• Loughborough University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Durham University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Arden University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Ulster University Featured Masters Courses
King’s College London Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Loughborough University Featured Masters Courses
United Kingdom ×
0 miles
Biological Sciences×

Masters Degrees in Biophysics, United Kingdom

  • Biological Sciences×
  • Biophysics×
  • United Kingdom ×
  • clear all
Showing 1 to 15 of 17
Order by 
Acquiring quantitative skills in biology is of paramount importance for the next generation of professional scientists working in industry and academia. Read more
Acquiring quantitative skills in biology is of paramount importance for the next generation of professional scientists working in industry and academia.

Key benefits

- Possibility to carry our research projects in biophysics at King’s or with our partner the National University of Singapore (NUS).

- Broad range of research topics to choose from.

- Pharmaceutical and biotechnology laboratories increasingly employ individuals with up-to-date biophysics expertise.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/molecular-biophysics-mres.aspx

Course detail

- Description -

The MRes (Master of Research) in Molecular Biophysics at King's College London offers an integrated training programme ideally suited to learn biophysical techniques crucially important to meet this challenge. We deliver an excellent foundation for students wishing to pursue careers in the pharmaceutical and biotechnology industry, medical research, scientific administration within research councils or scientific publishing.

- Course purpose -

Our programme is designed for outstanding graduates in the life and physical sciences (Biology, Biochemistry, Chemistry, Physics) who want to apply their knowledge to biological problems at the research level.

- Course format and assessment -

Taught modules cover biophysics and molecular biology techniques with elements of bioinformatics. We offer a wide selection of research projects to prepare students for a PhD degree. Students have also the exciting option of carrying out their research project at the National University of Singapore (NUS), with which we have partnered to move forward outstanding science.
MRC Advanced Course Master's studentships are available providing tuition fees and a stipend. All UK and specific EU applicants who meet the MRC’s eligibility requirement for these studentships will automatically be considered for these awards. For EU students, the programme carries 90 ECTS credits.

The first semester consists of a taught course in Advanced Biophysical Techniques which is assessed by examination in January; the examination counts for 80% of the assessment for this course and the in course practicals 20% [this module counts for 8.33% of the total Mark]. Also in the first semester students take Advanced Bioscience research laboratory techniques covering biochemistry and molecular biology techniques, assessed by write-ups [this module counts for 16.67 % of the total Mark]. Starting in January and continuing till the start of August is the Research project [this module counts for 75% of the total Mark] chosen from a range of research topics available within the research laboratories of the Randall Division of Cell and Molecular Biophysics and groups in Chemical Biology and the Biophysics grouping in the Franklin-Wilkins building. This is written up as dissertation (75%), presented as a seminar (15%) and examined as a viva (10%).

Career prospects

PhD studies, pharmaceutical and biotechnology industry, cancer research, medicine, scientific administration within research councils and scientific publishing.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. Read more
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. It spans the distance between the vast complexity of biological systems and the relative simplicity of the physical laws that govern the universe.

Our Biophysics and Molecular Life Sciences MSc provides interdisciplinary training by bringing together concepts from chemistry, physics and the life sciences. It is taught by staff actively pursuing research in these areas and from members of BrisSynBio, a flagship centre for synthetic biology research in the UK.

The programme gives you an opportunity to gain knowledge and practical experience by studying molecular interactions and mechanisms at the level of the cell to the single molecule. Topics for study include molecular structure determination, dynamic molecular mechanisms, molecular simulation, molecular design and single-molecule technologies. You can also choose an additional unit that reflects your personal interests, allowing you to broaden your knowledge of biomedical subjects whilst focusing on biophysics. You will also learn about the commercialisation of research outcomes, including intellectual property, setting up a business, getting investment, marketing and legal issues.

Graduates from this programme will be well-prepared for a PhD programme in biophysics or related fields. Additionally, the numerical, problem-solving, research and communication skills gained on this programme are highly desired by employers in a variety of industries.

Robust evidence is the cornerstone of science and on this programme you will gain research experience in laboratories equipped with state-of-the-art equipment, including atomic force and electron microscopy, biological and chemical NMR, x-ray crystallography and mass spectrometry.

Your learning will be supported throughout the programme in regular, small-group tutorials.

Programme structure

Core units
Biophysics and Molecular Life Sciences I
-The unit begins with a short series of lectures that introduce the general area of molecular life sciences for the non-specialist. The remaining lectures cover a variety of molecular spectroscopies, molecular structure determination, an introduction to systems approaches using proteomics, and the mechanistic characterisation of biomolecules using a variety of biophysical techniques.

Biophysics and Molecular Life Sciences II
-The unit describes highly specialised techniques at the interface of physics, chemistry and the life sciences. This includes techniques for studying biomolecules at the level of a single-molecule, synthetic biology, bioinformatics and molecular simulations.

Core Skills
-A series of practical classes, lecture-based teaching sessions, and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary Project
-An extended essay on a subject chosen from an extensive list covering the topics described above. You work independently under the guidance of a member of staff.

Project Proposal and Research Project
-You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based option
You will study one lecture-based unit from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Neuroscience
-Pharmacology

Careers

Typically, biophysics careers are laboratory-based, conducting original research within academia, a government agency or private industry, although the transferable skills gained on the course are ideal for many other careers outside of science, including business and finance.

Read less
A University of Hertfordshire research degree is an internationally recognised degree signifying high levels of achievement in research. Read more
A University of Hertfordshire research degree is an internationally recognised degree signifying high levels of achievement in research. It develops extensive subject expertise and independent research skills which are honed over an extended period, depending on the level of the award. You would undertake a substantial, original research project for the duration of the degree, under the supervision and guidance of two or more academic members of staff. Your supervisory team provides guidance both in the selection of a research topic and in the conduct of the research. You are also supported by attendance at postgraduate seminar series to develop subject specific knowledge and research skills relevant to your field of research. The degree is assessed solely on the basis of the final research output, in the form of a substantial written thesis which must be "defended" in a viva. During the course of the degree, you would be given opportunities to present your work at major conferences and in refereed research publications.

Why choose this course?

-An internationally recognised research qualification
-Developing advanced subject expertise at postgraduate level
-Develop research skills through practice and extensive research experience
-Employers are looking for high calibre graduates with advanced skills who can demonstrate independence through research

Careers

Graduates with this degree will be able to demonstrate to employers a highly-valued ability to work independently on a substantial and challenging original project and to maintain that focus over an extended period, and will have developed much sought after, highly refined research skills.

Teaching methods

Research degrees are not taught programmes, however, programmes of supporting studies are a key element. The School of Pharmacy conducts high quality research in the areas of of dermal, transderrmal, buccal and airway drug delivery, patient safety, medicines management, drug mis-use and psycho-pharmacology. The School has a large number of postgraduate students undertaking full-time research in these disciplines leading to the awards of MSc by Research, MPhil or PhD. There are also a number of industry-based graduates registered for research degrees on a full-time or part-time basis. Research in the discipline areas is headed by internationally recognised staff with positions on many national and international associations and professional bodies.

Read less
Our MSc Physics programme will provide you will have exposure to a very wide range of world-leading teaching and research skills in physics. Read more
Our MSc Physics programme will provide you will have exposure to a very wide range of world-leading teaching and research skills in physics. As well as the modules offered by the Department of Physics, many optional modules are available from across the University of London, such as Queen Mary University of London, Royal Holloway University of London and University College London. You will undertake an extended research project supervised by one of our academic staff.

Key benefits

- King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.

- Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".

- The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".

- Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/physics-msc.aspx

Course detail

- Description -

The programme consists of taught components combining specialised taught material in current areas of Physics and related disciplines, general research techniques, transferable skills and specialised research techniques together with a major research project. The project starts in January carrying through to the end of the programme. Experts in the chosen field will act as project supervisors.

The programme is run by the Department of Physics with some modules provided by the Department of Mathematics, the Randall Division of Cell and Molecular Biophysics and other University of London Colleges.

Topics include: nanotechnology, biophysics, photonics, cosmology and particle physics.

- Course purpose -

The MSc programme provides experience of research in rapidly developing areas of physics and related disciplines. Provides experience of the planning, administration, execution and dissemination of research, and equips students with the background knowledge and transferable and generic skills required to become an effective researcher.

- Course format and assessment -

From October to March you will study specialised taught material, attend lectures and seminars, carry out related assessed tasks, prepare an assessed research proposal, select your project topic and plan how your project will be performed. Lecture courses attended between October and March will be assessed by examination in May. Other assessments include a project plan and a patent draft. You will carry out your project full-time from April with a mid-project review and submission and oral presentation in September. Your project will contribute 50 per cent of the marks for your degree and you must also achieve at least 50 per cent in each module. The taught material is also assessed by essays and exercises.

Career prospects

Many students go on to do a PhD in Physics, work in scientific research, teaching or work in the financial sector.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Read more
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Though it may be taken as a free-standing qualification, most students take this programme as a pathway to the MSc. This pathway forms the first year of a two-year programme with successful students (gaining a merit or distinction) progressing onto the MSc Physics in second year.

Key benefits

- King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.

- Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".

- The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".

- Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/physics-grad-dip.aspx

Course detail

- Description -

Students will undertake a total of 120 credits, from the following modules:

- Mathematical Methods in Physics III
- Statistical Mechanics
- Spectroscopy and Quantum Mechanics
- Particle Physics
- Optics
- Solid State Physics
- General Relatvity and Cosmology
- Fundamentals of Biophysics and Nanotechnology
- Introduction to Medical Imaging
- Laboratory Physics II
- Computational Lab
- Nuclear Physics
- Quantum Mechanics for Physics I
- Mathematical methods in Physics
- Symmetry in Physics
- Electromagnetism
- Astrophysics

- Course purpose -

For students with an undergraduate degree or equivalent who wish to have the experience of one year in a leading UK Physics Department, or who may not be immediately eligible for entry to a higher degree in the UK and who wish to upgrade their degree. If you successfully complete this programme with a Merit or Distinction we may consider you for the MSc programme.

- Course format and assessment -

The compulsory modules are assessed via coursework. The majority of the other optional modules avaiable are assessed by written examinations.

Career prospects

Many students go on to do a higher Physics degree, work in scientific research, teaching or work in the financial sector.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This course is ideal both for graduates who would like to undertake original research without committing themselves to a three-year PhD, and for students who want to gain a research-based Master's before embarking on their PhD. Read more
This course is ideal both for graduates who would like to undertake original research without committing themselves to a three-year PhD, and for students who want to gain a research-based Master's before embarking on their PhD.

The major element of this course is a research project which is carried out under supervision. There is also a minor taught element, with classes covering a wide range of generic research-related topics.

See the website https://www.royalholloway.ac.uk/physics/coursefinder/mscphysicsbyresearch.aspx

Why choose this course?

- The Department of Physics is known internationally for its top-class research. Our staff carry out research at the cutting edge of Nanoscience and Nanotechnology, Experimental Quantum Computing, Quantum Matter at Low Temperatures, Theoretical Physics, and
Biophysics, as well as other areas.

- We offer exceptional teaching quality and are consistently near the top of the league tables.

- Our Masters courses are taught in collaboration with other University of London Colleges, providing a wide range of options.

Department research and industry highlights

The Physics Department at Royal Holloway is one of the major centres for physics research within the University of London and has research expertise in the following areas:
- Particle physics experiments at Large Hadron Collider
- Neutron and synchrotron x-ray scattering at ISIS and Diamond
- London Low Temperature Laboratory
- Centre for Nanophysics and Nanotechnology

Recent projects that the Department has worked on include:
- The ATLAS project at the LHC
- Thermoelectrics for conversion of waste heat into electrical power
- Quantum criticality in helium films
- Studies of nanostructures for quantum computing

Course content and structure

This courses consists of the major research element and a minor taught element:

- Major Project:
An original research project in one of the research areas of the Department, carried out under supervision. Makes up 75% of total mark.

On completion of the course graduates will have:
- developed research skills using a mix of experimental, theoretical and computational techniques

- developed communication skills through the writing of the project report and the presentation of an oral report at the viva

- transferable skills suitable for both continued research or the workplace.

Assessment

This course is assessed by the completion of a major research project (75% of the final mark) as well as other coursework assignments (25% of the final mark).

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different areas, including careers in industry, information technology and finance. This course also equips you with the subject knowledge and a solid foundation for continued studies in physics; around 50% of the graduates of this course progress onto PhD study at Royal Holloway.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This is a two-year MSc offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities. Read more
This is a two-year MSc offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities: University of Kent, Queen Mary University of London, Royal Holloway University of London, University of Southampton, University of Surrey, and University of Sussex. This consortium consists of around 160 academics, with an exceptionally wide range of expertise.

The first year consists mainly of taught courses in the University of London; the second research year can be at Royal Holloway or one of the other consortium members. This is a unique opportunity to collaborate with physics research groups and partner institutions in both the UK and Europe. You will benefit from consortium led events as well as state of the art video conferencing.

With some of the leading physics departments in the world, all the universities have their own accolades in both urban and countryside locations, with a wide choice of accommodation options, sporting facilities, international student organisations and careers services. South East England, with its close connections to continental Europe by air, Eurotunnel, and cross channel ferries, is an ideal environment for international students.

See the website https://www.royalholloway.ac.uk/physics/coursefinder/mscphysics(euromasters).aspx

Why choose this course?

- The course is taught in collaboration with other University of London Colleges and the Universities of Kent, Southampton, Surrey and Sussex, providing an incomparably wide range of options.

- The Department of Physics at Royal Holloway is known internationally for its top-class research. Our staff carry out research at the cutting edge of Nanoscience and Nanotechnology, Experimental Quantum Computing, Quantum Matter at Low Temperatures, Theoretical Physics, and Biophysics, as well as other areas.

- We offer exceptional teaching quality and are consistently near the top of the league tables.

- The Department has strong links with leading international facilities, including CERN, ISIS and Diamond.

- We hold a regular series of colloquia and seminars on important research topics and host a number of guest lectures from external organisations.

Department research and industry highlights

- The Physics Department is one of the major centres for Physics research within the University of London.

- We have excellent clean rooms for the nanofabrication and testing of devices within the centre for nanophysics and nanotechnology.

- The London Low Temperature Laboratory is a centre for fundamental research in the mK and μK temperature regime and the development of new instrumentation and thermometry.

- The Hubbard Theory Institute combines theoretical studies of strongly correlated matter with experimental activities on the Harwell Campus.

On completion of the course graduates will have:

- a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights at the forefront of the discipline

- a comprehensive understanding of techniques applicable to their own research or advanced scholarship

- originality in the application of knowledge, together with a practical understanding of how established techniques of research and

- enquiry are used to create and interpret knowledge in the discipline.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation.

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different physics-related areas, including careers in industry, information technology and finance. This course also equips you with the subject knowledge and a solid foundation for continued studies in physics, and many of our graduates have gone on to study for a PhD.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
The MASt in Physics is a taught masters level course in which candidates coming from outside Cambridge work alongside students taking the final year of the integrated Undergraduate + Masters course in Physics. Read more
The MASt in Physics is a taught masters level course in which candidates coming from outside Cambridge work alongside students taking the final year of the integrated Undergraduate + Masters course in Physics. It is designed to act as a top-up course for students who already hold a 3-year undergraduate degree in physics (or an equivalent subject with similar physics content) and who are likely to wish to subsequently pursue research in physics, either within the department or elsewhere.

The course aims to bring students close to the boundaries of current research, and is thus somewhat linked to the expertise from within the specific research groups in the Department of Physics. Candidates make a series of choices as the year proceeds which allow them to select a bias towards particular broad areas of physics such as condensed matter physics, particle physics, astrophysics, biophysics, or semiconductor physics. The emphasis can range over the spectrum from strongly experimental to highly theoretical physics, and a range of specialist options may be chosen.

All students also undertake a substantial research project, which is expected to take up one third of their time for the year. Details of the current Part III physics course can be found at http://www.phy.cam.ac.uk/students/teaching/current-courses/III_overview . Please note that the courses available to students do change from year to year (especially the Minor Topic courses taken in the Lent Term) and so this year's course listing should only be used as a guide to what courses might be available in future.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcphasphy

Learning Outcomes

By the end of the programme, students will have:

- reinforced their broad understanding of physics across the core areas studied in the Cambridge bachelors physics programme.
- developed their knowledge in specialised areas of physics bringing them close to the boundaries of current research.
- developed an understanding of the techniques and literature associated with the project area they have focussed on.
- demonstrated the application of knowledge in a research context and become familiar with the methods of research and enquiry used the further that knowledge.
- shown abilities in the critical evaluation of knowledge.
- demonstrated some level of self-direction and originality in tackling and solving research problems, and acted autonomously in the planning and execution of research.

Format

The course begins with taught courses offered in seven core areas: these "Major Topics" are lectured in the Michaelmas Term and cover substantial areas of physics. Students may choose to attend three or more of these for examination in the Lent term. In the Lent term, students take three or more shorter more specialised "Minor Topic" courses (from about twelve) for examination in the Easter Term. Substitutes for Major and Minor Topic courses are available from a small subset of courses taught by or shared with other departments. Throughout the year students also work on a research project that contributes to roughly a third of their mark and at the end of the year sit a three hour unseen paper on General Physics.

Depending on the lecturer for each course, students may be expected to submit work (i.e. problem sets) in advance of the small group sessions for scrutiny and/or present their work to those attending the sessions.

Assessment

The research project will be assessed on the basis of scrutiny of the student's project laboratory notebook and project report (typically 20-30 pages) and a short (approx 30 minute) oral examination with the project supervisor and another member of staff.

It is not usual for submitted work to be returned with detailed annotations. Rather, feedback will be predominantly oral, but lecturers are expected to submit a short written supervision report at the end of each term for each of their students.

Feedback on the research project will be be primarily oral, during the student/supervisor sessions, though a short written supervision report at the end of the Lent term will be provided by each supervisor

Candidates will normally take:

- A two hour unseen examination on three or more of the Major Topic courses. These will be taken at the start of the Lent Term.
- A one and a half hour unseen examination on three or more of the Minor Topic courses. These will normally be taken at the start of the Easter term.
- One three hour unseen General Physics Paper, taken towards the end of the Easter term.
- A number of additional unseen examination papers, if the candidate has chosen to take any of the interdisciplinary courses, Part III Mathematics courses, or other shared courses in lieu of any of the Major or Minor Topic papers.

Candidates who have chosen to substitute a Minor Topic paper with an additional External Project, will be assessed on that work via scrutiny of the student's project report (typically 20-30 pages) and a short (approx 30 minute) oral examination with two members of staff.

Candidates who have taken the Entrepreneurship course, in lieu of a Minor Topic, will be assessed on the basis of the course assignments set by the course co-ordinator.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The programme consists of a wide range of modules and three research projects and aims to develop deeper insights into non-equilibrium processes using theoretical modelling, simulation and data-driven analysis. Read more
The programme consists of a wide range of modules and three research projects and aims to develop deeper insights into non-equilibrium processes using theoretical modelling, simulation and data-driven analysis. Leads to PhD study or careers in teaching, industrial research or the financial sector.

Key benefits

- An intensive course covering a wide range of basic and advanced topics on Non-Equilibrium Systems.

- Taught by experts in the field.

- A full twelve-month course with three research methods modules to give a real introduction to research.

- Intimate class environment with small class sizes (typically fewer than twenty students on a module) allowing good student lecturer interactions.

- Unrivalled location at the centre of London.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/non-equilibrium-systems-theoretical-modelling-simulation-and-data-driven-analysis-msc.aspx

Course detail

- Description -

The ultimate goal of the programme is to address interdisciplinary challenges e.g. How do we characterize, design and grow materials, and devices, with novel properties out of equilibrium? How do we control and exploit the stochastic processes inherent to biological systems? Can we use inference and information assimilation approaches from physics and biology to monitor and evaluate the state and direction of non-equilibrium environmental systems?

The programme consists of a wide range of taught modules and 3 research methods modules in the rapidly developing and exciting interdisciplinary field of Non-Equilibrium Systems. It covers scientific areas ranging from mathematics, physics, informatics and chemistry to biomedical and environmental sciences.

- Course purpose -

For graduates with excellent undergraduate or equivalent qualifications in any relevant discipline (including; mathematics, physics, chemistry, engineering, materials science, biophysics, geophysical sciences and computer science) who want to work in research and development in an academic or industrial environment. The programme aim is to develop deeper insights into non-equilibrium processes using theoretical modelling, simulation and data-driven analysis and prepare students ideally for active research.

- Course format and assessment -

The format and assessment of the MSc programme is primarily written examinations, some with coursework element, in six lecture modules, plus oral presentations and assessed report on three research modules.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This new programme prepares students for a career in the rapidly developing field of biological physics. Read more
This new programme prepares students for a career in the rapidly developing field of biological physics. Navigating across the boundaries of the established disciplines of biology and physics - using tools and techniques developed for one discipline to answer questions arising in another – students will also interact with experienced researchers in the laboratory from the outset.

Degree information

Students gain broad background knowledge of cell and developmental biology, and physical theories and experimental physics techniques applied to biological systems. They also gain theoretical and working knowledge of techniques from physics and engineering used in biological physics research, including optical microscopy, microfabrication, and data analysis.

Students undertake modules to the value of 180 credits. The programme consists of five core modules (75 credits), two optional modules (45 credits) and a report (60 credits).

Core modules
-Advanced Biophysical Theories
-BioMEMs and Microscopy Techniques
-Biosciences Research Skills
-Molecular Biophysics
-The Scientific Literature

Optional modules - students must select one of the following 30-credit modules:
-Advanced Cell Biology
-ABC – Analysis of Biological Complexity

And one of:
-Aspects of Bioengineering
-Image Processing
-Introduction to Physical Techniques in the Life Sciences
-Machine Vision
-Matlab Programming for Biology
-Mechanisms of Development
-Statistics for Biology

Dissertation/report
All students undertake an independent research project which culminates in a report of 10,000 words.

Teaching and learning
Teaching is delivered through a combination of lectures, seminars and workshops and by an element of problem-centred learning, innovatively linking taught material to a set of student-selected research case studies, Taught modules are assessed by problem sets and examinations; ‘hands-on’ modules (e.g. BioMEMs and Microscopy Techniques) and research projects are assessed by presentations, assessed reports and the dissertation.

Careers

This programme will prepare students for an increasingly interdisciplinary work and research environment in biological physics and quantitative biology and their applications in industrial research or academic settings.

Employability
The programme includes significant transferable skills components (e.g. scientific writing, presentations, outreach, innovation) which are highly relevant to future employability. Students gain a deep understanding of both the physics and biology underpinning phenomena observed in living systems - as well as direct knowledge of cutting-edge technologies likely to play a role in industrial development and academic research - while addressing key societal challenges (from cancer to healthy ageing).

Why study this degree at UCL?

The new Biological Physics MSc brings together expertise in biological and physical sciences at UCL. In the last two years the UCL Institute for the Physics of Living Systems has been created to enhance the teaching and research opportunities in interdisciplinary physics and life sciences at UCL.

The necessity to cross traditional disciplinary boundaries is particularly true of biology where there is a growing realisation that understanding the physics underlying biological phenomena is critical in order to rationally develop next generation treatments for disease and solutions for food security in a globalised world.

Students are immersed in an active research environment from the outset, interacting with experienced researchers in the laboratory and familiarising themselves with state-of-the-art biological and biophysical research techniques.

Read less
The Masters in Biophysical Science has been created to bring excellent science, mathematics and. engineering graduates to a position where they can start with confidence on a wide range of careers. Read more
The Masters in Biophysical Science has been created to bring excellent science, mathematics and
engineering graduates to a position where they can start with confidence on a wide range of careers
in the life sciences. This is in response to the growing need for graduates who can apply their
subject knowledge outside of the traditional boundaries of their discipline.

Course Structure

Each Biophysical Sciences Masters student selects six taught modules from a selection of
fundamental and specialised modules. These modules are designed to provide key knowledge and
skills. Also available to students is the module Communicating Science which will give further
opportunity to develop transferable skills.
Following the taught section of the course an extended research project will be undertaken in a
research laboratory under the supervision of a Durham University Academic with expertise in the
area of biophysical science research. The project will be chosen by the Masters Student from a
selection of projects nominated by Durham Academics. Research projects will allow students to
develop vital research skills and will give first-hand experience of ground-breaking biophysical
science research.

Core Modules

*
•Molecular Cell Biology
•Making Organic Molecules
•Experimental Design and Analysis
•Mathematical Tools
•Practical Course in Basic Biological Techniques

Optional modules

•Protein Crystallography
•Techniques in Cognitive Neuroscience
•Molecular Probes and their Use
•Medicinal Chemistry
•Soft Matter and Biological Physics
•Systems Biology and Bayesian Inference
•Macrobiomolecule Dynamics

Transferrable Skills

•Communicating Science

Research project

•Biophysical science research project

Note *:

All students will take the modules Molecular Cell Biology (B101); Practical Course in Basic Biological
Techniques (B105) and the transferable skills course: Communicating Science. Students with a first
degree in Chemistry, Physics or Mathematics will not take the fundamental module based on their
first degree discipline. They will take Molecular Cell Biology plus two of the remaining three
Fundamental Modules, avoiding the module in the discipline of their first degree. They will also take
three specialised modules. Students with other first degrees will take all four Fundamental Modules
plus two Specialised Modules.

Read less
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within… Read more
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within an excellent environment of state-of-the-art research laboratories, cutting-edge provision for proteomics, genomics, advanced genome sequencing and analysis, a cell imaging suite, transgenic plants facility and an NMR centre for protein structure analysis.

The School has developed bespoke pathways to MSc awards across all of its research areas, affording applicants the opportunity to develop their own postgraduate degree programmes. These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice, which in turn reflects the research interest of the research grouping, for example, MSc Advanced Biological Sciences (Molecular Oncology).

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. You will also be offered a flexible but guided programme of study, which will enable you to develop your leadership, information technology and professional skills.

Pathways include:

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Human Immunity)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Post-Genomic Science)
Advanced Biological Sciences (Structural Biology)

Projects

Research projects offered in previous years include:

Combining species-specific and site-specific conservation: towards a more integrated conservation effort
Interference interactions between Staphylococcus aureus and other members of the nasal microflora
Preparation of recombinant S100P protein for interaction studies
Investigating the activity of potential malarial therapeutics
From mate choice to partner preference
MCL-1 as a regulator of apoptosis in myeloid cell lines
Using experimental evolution to test diffuse coevolution theory in host-symbiont interactions.

Read less
Tissues in the human body have a defined structure in that their growth and differentiation have developed in specific ways to create a cellular architecture that supports their function. Read more
Tissues in the human body have a defined structure in that their growth and differentiation have developed in specific ways to create a cellular architecture that supports their function. Following this fundamental principle that ‘from structure comes function’ we can develop in vitro models that resemble elements of the anatomy and physiology of real human tissues. This can be achieved through our understanding of tissue development and morphology, and the application of innovative technologies to build mature, functional tissue equivalents. Such innovation often occurs at the interface between disciplines such as biological, chemistry, and engineering.
In my laboratory, we specialise in the development of novel approaches to culturing cells in vitro, to enhance cell viability, growth, and differentiation, to enable the creation of human tissue mimetics that can subsequently be used for basic research, drug screening, and the assessment of chemicals. Cell biology-based Master by Research projects are available in tissue engineering in various areas, notably: epithelial biology (for example, skin, oral mucosa, intestine); neural biology (for example, in vitro models of neurological disorders); and basic biological mechanisms involved in stem cell differentiation, tissue development and function in vitro. In other projects, we are also interested in developing new cell technologies to further improve the culture and differentiation of human tissues in vitro and invite applicants who are interested in working at the interface between biology and the physical sciences. The exact nature of the project will be determined in discussions with the applicant but will involve engineering human tissues in vitro and their development, characterisation, and application in areas consistent with our fields of interest. For further information about our research please visit my research staff profile https://www.dur.ac.uk/biosciences/about/schoolstaff/profile/?id=1016
Successful applicants will join a busy and productive research group. The Masters projects on offer provide excellent training in the development of non-animal in vitro technologies, cell biology, tissue specific anatomy/physiology, engineering human tissues, stem cell science and cell differentiation, and advanced cell technologies. Students will master a range of cutting edge techniques to advance their research programme, including advanced 3D cell culture, cell and molecular biology, tissue analysis, histology, cell-based assays, and imaging (advanced light and electron microscopy). Students will train to become a research scientist, develop ownership of their project, and become expert in their field of interest. The Department of Biosciences at Durham University has excellent research facilities and training support programme to prepare students for a successful career in scientific research.

APPLICATIONS ACCEPTED ALL YEAR ROUND

Read less
The York Centre for Complex Systems Analysis (YCCSA) at the University of York focuses on using interdisciplinary research approaches to tackle complex real-world problems. Read more
The York Centre for Complex Systems Analysis (YCCSA) at the University of York focuses on using interdisciplinary research approaches to tackle complex real-world problems. Our interdisciplinary Masters by Research programme brings together teams of students and supervisors to address specific research problems from an interdisciplinary perspective. Each student is registered in their home discipline department, but the student and supervisor team works together in YCCSA, jointly tackling a real research problem, whilst learning interdisciplinary research skills. Successful students will graduate with a Masters by Research degree from their department.

Our interdisciplinary group of biologists, physicists, and computer scientists are investigating processes in cellular systems biology, through wet-lab experiments, novel Raman spectroscopy techniques, and novel computational simulations.

We are recruiting a team of up to three Masters research students to further progress this work. The students will work in an interdisciplinary team to progress this research.

Read less
Employability is central to this postgraduate course, which provides a broad perspective of analytical techniques covering both the analysis of organic and inorganic analytes in both liquid and solid form. Read more
Employability is central to this postgraduate course, which provides a broad perspective of analytical techniques covering both the analysis of organic and inorganic analytes in both liquid and solid form. Career opportunities are therefore maximised across the broadest possible range of employers within the chemicals sector and related industries ranging from pharmaceuticals to micro-electronics.

The fundamental ethos of the Instrumental Analysis course is to underpin the theoretical knowledge gained within the class room with extensive laboratory sessions. This cumulates in an 80 credit project where you will have the opportunity to specialise in various areas of instrumental analysis. This course will appeal to graduates from chemistry, chemical physics and other related disciplines.

LEARNING ENVIRONMENT AND ASSESSMENT

Computing Facilities are available in the general computing suites found within the building and throughout campus. Extensive Resources are available to support your studies provided by Learning & Information Services (LIS) – library and IT staff. You are advised to take advantage of the free training sessions designed to enable you to gain all the skills you need for your research and study.

LIS provide access to a huge range of electronic resources – e-journals and databases, e-books, images and texts.

Course and module materials are not provided in ‘hard copy’ format, however, wherever practicable, lecture notes and/or presentations, seminar materials, assignment briefs and materials and other relevant information and resources are made available in electronic form via eLearn. This is the brand name for the on-line Virtual Learning Environment (VLE) that the University uses to support and enhance teaching and learning.

You can access the eLearn spaces for the course and modules that they are registered for. Once logged into your eLearn area you can access material from the course and all of the modules you are studying without having to log in to each module separately.

The modules are assessed by both coursework and examination. To ensure that you do not have an excessive amount of assessment at any one time, the coursework assessment will take place uniformly throughout the course.

OPPORTUNITIES

The course is designed to equip you with the skills, knowledge and understanding to work in any analytical chemistry environment.

FURTHER INFORMATION

Semester 1 of the course is designed to ensure that you have the basic skills needed to obtain an MSc. It is important that you enhance the skills you have that will be of benefit when you gain employment after the course. The main skills that you will enhance will be presentational skills, report writing, independent working and problem solving.

Read less

Show 10 15 30 per page



Cookie Policy    X