on producing practical professional chemists through a hands-on approach to learning.

Key features

-The programme provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels 4 to 7 (Masters Level)
-You will develop the theoretical and practical skills necessary for employment as professional chemist in a range of chemical and allied fields, including research, teaching and industry
-The programme will develop the theoretical and practical skills, and provide training necessary for employment as an analytical chemist with experience of working to ISO 17025, the international standard for all testing and calibration laboratories
-You will learn to become a practical professional chemists through a hands-on approach to learning.
-The course places the professional skills of communication, problem solving, information and data retrieval and project management at its heart.

Course details

Year 1
Core modules
-CHM1011 Practice of Chemistry
-CHM1015 Organic and Inorganic Chemistry 2
-CHM1016 Physical and Computational Chemistry 2
-CHM1012 Organic and Inorganic Chemistry 1
-CHM1013 Physical and Computational Chemistry 1

Optional modules
-CHM1014PP Solving Chemical Problems
-MATH1604PP Symmetry and Space
-SPNX100PP Spanish 1
-FREX100PP French 1
-GERX100PP German 1
-MATH1607PP The Quantum Universe

Year 2
Core modules
-CHM2013 Physical Chemistry
-CHM2011 Inorganic Chemistry
-CHM2012 Organic Chemistry
-CHM2015 Analytical Chemistry 2
-CHM2014 Analytical Chemistry 1
-APIE218 Preparation for the Chemical Industry Work Placement
-CHM2016 Research Skills

Year 3
Optional modules
-APIE318 Placement in Chemistry

Year 4
Core modules
-CHM3016 Advanced Physical Chemistry
-CHM3014 Advanced Inorganic Chemistry
-CHM3015 Advanced Organic Chemistry

Optional modules
-CHM3011 Chemistry Project
-CHM3012 Chemistry Project incorporating Work Based Learning
-CHM3013 Advanced Analytical Techniques
-CHM3017 Physical Chemistry

Final year
Core modules
-GEES514 Research Skills for Science
-CHM5001 MChem Analytical Chemistry Project
-CHM5004 Quality Assurance and Accreditation
-CHM5005 Analytical Chemistry Advanced Problems and Practice for MChem

Read less
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research. Read more
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research.

Why this programme

-The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
-You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
-All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
-You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
-Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry.
-The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses
-Inorganic, organic and physical chemistry
-Medicinal chemistry
-Frontiers of chemistry
-Chemistry problems.
-Special topics from inorganic, organic, and physical chemistry

Accreditation

MSc Chemistry with Medicinal Chemistry is accredited by the Royal Society of Chemistry (RSC).

Career prospects

Career opportunities in the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to positions such as:
-Researcher at Piramal Healthcare UK Ltd
-Assistant Lecturer and Researcher at a university

Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
The Masters in Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, suitable for a professional chemist capable of conducting research. Read more
The Masters in Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, suitable for a professional chemist capable of conducting research.

Why this programme

◾The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
◾All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
◾You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
◾You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
◾You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
◾Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry
◾The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Chemistry at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses

◾Inorganic, organic and physical chemistry
◾Frontiers of chemistry
◾Chemistry problems.
◾Special topics from inorganic, organic, and physical chemistry.

Accreditation

MSc Chemistry is accredited by the Royal Society of Chemistry (RSC)

Career prospects

Career opportunities include the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to the following positions:
Teacher at a UK Secondary School.

Read less
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. Read more
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. This MSc in Medicinal Chemistry will allow you to specialise in this area and explore the wider context of drug discovery, business and healthcare.

On the course, you will develop the specific technical knowledge, understanding and laboratory skills needed to design drugs. You will also investigate the relationship between medicinal chemists and drug discovery companies with stakeholders such as patients, investors and governments.

Distinctive features:

• Available on a one year full-time or three year part-time basis.
• Explore medicinal chemistry in a wider industrial context, including how businesses interact with patients and investors.
• Specialise in an area of interest to you with an end of course research project.
• Some industrial and academic placements are available in the UK or abroad for the research project.
• Network and build contacts with industry professionals who are frequently invited to present guest seminars.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one is comprised of core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with a foundation in the skills required by contemporary medicinal chemists, such as the techniques and trends in modern drug discovery. We will also look in more detail at the modelling of biological macromolecules and drug targets. We will then follow the process of drug development through from laboratory to clinic.

Upon successful completion of part one, you will progress to part two, the summer research project. We will make a range of project options available to you from the field of medicinal chemistry. For this project, depending on the subject you choose, you may work with a research group in the School of Chemistry or our partner, the School of Pharmacy and Pharmaceutical Studies. You may, if available, also be able to complete this project with one of our industrial partners or within another academic institution in the UK or abroad.

Core modules:

Colloquium
Key Skills for Postgraduate Chemists
Drug Discovery Chemistry
Techniques in Drug Discovery
Drug Targets
Drug Development from Laboratory to Clinic
Trends in Drug Discovery
Practical Medicinal Chemistry
Research Project

Optional modules:

Module title Module code Credits
Modelling of Biological Macromolecules
Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Biocatalysis II - Industrial Applications of Biocatalysis
Bioinorganic Chemistry
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Advanced Techniques in Organic and Biological Chemistry
Analytical and Structural Techniques in Chemical Biology
Bio-imaging Applications of Coordination Chemistry
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, case studies, computer-aided sessions, practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field. You may have the opportunity to complete your project during a placement in industry or with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We will also invite industry experts for seminars with our students within one of the core modules. Students will also benefit of the weekly seminars organized by the School of Chemistry, where leading experts in various scientific fields are invited to present their work.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies, and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We will provide regular feedback on your workload, written and oral depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are happy to give advice and guidance on your progress. We aim to provide you with feedback within two weeks of you submitting an assessment.

Assessment

Taught modules are assessed in a variety of different ways depending on the module content and learning outcomes (found in the module descriptions). We use coursework, assessed workshops and presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Employment opportunities for successful graduates include the expanding worldwide pharmaceutical industry, where many choose to specialise in the research and development of new drugs. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Placements

For the end of course research project we may have some placements available with one of our industrial partners or at another UK or overseas academic institution that we have an agreement with. Please enquire for further details.

Read less
With an increase in the number of undergraduate degrees offering the MChem qualification, our Chemistry MRes allows BSc graduates to become equally competitive by studying for an enhanced qualification that will set them apart throughout their career. Read more

With an increase in the number of undergraduate degrees offering the MChem qualification, our Chemistry MRes allows BSc graduates to become equally competitive by studying for an enhanced qualification that will set them apart throughout their career.

Our MRes qualification is also a convenient entry point into the UK academic system for overseas students, and many of our MRes graduates go on to successfully complete a PhD.

Our academics are at the forefront of their field, having recently discovered a method for the rapid detection of drugs from a fingerprint; and a naturally sourced, environmentally safe chemical for the treatment of an important agricultural pathogen.

Programme structure

This programme is studied full-time over one academic year. It consists of three taught modules and a research project, which contributes 75 per cent of the final credits to the degree and includes the laboratory based research, library work, COSHH, record keeping and writing the dissertation.

We would normally expect the laboratory based part of the project to be, on average, two to three full days per week during the teaching semesters and five days per week during non-teaching times (for example, over the Christmas, Easter and summer breaks).

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

  • The aim of the MRes is training in the more laboratory-based aspects of chemical research
  • The objectives and learning outcomes/skills are that the student will be able to: assess, plan, carry out, analyse, interpret and disseminate (all with appropriate training and supervision) a significant piece of chemistry research to an extent that results in a satisfactory assessment of a dissertation and viva
  • In addition, competence in related (non-laboratory based) aspects of research training will be assessed via examination (formal exam and/or coursework) of lecture/workshop-based modules
  • A knowledge of discipline-related aspects of professional training including data analysis, literature searching and reporting and presentation techniques

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • Knowledge and understanding of the scientific method
  • Knowledge and understanding of research ethos and strategy
  • Knowledge and understanding of advanced communication skills
  • Knowledge and understanding of reporting of technical concepts
  • Knowledge and understanding of critical analysis
  • Knowledge and understanding of advanced aspects of chemistry including subjects at the frontiers of the discipline
  • Knowledge and understanding of advanced principles in a research led area of chemistry
  • Knowledge and understanding of Health and Safety legislation
  • Knowledge and understanding of statistics for data analysis
  • Knowledge and understanding of the principles of experimental design

Intellectual / cognitive skills

  • The ability to plan and carry out an advance research project
  • The ability to analyse and solve problems of technical nature under consideration of various constraints
  • The ability to make effective and efficient decisions in an environment of conflicting interests
  • The ability to think strategically
  • The ability to synthesise and critically evaluate the work of others
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • The ability to self-reflect to improve behaviour

Professional practical skills

  • Assessment of the research literature
  • Risk assess experiments / procedures
  • Design and set up experiments using the most appropriate methods
  • Carry out laboratory work safely
  • Deal safely with unexpected events / results
  • Apply prior knowledge to new situations

Key / transferable skills

  • Planning
  • Organisation
  • Independent working
  • Apply prior knowledge to unfamiliar problem
  • Using initiative
  • Time-management
  • Personal development planning
  • Use of word processor, spreadsheet, presentation, graphical software packages
  • Management of data
  • Effective literature / patent searching

Research

The Chemistry programme is run within the Faculty of Engineering and Physical Sciences and the cross-faculty Surrey Materials Institute (SMI). Staff in the Department of Chemistry have expertise which includes all aspects of chemistry:

  • Inorganic
  • Medicinal
  • Physical
  • Physical organic
  • Materials
  • Polymers
  • Nanotechnology
  • Analytical

You will receive a thorough education in advanced aspects of chemistry, but also undertake independent research via a project, guided by a dedicated and experienced supervisor.

Projects are available across a range of topics in chemistry, and may extend into areas of biology, forensics or materials science. Past MRes students have continued to further (PhD) education and to posts in research in industry.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis. Read more
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis.

The programme comprises a broad range of modules covering all the major analytical techniques, complemented by studies in transferable and professional skills, with the option to study aspects of medicinal and pharmaceutical chemistry if desired.

Core study areas include research methods, separation techniques, mass spectrometry and associated techniques, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include sensors, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis and innovations in analytical science.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries including pharmaceuticals, chemicals, food, environmental management, contract analysis laboratories, public laboratories, regulatory authorities and instrument manufacturers in either technical or marketing functions or preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Read less
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. Read more
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. We will explore aspects such as biosynthesis, retrosynthetic analysis, molecular biology and the principles of drug development. We will also look at the applications of biological chemistry in catalysts, synthetic methods and spectroscopy, giving our graduates an edge when looking for employment in academia or industry.

Distinctive features:

• Available on a one year full-time or three year part-time basis.

• Explore real life biological systems as well as applications of biological processes, for example in catalysis.

• Specialise in an area of interest to you with an end of course research project.

• Some overseas academic placements may be available for the research project.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one comprises core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with an understanding of the biological problems and processes at the interface of chemistry and biology. We will study real life systems and explore aspects such as natural product synthesis, biocatalysis, molecular biology, synthetic biology, enzymology, medicinal chemistry and molecular modelling.

Upon successful completion of part one of the degree you will progress to part two, the summer research project. We will make a range of project options available to you from the field of biological chemistry. For this project you may work with a research group in the School of Chemistry. You may also be able to complete this project with one of our academic partner institutions overseas.

If you are on the one year full-time degree option, you will undertake all modules and your research project in one year.

Core modules:

Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Colloquium
Biocatalysis II - Industrial Applications of Biocatalysis
Medicinal Chemistry
Bioinorganic Chemistry
Advanced Techniques in Organic and Biological Chemistry
Key Skills for Postgraduate Chemists
Practical Chemical Biology
Research Project

Optional modules:

Modelling of Biological Macromolecules
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Analytical and Structural Techniques in Chemical Biology
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, computational sessions, laboratory practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field, unless you choose to complete your project during a placement with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We frequently invite external academic speakers and industry experts to the School for seminars, which our postgraduate students are encouraged to attend.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We offer written and oral feedback, depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are usually happy to give advice and guidance on your progress. We aim to provide you with regular feedback on your work after assessments have been submitted.

Assessment

Taught modules are assessed in a variety of ways depending on the module content and learning outcomes (found in the module descriptions). We use course work, assessed workshops, posters and oral presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Those who have chosen not to continue in academia or teaching have gone on to a wide range of employment in private industries such as Kimberley-Clark group, Thales group, and Imanova Ltd.

Placements

For the end of course research project we may have some placements available with one of our academic partner institutions overseas. Please enquire early for further details

Read less
Materials Chemistry is one of the modern chemical disciplines underpinning a substantial portion of the chemicals sector. The programme provides a unique general training in the area and includes the chance to specialise in aspects such as Polymer Chemistry, Inorganic Materials, Supramolecular Chemistry or Nanosciences. Read more
Materials Chemistry is one of the modern chemical disciplines underpinning a substantial portion of the chemicals sector.

The programme provides a unique general training in the area and includes the chance to specialise in aspects such as Polymer Chemistry, Inorganic Materials, Supramolecular Chemistry or Nanosciences. Both synthesis and characterisation are core parts of the taught aspects.

The course provides for studies in all aspects of Materials Chemistry. Students can study fundamental aspects of Polymer Chemistry; Nano and Supramolecular Chemistry, Inorganic Materials Chemistry and the programme includes application areas such as Nanomaterials and Semi-conductors.

Professional Accreditation

We will be seeking accreditation from the Royal Society of Chemistry (RSC).

Why Bradford?

Uniquely the programme offers one of the widest ranges of opportunities for carrying out a 12 month research project from a selection that covers all aspects of Materials Chemistry. Projects are supervised by leading researchers in their fields.

Studies can either be conducted over a 12 month period at Bradford or remotely over 24 months with a project being conducted in an area of Materials Chemistry at the student’s workplace.

Rankings

Ranked 18th in the UK for Chemistry in the Guardian University League Tables 2017.

Modules

Core modules:
-Research skills, professional development and commercial awareness
-Research Project - Part 1
-Research Project - Part 2

Option modules:
-Inorganic Materials Chemistry
-Fundamentals of Nano and Supramolecular Materials
-Introduction to Polymer and Colloid Science
-Computational Crystal Engineering
-Materials in Electronics
-Materials Characterisation

Learning activities and assessment

Transferrable skills are at the heart of the programme and these aspects are assessed by submission of a thesis, a draft scientific paper, oral presentation as well as modules on data management.

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Materials Chemists work in a diverse range of areas including: medical devices; electronic devices; sustainable energy generation; nanomaterials; surface coatings; controlled delivery of drugs and agrochemicals and many other areas.

Transferable skills are also a key component and graduating students will be equipped for careers in both academia and industry.

Read less
Your programme of study. Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. Read more

Your programme of study

Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. The programme at Aberdeen is accredited by the Royal Society of Chemistry. Aberdeen is noted for Nobel prizes within Chemistry which include the invention of modern chromatography (Synge 1952) and the discovery of a new element - protactinium (Soddy 1921).  Teaching at Aberdeen is informed by world class research within food security. Class sizes are kept small to enable you to have strong teaching interaction and support in your studies. You will be taught by many staff in the environment group (TESLA) https://www.abdn.ac.uk/ncs/departments/chemistry/trace-element-speciation-laboratory-111.php and (MBC) https://www.abdn.ac.uk/ncs/departments/chemistry/marine-biodiscovery-centre-112.php

The programme focuses on specialised modern analytical methodology. The range of industries or institutes where these skills are asked for includes the pharmaceutical industry, environmental institutions, research institutes and also the oil & gas industry. There are many new innovations which require chemists with advanced skills to analyse and test new methods of providing health via IOT devices, smart phones and small sensors deployed throughout the body to quickly provide analysis and customised recommendations.

Courses listed for the programme

Semester 1

Advanced Analytical Methodologies A and B

Practical Exercise and Professional Skills in Analytical Chemistry

Semester 2

Research Techniques and Professional Skills and Problem Solving Theory and Practice

Research Project in Analytical Chemistry

Semester 3

Research Project in Analytical Chemistry

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/3/analytical-chemistry/

Why study at Aberdeen?

  • A Royal Society of Chemistry accredited degree programme
  • Alumni feedback and mentor students on this programme
  • Main areas are Bimolecular Chemistry (Natural products, medicinal chemistry, environmental chemistry, surface and catalysis

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
In our search for better medicines to improve healthcare in an ageing population, for safer agrochemicals to aid food production for a growing population, and for advanced materials for new technologies, it may come as no surprise to acknowledge that chemistry plays a dominant role. Read more

Course overview

In our search for better medicines to improve healthcare in an ageing population, for safer agrochemicals to aid food production for a growing population, and for advanced materials for new technologies, it may come as no surprise to acknowledge that chemistry plays a dominant role. Without chemistry, the necessary scientific advances will simply not be made to meet these global challenges and to secure our future.

Chemistry is often viewed as demanding in its need for energy and natural resources. We have to ensure that chemistry is safe, efficient and, above all, sustainable – chemistry that is benign by design. Sustainability is an issue facing the entire global chemicals industry, our vision is to train a new generation of scientists to find innovative 'green' resource and energy efficient solutions that have the lowest possible environmental impact; demonstrate social responsibility; and make a positive contribution to economic growth.

This course builds upon our international track record in green chemistry, particularly in the fields of synthetic chemistry, catalysis, new technologies, materials science, process engineering and entrepeneurship. Course material covers all aspects of modern green and sustainable chemistry including feedstocks, energy, sustainable synthesis (including biocatalysis) and industrial process design. Formal lectures are complemented by a 60 credit project based in our world-leading research laboratories and designed to reinforce and apply many of the concepts delivered during lectures. This MSc programme is highly interdisciplinary. It capitalises on strong established links between Chemistry, the Faculty of Engineering, and the Nottingham Business School to provide both breadth and depth in the scope of the MSc degree.

Course details

The principle objective of this MSc Green and Sustainable Chemistry is to train the next generation of scientists to appreciate, assess and address the challenges of sustainability across chemistry using industries through the implementation of robust, innovative science and technology.

Candidates will, therefore, develop an excellent operating knowledge of contemporary methods of synthesis, analysis and process design optimized for both energy and reaction mass efficiency. Graduates will be equipped with the tools and experience to critically evaluate comparable reaction pathways and make evidenced decision in the design and execution of efficient chemical processes key to the pharmaceutical, agrochemical, fine chemical and other chemical using industries. Furthermore, upon completing this degree, students will be able to make effective use of electronic communication and information search & retrieval to facilitate the development and dissemination of key critical skills with which to assess and analyse complex problems.

Further information



Read less
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Read more
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Students are integrated into the research culture of the Department by joining a research group, supervised by one of our academic staff, in one of the following areas of Chemistry:

Biological:

with a focus on enzymes, nucleic acids, protein folding and misfolding, and physical techniques; with relevance to health and disease, drug discovery, sensors, nanotechnology, ageing and energy research applications.

Materials Chemistry:

including surfaces, interfaces, polymers, nanoparticles and nanoporous materials, self assembly, and biomaterials, with applications relevant to: oil recovery and separation, catalysis, photovoltaics, fuel cells and batteries, crystallization and pharmaceutical formulation, gas sorption, energy, functional materials, biocompatible materials, computer memory, and sensors.

Physical Chemistry:

including atmospheric sciences, surfaces and interfaces, materials, and physical and chemical aspects of the behaviour of biopolymers and other soft systems.

Synthetic Chemistry:

including complex molecule synthesis, synthetic catalysis, synthetic assembly, synthetic biology and medicine, new technology for efficient synthesis, green synthesis, and preparation of new materials.

Theory, Modelling and Informatics:

including quantum dynamics, modelling soft materials, protein folding and binding, biomolecules in motion, pharmacological activity, molecular switches, redox chemistry, designing bioactive molecule and drugs, chemical biology, crystallography, and simulation of spectroscopic studies.

Potential supervisors and their area of research expertise may be found at Department of Chemistry (Research): http://www.ch.cam.ac.uk/research

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcchmpmch

Course detail

Educational aims of the MPhil programme:

- to give students with relevant experience at first degree level the opportunity to carry out focussed research in the discipline under close supervision; and

- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests and a broader set of transferable skills.

Learning Outcomes

By the end of the programme, students will have:

- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research and research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

The MPhil involves minimal formal teaching. Students may attend the Department's programme of research seminars and other graduate courses, including the Transferable Skills programme that forms part of the PhD programme. Informal opportunities to develop research skills also exist through mentoring and other opportunities by fellow students and members of staff. However, most research training is provided within the research group structure and all students are assigned a research supervisor.

All graduate students receive termly reports written by their supervisors.

Assessment

The scheme of examination for the MPhil in Chemistry shall consist of a thesis, of not more than 15,000 words in length, exclusive of tables, footnotes, bibliography, and appendices, on a subject approved by the Degree Committee for the Faculty of Physics and Chemistry, submitted for examination at the end of 11 months. The examination shall include an oral examination on the thesis and on the general field of knowledge within which it falls. The thesis shall provide evidence to satisfy the Examiners that a candidate can design and carry out investigations, assess and interpret the results obtained, and place the work in the wider perspectives of the subject.

Continuing

The Department offers a PhD in Chemistry course and MPhil students can apply to continue as a graduate student on this course.

MPhil students currently studying a relevant course at the University of Cambridge will need to pass their MPhil course (if examined only by thesis) or obtain a minimum merit (if there is a marked element) in order to be eligible to continue onto the PhD in Chemistry.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
. Research profile. Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life. Read more

Research profile

Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life.

In addition to gaining research skills, making friends, meeting eminent researchers and being part of the research community, a research degree will help you to develop invaluable transferable skills which you can apply to academic life or a variety of professions outside of academia.

The Chemistry/Biology Interface

This is a broad area, with particular strengths in the areas of protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of high throughput and combinatorial approaches. We also focus on biophysical chemistry, the development and application of physicochemical techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.

Experimental & Theoretical Chemical Physics

This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectoscropy to molecular systems and the EaStCHEM surface science group, who study complex molecules on surfaces, probing the structure property-relationships employed in heterogeneous catalysis. A major feature is in Silico Scotland, a world-class research computing facility.

Synthesis

This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.

Materials Chemistry

The EaStCHEM Materials group is one of the largest in the UK. Areas of strength include the design, synthesis and characterisation of functional (for example magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices, porous solids, fundamental and applied electrochemistry polymer microarray technologies and technique development for materials and nanomaterials analysis.

Training and support

Students attend regular research talks, visiting speaker symposia, an annual residential meeting in the Scottish Highlands, and lecture courses on specialised techniques and safety. Students are encouraged to participate in transferable skills and computing courses, public awareness of science activities, undergraduate teaching and to represent the School at national and international conferences.

Facilities

Our facilities are among the best in the world, offering an outstanding range of capabilities. You’ll be working in recently refurbished laboratories that meet the highest possible standards, packed with state-of-the-art equipment for both analysis and synthesis.

For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200-800 MHz; mass spectrometry utilises EI, ESI, APCI, MALDI and FAB instrumentation, including LC and GC interfaces. New combinatorial chemistry laboratories, equipped with a modern fermentation unit, are available. We have excellent facilities for the synthesis and characterisation of bio-molecules, including advanced mass spectrometry and NMR stopped-flow spectrometers, EPR, HPLC, FPLC, AA.

World-class facilities are available for small molecule and macromolecular X-ray diffraction, utilising both single crystal and powder methods. Application of diffraction methods at high pressures is a particular strength, and we enjoy strong links to central facilities for neutron, muon and synchrotron science in the UK and further afield. We are one of the world's leading centres for gas-phase electron diffraction.

Also available are instruments for magnetic and electronic characterisation of materials (SQUID), electron microscopy (SEM, TEM), force-probe microscopy, high-resolution FTRaman and FT-IR, XPS and thermal analysis. We have also recently installed a new 1,000- tonne pressure chamber, to be used for the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within the COSMIC Centre. Dedicated computational infrastructure is available, and we benefit from close links with the Edinburgh Parallel Computing Centre.



Read less
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Read more
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Extensive collaborations with science-based industries and leading international academic centres ensure that research in Bristol remains at the frontier of science.

The School of Chemistry is housed in spacious, modern laboratories, which are well equipped with state-of-the-art facilities. There is a comprehensive graduate programme to ensure you have the opportunity to build a wide range of skills, both in chemistry and other transferable skills.

The School of Chemistry hosts or participates in a number of Centres for Doctoral Training (CDTs) and Doctoral Training Partnerships (DTPs). Training opportunities in these national flagship centres are available in the following disciplines:
-Chemical synthesis
-Functional nanomaterials
-Catalysis
-Theory and modelling in chemical sciences
-Science and technology of diamond
-Synthetic biology
-Advanced composites
-Earth and environmental sciences
-Quantum engineering
-Future autonomous and robotic systems
-Bioscience
-Condensed matter physics

Research groups

The School of Chemistry maintains a traditional managerial structure with three sections, namely Inorganic and Materials, Organic and Biological, and Physical and Theoretical. However, the school’s research profile is defined according to nine themes, each with a critical mass of researchers. Further information on the school's research profile can be found at Explore Bristol Research (http://research-information.bristol.ac.uk/).

-Atmospheric and Global Change Chemistry
-Biological and Archaeological Chemistry
-Catalysis
-Computational and Theoretical Chemistry
-Materials for Energy
-Soft Matter, Colloids and Materials
-Spectroscopy and Dynamics
-Supramolecular and Mechanistic Chemistry
-Synthesis

Researchers in the School of Chemistry are engaged in a number of collaborative centres and research institutes, with broader engagement from researchers across the Faculty of Science, the University and beyond.

Careers

Many of our PhD graduates are successful in securing postdoctoral positions at universities in the UK and abroad. A PhD in chemistry is valued in many employment sectors worldwide, including pharmaceutical sciences, polymers, coatings, agrochemicals, instrumentation manufacturers and management consultancy. Your skills will be in high demand from the chemical and allied industries, as well as the public sector.

Read less
The Chemistry PGCE helps students to develop the professional skills and knowledge they need to teach all aspects of science to pupils up to age 16, as well as teaching chemistry to pupils aged up to 18. Read more
The Chemistry PGCE helps students to develop the professional skills and knowledge they need to teach all aspects of science to pupils up to age 16, as well as teaching chemistry to pupils aged up to 18. We are committed to creative and interactive approaches to teaching science to promote engagement and learning.

Degree information

Students will acquire a critical understanding of current debates and issues relating to science education, and will be guided and supported in developing their subject knowledge. We expect students to engage with reading and research into science education and to regularly reflect upon their own progress, towards meeting the teaching standards across the 11–16 age range.

Students undertake two level 7 (Master’s-level) modules of 30 credits each, totaling 60 credits. These can be carried forward onto full Master’s programmes at the IOE.

The Secondary PGCE consists of three core modules: two Master’s-level (level 7) modules, which are assessed through written assignments, and the Professional Practice module, which is assessed by the observation of practical teaching in placement schools.

Completion of the Professional Practice module and the two level 7 (Master’s level) modules (60 credits) will result in the award of a Postgraduate Certificate of Education (PGCE). Completion of the Professional Practice module and one or two level 6 (undergraduate/Bachelor’s level) modules, will lead to the Professional Graduate Certificate of Education (PgCE). There are no optional modules for this programme.

Core modules
-Science Education in the Broader Context (30 Master's-level credits)
-Wider Educational Issues (30 Master's-level credits)

Placement
Student teachers undertake at least two placements (totaling 120 days) at a school or college, during which time their teaching practice will be supported by a school subject tutor and mentor. The Professional Practice module is assessed through these placements, associated tasks and a portfolio.

Students may teach:
-Key Stage 3: science (including elements of physics, chemistry, biology)
-Key Stage 4: science (all areas) or chemistry (depending on school placement)
-Key Stage 5: AS/A2 level chemistry

Teaching and learning
The Secondary PGCE full-time route is delivered via keynote lectures, subject lectures, seminars, workshops, tutorials and directed study days at the Institute of Education as well as time spent in placement schools or colleges. Assessment is by practical teaching, assignments and portfolio tasks.

Students will also record their progress in a Career Entry and Development Profile statement. This will form part of a portfolio that links into the induction year (the first year of teaching) and a student's continuing professional development.

Careers

Graduates of this programme are currently working across a broad range of areas. Some are working as lecturers in science education, while others have posts as school leaders, heads of year and advanced skills teachers. They can also be found working as chemistry teachers, science teachers and heads of department.

Top career destinations for this degree:
-Teacher, London Girls' School
-Quality assurance officer, Unspecified Pharmaceutical Company
-Chemistry Teacher, Unspecified Grammar School
-Special Needs Teacher, Unspecified Oxford School
-Chemistry Teacher, Unspecified Hertfordshire School

Employability
A PGCE from the IOE carries considerable currency in schools which, alongside the quality of training you receive, puts you in a strong position in the employment market. Last year, all those students who sought employment in a school were successful. We expect 100% success rate in gaining a post in a school by the end of the year.

Why study this degree at UCL?

Students on the Chemistry PGCE work with a team of expert subject tutors who have all previously been classroom teachers and are actively involved with science education research, curriculum development and consultancy. During teaching practice, student teachers benefit from the support of subject specialist mentors within our network of over 200 schools throughout Greater London and beyond, ensuring each has the opportunity to become a skilled and confident teacher.

The Chemistry PGCE offers unique opportunities including teaching sessions at museums and Kew Gardens, and residential trips, developing students’ understanding of learning science outside the classroom.

Read less

Show 10 15 30 per page



Cookie Policy    X