• University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Cranfield University at Shrivenham Featured Masters Courses
University of Leicester Featured Masters Courses
Cranfield University Featured Masters Courses
Swansea University Featured Masters Courses
United Kingdom ×
0 miles
Geology×

Masters Degrees in Applied Geology, United Kingdom

We have 14 Masters Degrees in Applied Geology, United Kingdom

  • Geology×
  • Applied Geology×
  • United Kingdom ×
  • clear all
Showing 1 to 14 of 14
Order by 
Exploration geology is concerned with the location of ore and other materials found within the earth. Their work is essential to energy and production industries as it acts as a starting point for extraction. Read more

Exploration geology is concerned with the location of ore and other materials found within the earth. Their work is essential to energy and production industries as it acts as a starting point for extraction.

This MSc will equip students with specialist, essential knowledge and skills that are required when exploring and evaluating new mineral deposits around the world. As major orebodies are exhausted, the search for viable deposits in more complex geological terrains and in remote regions has intensified, creating a need for trained geologists able to carry out mineral exploration in varied environments.

The collection, interpretation and reporting of geoscientific data is the major focus of this course; based around a robust understanding of current theories for orebody genesis, exploration techniques and the application of industry-leading software. You will have the opportunity to gain experience in acquiring, synthesising and critically evaluating data from a range of remote sensing, geophysical, geochemical and drill hole sources. The programme provides pathways to careers in the national and international exploration and mining sectors as well as important transferable skills used in the broader geotechnical, site investigation and environmental industries.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Research project and dissertation;
  • Ore deposit geology and industrial minerals;
  • Economics, processing and environment;
  • GIS and remote sensing;
  • Site investigation including near surface geophysics;
  • Advanced geoscientific computing and data management;
  • Exploration targeting;
  • Exploration and mining geology.

Assessment method

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation.

Fieldwork

On this MSc programme you will receive a great deal of practical experience of working within the minerals industry. The programme aims to produce high-quality graduates who can enjoy high employment rates and easy transition into further PhD study. Emphasis remains on applied teaching and research relevant to careers in the earth resources and renewables sectors. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

You will spend a significant proportion of your time in the field during the autumn term. Over the Easter period you are required to participate in an international field trip to visit mines and exploration projects in Scandinavia. This trip will prepare you to undertake typical greenfields and brownfields exploration work, including boulder tracing, stream sediment sampling and glacial till investigations, and link the results back to exploration targeting and existing operating mines.

Research areas

From May to September you will undertake a major research project, usually in association with a mining/exploration company, and present a dissertation. Recent projects have been carried out in West Africa, Canada and Europe.

Examples of recent mineral exploration research projects

  • A Geochemical Assessment of the Exploration Potential for Alkalic (Cu-Au) and Calc-Alkalic (Cu ± Mo ± Au) Porphyries within the Quesnel Terrane, British Columbia, Canada
  • Using stream sediment geochemistry to aid polymetallic-Sn-W exploration targeting in the Vosges Mountains, France
  • Petrographic investigations into the potential for REE-pegmatite and orogenic gold deposits, Sierra Leone
  • A Remote Sensing Study into the mineral potential of the Taimyr Peninsula, Arctic Russia
  • Gold and REE exploration in the Birimian Greenstone Belt, Ivory Coast


Read less
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. Read more
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. In addition to successful employment in the international petroleum industry graduates from this course are employed in the international mining industry as well as being highly sought after for further PhD research in the geosciences.

● Recognised by Industry - Industry scholarships

● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum and remote sensing industries.

The course covers the applications of tectonics and structural geology to hydrocarbon exploration and production as well as to applied structural geology research in different terranes. The course is modular in form providing intensive learning and training in tectonics, applied structural geology, seismic interpretation of structural styles, tectonostratigraphic analysis, section balancing and reconstruction, remote sensing, crustal fluids and hydrocarbon systems, reservoir geology, and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in –
● Plate tectonics and terrane analysis;
● Applied structural analysis;
● 3D seismic interpretation and 3D visualization of structural styles;
● Fault analysis and fault-sealing;
● Tectonostratigraphic analysis;
● Scaled analogue modelling;
● Numerical modelling of structures;
● Remote sensing analysis of satellite and radar imagery;
● Analysis of gravity and magnetic data;
● Section balancing and reconstruction;
● Applied structural fieldwork.

● Transferable skills learned during the course include
project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available

● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –
● Dedicated Modern Teaching Laboratories
● Internationally Recognised Structural Modelling Laboratories
● 14 Dual Screen Unix Seismic Workstations
● PC and Macintosh Workstations
● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger
● Southeast Asia Research Group – tectonic evolution and basin development in SE Asia – Professor Robert Hall
● Numerical Modelling Research Group – Numerical modelling of tectonics and sedimentation – Dr Dave Waltham
● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

Our Tectonics MSc graduates have gained employment with Shell, BP, ECL, PGS, Sipetrol, PGL, Codelco, and to PhD research in a range of universities including Trieste, Barcelona, and Ulster universities.
Since 2001, 85% of our Petroleum Geosciences MSc graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html

Read less
Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. Read more

Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. For example, they can predict and measure damage caused by natural disasters, and innovate ways to reduce and prevent future issues through the construction of structure such as dams. Our developing world needs safe and stable space, as our infrastructures expand onto new land and those who work in the line of work will ensure that this can happen effectively.

Upon graduation, you will have the skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. It also provides specialist knowledge in tunnel, surface and underground excavation design, and applied hydrogeology and risk assessment.

This programme is taught by the internationally established and world-class Camborne School of Mines (CSM), a combined mining school and geoscience department. It is taught over two semesters and individual projects are undertaken throughout the summer, often as industrial placements. The programme is suitable for geology and engineering graduates wishing to specialise in applied geotechnics

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include;

  • Project and Dissertation;
  • Excavation and Geomechanics;
  • Health and Safety in the Extractive Industry
  • Project Management

Optional modules

Some examples of the optional modules are;

  • Resource Estimation;
  • Economics, Processing & Environment;
  • Hydrogeology;
  • Surface Excavation Design;
  • Tunnelling and Underground Excavation;
  • Production and Cost Estimation;
  • Mine Planning and Design;
  • Geomechanics Computer Modelling for Excavation Design
  • Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

The project is undertaken from June to September, after the second semester examinations. You are encouraged to undertake projects directly linked with industry, which may result in industrial placements for the project period. The projects are normally design-based and allow further specialisation in a topic that is of particular interest to you. This could involve the use of state-of-the-art engineering design software, risk and hazard analysis and other analytical techniques.



Read less
Programme description. This MSc is aimed at students who wish to pursue a geosciences-related career in the future energy sector, as it transitions from fossil fuels to a low carbon economy. Read more

Programme description

This MSc is aimed at students who wish to pursue a geosciences-related career in the future energy sector, as it transitions from fossil fuels to a low carbon economy. The aim is to offer a programme that uses subsurface (geological) knowledge opening a diverse range of career pathways in lower carbon geoenergy technologies; the disposal of energy-related wastes and the hydrocarbon industry.

This MSc programme builds on the strength and reputation of the research groups operating in the School of GeoSciences on uses of the subsurface: carbon capture and storage (CCS); radioactive waste disposal; energy storage and extraction; unconventional and conventional hydrocarbons; wet and dry geothermal heat; and subsurface fluid tracing using noble gases and stable isotopes.

Programme structure

Compulsory courses (for students who have accredited prior learning, elective courses are taken in lieu) – 90 credits

  • Future Geoenergy Resources
  • Applied Hydrogeology and Near surface Geophysics
  • Hydrogeology 2
  • Environmental Geochemistry
  • Project Design and Literature Analysis
  • Carbon Storage and Monitoring

Compulsory Courses – for those with Geoscience background – 20 credits

  • Subsurface Reservoir Quality

Compulsory Courses – for those without Geoscience background – 20 credits

  • Geology for Earth Resources
  • Hydrocarbons

Optional courses: choice of 10 credits from following

  • Ore Mineralogy, Petrology & Geochemistry
  • Seismic Reflection Interpretation
  • Carbon Capture and Transport
  • Helmsdale MSc Field Excursion
  • Environmental Problems and Issues
  • Nuclear Waste Management: Principles, Policies & Practice

Compulsory Dissertation

  • Dissertation in Applied Geoscience (Geoenergy)

Career opportunities

This programme will train students in the use of subsurface geological knowledge opening a diverse range of career pathways in lower carbon geoenergy technologies and the disposal of energy-related wastes. These include radioactive waste disposal; carbon capture and storage; geothermal energy and subsurface energy storage including compressed air energy storage.

Other pathways include working in environmental and regulatory aspects of energy storage involving potential pollution; tracking subsurface fluids in the event of leakage from subsurface facilities and ground water resources.



Read less
This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. Read more

This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. In addition our graduates are highly sought after for further PhD research in the petroleum geosciences.

● Recognised by NERC - 5 MSc studentships each year covering fees, fieldwork and maintenance.

● Recognised by Industry - Industry scholarships

● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum industry.

The course covers the applications of basin dynamics and evolution to hydrocarbon exploration and production. The course is modular in form providing intensive learning and training in geophysics, tectonics and structural geology, sequence stratigraphy and sedimentology, hydrocarbon systems, reservoir geology, remote sensing and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in -

● 3D seismic interpretation and 3D visualization;

● Fault analysis and fault-sealing;

● Seismic sequence stratigraphy;

● Applied sedimentology;

● Well log analysis;

● Remote sensing analysis of satellite and radar imagery;

● Analysis of gravity and magnetic data;

● Numerical modelling of sedimentation and tectonics;

● Applied structural geology;

● Geological Fieldwork.

● Transferable skills learned during the course include

project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available

● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –

● Dedicated Modern Teaching Laboratories

● 14 Dual Screen Unix Seismic Workstations

● PC and Macintosh Workstations

● Internationally Recognised Structural Modelling Laboratories

● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger

● Southeast Asia Research Group – Tectonic Evolution and Basin Development in SE Asia – Professor Robert Hall

● Numerical Modelling Research Group – Numerical Modelling of Tectonics and Sedimentation – Dr Dave Waltham

● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

The 2005 MSc graduates went on to employment with Shell, BP, Amerada Hess, Gaz de France, OMV (Austria), Star Energy, First Africa Oil, Badley Ashton, ECL, PGS, Robertsons, PGL, Aceca, and to PhD research at Royal Holloway and Barcelona.

Since 2001, 85% of our graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html



Read less
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status. Read more

This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status.

This degree is accredited by the Joint Board of Moderators as meeting the requirements for further learning for a chartered engineer (CEng) for candidates who have already acquired a partial CEng-accredited undergraduate first degree and for holders of an IEng-accredited first degree, to meet the educational base for a chartered engineer.

You will study a range of advanced civil engineering subjects linked to cutting-edge research. These include earthquake engineering dynamics and design, advanced geotechnics and rock mechanics, bridge engineering and advanced hydraulics. You will also develop the skills demanded in civil engineering consultancy offices around the world.

On the course, you will have the opportunity to use state-of-the-art laboratories and advanced technical software for numerical modelling.

The course is flexible and allows you to combine advanced civil engineering with related subjects including water environmental management, construction management and sustainable construction.

All of the taught modules are delivered by research-active staff and pave the way for a career at the forefront of ambitious civil engineering projects.

Course structure

The course has an emphasis on practical applications of advanced civil engineering concepts. You will make use of our advanced laboratories, modern computer facilities and technical software.

The MSc requires successful completion of six modules together with a dissertation on an agreed technical subject; a dissertation is not required, however, for the PGDip.

The taught component of the course comprises six core modules, and you can either take all six of these modules or choose four with an additional two approved modules from other MSc courses in the School of Environment and Technology. You can use this flexibility to study related subjects including water and waste-water treatment technology, construction management and sustainable construction.

Core modules cover geotechnical earthquake engineering, dynamics of structures with earthquake engineering applications, seismic design of reinforced concrete members, random vibrations of structures, bridge loads and analysis, rock mechanics, hydrogeology, coastal engineering and wave loading.

Areas of study

Coastal Engineering and Wave Loading

This module provides a basic understanding of different wave theories and their applications in coastal engineering practice.

You will develop an understanding of the coastal sediment transport processes and the means to deal with issues associated with coastal protection and sea defence.

Geotechnical Earthquake Engineering

This module provides an understanding of advanced geotechnical design methods with an emphasis on seismic design. It focuses on current design methods for soil and rock structures and foundation systems subject to complex loading conditions.

You will gain experience in using a variety of commercial software.

Rock Mechanics

The module gives you an understanding of the behaviour of rocks and rock mass and enables you to evaluate the instability of rock slopes and tunnels in order to design reinforcements for unstable rock.

Dynamics of Structures with Earthquake Engineering Applications

You will be introduced to the fundamental concepts of dynamics of structures. The module then focuses on analytical and numerical methods used to model the response of civil engineering structures subjected to dynamic actions, including harmonic loading, blast and impact loading, and earthquake ground motion.

Random Vibration of Structures

The module gives you the confidence to model uncertainties involved in the design of structural systems alongside a framework to critically appraise probabilistic-based Eurocode approaches to design.

Stochastic models of earthquake ground motion, wind and wave loading are explored. Probabilistic analysis and design of structures is undertaken through pertinent random vibration theory.

You will become confident with the probabilistic analysis for the design against earthquake, wind and wave loadings through various checkable calculations.

Repair and Strengthening of Existing Reinforced Concrete Structures

The module gives you an understanding of the types and causes of damage to reinforced concrete structures. It then focuses on current techniques for repair and strengthening of existing structures.

Employability

The course is particularly appropriate for work in structural, geotechnical and coastal engineering.

Graduates have gone on into roles as structural engineers and civil engineers in a number of structural design offices around the world.

Others have been motivated by the research component of the course and followed a PhD programme after graduation.



Read less
Your programme of study. Read more

Your programme of study

If you are considering a career or enterprise in oil and gas management or its associated supply chain this degree draws from the strengths of both academics at University of Aberdeen and industry professionals in the city who have helped to shape the programmes and modules from their learning and experiences. The university offers knowledge spanning fifty years in oil and gas production and commercialisation. The university has worked closely with the industry since its inception in Aberdeen city and in the 1970s to provide advanced level learning in the sector.

The programme uniquely offers a great range of knowledge across Geology and Engineering, Business and Law specific to the oil and gas industry but applicable to other similar industries with similar features. The degree offers great value in terms of the range of disciplines it covers and it will open up a range of careers internationally. It also gives you the confidence and knowledge to start up an enterprise yourself or work in mid to senior management within an already established company. Business and Law modules will be very useful to a great many commercial situations and sectors if you choose to apply your knowledge in the future. This also applies to Geology and Engineering which are also subjects in themselves when it comes to employment options.

This programme is ideal for small specialist companies working with National Oil Companies and energy ministries to commercialise innovation in science and technology and improve hydrocarbon exploration. It combines science with law politics and economics. Alumni work internationally across the supply chain and some of them have started their own businesses.

Courses listed for the programme

Semester 1

  • Geoscience in Oil Exploration
  • Introduction to Energy Economics
  • Drilling and Well Engineering
  • Management in Engineering Production, Risk Management and Psychology

Semester 2

  • Porfolio Optimisation - Decision Making and Investment Appraisal
  • Commercial Law and Regulatory Frameworks
  • Remediation Technology for Geosciences
  • Research Skills, Professional Development and Field Study

Semester 3

  • Project Oil and Gas Enterprise Management
  • Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You develop skills and knowledge to confidently talk to specialists across science, engineering, and commercialisation
  • Research informed subject areas include earth science, petroleum geology, sedimentology, geochemistry, tectonics, and more
  • We work with Apache, Statoil, BP, Chevron, Conoco Phillips, Shell, Pemex, to name but a few located in Aberdeen itself
  • You learn directly from industry professionals and academics with a high level of expertise

Where you study

  • University of Aberdeen
  • Full Time
  • September and January

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
This course provides training in geographical information systems (GIS) and in particular their application to a variety of environmental settings. Read more

This course provides training in geographical information systems (GIS) and in particular their application to a variety of environmental settings. If you want to develop your skills in this area, this is the course for you.

The programme is ideally suited to GIS analysts, decision-makers and managers since it will provide hands-on experience of how to use a variety of GIS systems (ArcViewTM, ARCGISTM, MapInfoTM) in real-world settings.

Students are also able to select more specialist training relevant to their interests and expertise.

The course aims to enhance your previous understanding and use of geographical information systems but it is also suitable for those who have no previous training in GIS.

By the end of the course, you will have developed high level abilities to apply GIS within environmental management, have an in-depth understanding of the functionality of GIS and be critically aware of the potential and limitations of GIS.

The course is accredited by the Chartered Institute of Water and Environmental Management (CIWEM).

Syllabus

All students study five core modules. You will also choose option modules, allowing you to specialise in the areas of the course that interest you the most.

Core modules

  • Introduction to GIS
  • Spatial Data Analysis
  • Applications in GIS 
  • Dissertation

Option modules

  • Applied Remote Sensing
  • Active Remote Sensing: Radar and Lidar in the Geo-Sciences
  • Planning Theory
  • Policy and Implementation in Town Planning
  • Management of People and Organisations
  • Advanced Ecology Field Skills
  • Environmental Placement Module
  • Environmental Auditing
  • Independent Study Module
  • Environmental Impact Assessment
  • Environmental Policy and Law
  • Air Quality Management
  • Issues in Ecology and Conservation
  • Hydrogeology
  • Case Studies in Environmental Assessment
  • Systems for Environmental Management
  • Environmental Assessment in Practice
  • Water Resource Management
  • Water Treatment Technology
  • Wastewater Treatment Technology
  • Water Quality Analysis
  • Principles in Sustainable Construction

Employability

Brighton's graduates are highly sought after by employers.

The course will provide opportunities to join a wide range of companies as a GIS expert. Recent graduates are building careers in organisations including:

  • GIS consultancies: South Coast GIS and Ambiental
  • Environmental consultancies: Groundsure, Argyll Environmental, Hyder Consulting
  • East Sussex District Council
  • Southern Water
  • TNT Courier

The course is accredited by the Chartered Institute of Water and Environmental Management (CIWEM). 



Read less
Northern England has an extraordinary diversity of landscapes and geological features, and as the largest county, Yorkshire preserves a large proportion of them. Read more
Northern England has an extraordinary diversity of landscapes and geological features, and as the largest county, Yorkshire preserves a large proportion of them. From the rugged North York Moors and the limestone pavements of the Yorkshire Dales to the coalfields of South Yorkshire and the shifting coastlines of Holderness, it is in many respects a microcosm of the region.

In The Geology of Yorkshire and Northern England, students will obtain a regional geological understanding with which to interpret larger-scale Earth processes and structures. The programme will provide students with training in advanced palaeoenvironmental analysis and science communication skills. Students will also assess Yorkshire and Northern England's importance to current controversies in Earth sciences, from fracking to climate change, and acquire an understanding of the region's vital role in the history of geology.

This is a part-time Postgraduate Diploma delivered wholly online in a fully supported learning environment. The programme starts in late September/early October each academic year, and places are limited to ensure a constructive atmosphere for discussions. Students can exit with a Postgraduate Certificate after successful completion of the first year if their circumstances change.

Overview

The programme will aim to:
-Introduce the key tenets and sub-disciplines of geology, focussing particularly on the geological evolution of northern England
-Provide students with a holistic understanding of the geological origins and history of Yorkshire and northern England
-Introduce students to field and laboratory geological analysis, and the skills and techniques required to interpret geological features accurately
-Describe the main geological units present in Yorkshire, their composition, distribution and formation
-Explore the geological history of Yorkshire and its global significance in the development of Earth Sciences
-Examine and interpret the Palaeozoic and Mesozoic geology of Yorkshire
-Explain the scientific importance of Yorkshire's rocks, and the role they have played in our understanding of the evolution of the Earth.
-Further develop students' palaeoecological and palaeoenvironmental interpretation skills
-Examine the Cenozoic and recent geological history of Yorkshire
-Provide students with an understanding of human interactions with, and exploitation of, the geological resources and landscapes of Yorkshire and northern England
-Further develop students’ knowledge of Yorkshire's role in the evolution of global geological hypotheses

Structure

This part-time two-year programme will comprise six 20-credit modules:
Year One
-Origins – the Development of Geology in Northern England
-Dales and Vales – the Palaeozoic of Yorkshire and Northern England
-Moors and Coast – the Mesozoic of Yorkshire and Northern England

Year Two
-Advanced Palaeoenvironmental Analysis
-Fire and Ice – the Cenozoic of Yorkshire and Northern England
-People and Landscape - The Human Geology of Yorkshire and Northern England

Students will be required to complete all these modules in the first instance, though additional modules may be added in the future to accommodate future programme growth and offer a broader learning experience.

It is anticipated that assessments will comprise a balance of short and long critical essays, laboratory-based projects and project work.

Online Study

Our approach to e-learning is distinctive and may be different from your general perceptions about online study:
-Flexible, fully supported, modular delivery
-Taught exclusively online
-Two stages: Certificate and Diploma. Each stage typically takes 12 months
-Comprises six distinct modules
-Part-time study (approximately 15 hours per week) allows participants to structure their learning around the other life circumstances

Read less
The MSc in Petroleum Geoscience is a one-year, full-time, multidisciplinary course that aims to train multi-skilled petroleum geoscientists for the modern petroleum industry. Read more

The MSc in Petroleum Geoscience is a one-year, full-time, multidisciplinary course that aims to train multi-skilled petroleum geoscientists for the modern petroleum industry. It covers key petroleum geoscience and related subjects, and their application to the exploration and production of hydrocarbons. It is recognised for the award of the Master of Science degree and the Diploma of Imperial College (DIC). The course is accredited by the Geological Society of London.

It is designed for students with some industrial experience, as well as for recent graduates seeking careers in the petroleum and allied service industries.

The course presents the methods and practices of the modern petroleum industry, with considerable emphasis on developing transferable skills.

The course enjoys close links with the petroleum industry, which provides scholarships for students, data for use in the course and presentations from industry professionals to supplement course material. Most students conduct their individual research project with an industry host or using data provided by industry.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/earth-science/petroleum-geoscience/

If you have any enquiries you can contact our team on: +44 (0)20 7594 6745



Read less
What you will study. You will study the following taught modules. Renewable Energy I - Hydro, Tidal, Wave, and Bioenergy. Renewable Energy II - Wind, Solar, and Geothermal. Read more

What you will study

You will study the following taught modules:

  • Renewable Energy I - Hydro, Tidal, Wave, and Bioenergy
  • Renewable Energy II - Wind, Solar, and Geothermal
  • Solids Resource Management
  • Water and Wastewater Treatment Processes

Plus two from the following optional modules (each worth 20 credits):

  • Hydrogen: Fuel Vector for the Future
  • Energy and Environmental Legislation and Policy
  • Advanced Materials for Energy Applications
  • Anaerobic Treatment Processes

You will also complete a substantial dissertation worth 60 credits, which can be in conjunction with industry, energy/environmental consultancy firms, governmental regulatory agencies, local authorities or within our Sustainable Environment Research Centre.

The subjects taught within the MSc Renewable Energy and Resource Management are underpinned by high quality research which was rated as being mainly internationally excellent or world leading in the 2014 Research Excellence Framework.

This included research in Anaerobic Digestion, Analytical Technology, Bioelectrochemical Systems, Biohydrogen and Biomethane Production, Hydrogen Energy, Hydrogen Vehicles and Refueling, Biopolymer Production, Modeling and Control, Nano Materials and Wastewater Treatment.

Teaching

Full-time students spend about 12 hours in lectures, seminars, tutorials, and computing based practical sessions each week, usually across two days. Part time students will typically attend one day a week. You will also be expected to carry out research and background reading during the other three days of the week individually. We have an exciting programme of site visits and fieldwork trips scheduled within your regular timetable to allow you to plan your time in advance. You can find out more about current work on our Twitter channel.

 

Assessment

The taught modules are assessed by a mixture of coursework and examinations. The dissertation is assessed by a proposal, written thesis and an oral examination. Coursework involves individual and group mini-projects, site visit reports, and poster and oral presentations.



Read less
Geotechnical engineering examines the engineering behaviour of earth materials and is relevant to all engineering and construction practices that are concerned with the ground on both a surface level and within it. Read more

Geotechnical engineering examines the engineering behaviour of earth materials and is relevant to all engineering and construction practices that are concerned with the ground on both a surface level and within it. Geotechnical engineers investigate the ground and measure the chemical properties, evaluate the stability of the area and design earthworks and structure foundations enabling projects to take place.

The programme is multi-disciplinary in nature, and provides students with the knowledge of rock engineering, site investigation, data capture and data analysis required to understand the issues facing engineers excavating increasingly ambitious and complex underground spaces. This course is relevant to students entering or working in a range of engineering careers within the construction, environmental and extractive industries.

Featured content draws upon the unique expertise of the Camborne School of Mines, with strengths in the areas of rock mechanics and underground excavation, as well as specialist knowledge of working in extreme conditions and with high-stress or difficult ground.

Delivered by staff with strong research interests directly related to the topics covered, modules involve a broad range of activities and teaching delivery methods. This includes workshops using the latest industry relevant computational tools, practical activities and group and individual exercises.

In support of this research-led teaching, key experts from the extractive and construction industry will provide topical insight to the state of the industry and clarify the context for the theory covered in the lectures.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Project and Dissertation;
  • Excavation and Geomechanics
  • Hydrogeology
  • GIS and Remote Sensing

Optional modules include;

  • Health and safety in the extractive industry
  • Project management
  • Surface extractive design
  • Mine planning design
  • Underground excavation design
  • Soil and water contamination
  • Underground construction
  • Site investigation including near surface geophysics

Learning and teaching

Teaching and assessment

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation. The taught part of the programme is structured into two semesters. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less
Climate change and the need to manage diminishing fossil fuel reserves are, today, two of the biggest challenges facing the planet. Read more

Climate change and the need to manage diminishing fossil fuel reserves are, today, two of the biggest challenges facing the planet.

In order to secure the future for ourselves and generations to follow, it is widely accepted that we must act now to reduce energy consumption, switch to renewable energy sources and substantially cut greenhouse gases, such as carbon dioxide.

To do this, the renewables sector requires Renewable Energy Engineers with the right multidisciplinary skillset to pioneer the design, building and management of its infrastructure.

Drawing upon our particular research strengths in marine, solar and wind based generation alongside specialist modules in energy storage, this programme prepares you for a career in a variety of energy-related roles across the sector.

Our wide-ranging expertise in renewable and energy engineering is reflected by the broad array of modules offered as part of this degree, allowing graduates from a multitude of first degree backgrounds to adjust their learning towards personal interests and career aspirations.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Network engineering, modelling and management
  • Renewable energy systems
  • Research project
  • Social and technological innovation
  • Professional ethics, competence and commercial awareness
  • Themes in climate change
  • Life cycle analysis
  • Sustainable architecture
  • Computational engineering for renewable energy systems
  • Further electrical and electronics engineering
  • Advanced marine renewable energy
  • Solar energy research and innovation
  • Advanced energy storage
  • Energy policies for a low carbon economy

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation.

The programme will have particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

You will be allocated a Personal Tutor who is available for advice and support throughout your studies, along with support and mentoring from graduates who are now placed in industry. There is also a Postgraduate Tutor available to help with further guidance and advice.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics.

Careers

The MSc in Renewable Energy Engineering has been designed to include the knowledge and skills that potential employers in the energy sector have told us they require.

The UK’s commitment to expansion of renewable energy is likely to mean a high level of investment in the sector in the next decade. The adoption of the UK’s microgeneration tariff in 2009, the Green Deal in 2013, the phased adoption of the Renewable Heat Incentive from 2011-2014 and introduction of Contracts for Difference in 2014, suggests continued strong support for rapid expansion of renewable energy in the UK.

Internationally, many other countries are making similar investments with major industrial nations including the US, India and China investing heavily in renewable generation. This investment will create broad opportunities for those seeking to work in the sector, both nationally and internationally.



Read less
Tunnelling, and the use of underground spaces, is an important aspect of the modern urban environment with developments of major underground infrastructure underpinning the changing needs of today’s society through transportation, storage and utilities. Read more

Tunnelling, and the use of underground spaces, is an important aspect of the modern urban environment with developments of major underground infrastructure underpinning the changing needs of today’s society through transportation, storage and utilities. Safe and efficient design of these excavations is essential for optimisation and economic utilisation of underground space.

National and global construction industries and associated businesses are coming under considerable pressure to design, build and manage infrastructure in a resource efficient, sustainable and environment friendly manner. To deliver this, they require qualified engineers with a multi-disciplinary skillset and specialist expertise in tunnelling, underground excavation and underground space utilisation.

Camborne School of Mines is uniquely qualified in this area, being at once the UK’s most prestigious specialist mining school and part of a world ranking Russell Group University.

Reputational and networking benefits

A unique benefit studying at Camborne School of Mines is the community and relations you will gain both during, and after your studies. Camborne School of Mines has a world-class reputation and excellent alumni network, allowing our graduates to prosper in their respective fields in all corners of the globe:

I have worked in many places around the world and have yet to visit a country where I could not find at least one CSM graduate. In fact, there are normally several and they can often be found in influential positions.

Tim Henderson, CSM graduate and current Technical Director at Glencore

Graduate skills and destinations

In addition, a degree form Camborne School of Mines will teach the necessary technical skills and theoretical knowledge required, as well as additional complementary skills relating to communications, teamwork and problem solving. We have excellent rates of graduate employment, with many postgraduates working overseas.

Support and opportunities

The Career Zone (CAS) at our Cornwall Campus provides high-quality careers information and guidance to students of all disciplines. Our experienced careers team can give you individual support whilst you are at the University and after you have graduated.

Services include talks, confidential careers interviews and an extensive careers library of reference books, magazines and journals. A new computer suite is also available for accessing online careers information, vacancy services and specialist software on, for example, sources of funding for courses and worldwide volunteering.

The CAS can help you to identify attractive jobs, careers paths and employers and assist with your CV, interview technique and identifying work experience placements.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Project and dissertation
  • Excavation and geomechanics
  • Health and safety in the extractive industry
  • Project management
  • Underground construction
  • Underground excavation design

Optional modules can include;

  • Production and cost estimation
  • Mine planning and design
  • Working environment and ventilation
  • Mine automation

Teaching and assessment

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation. The taught part of the programme is structured into two semesters. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X