• University of Oxford Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
OCAD University Featured Masters Courses
Coventry University Featured Masters Courses
University of Manchester Featured Masters Courses
Swansea University Featured Masters Courses
0 miles
Physics×

Masters Degrees in Solid-State Physics

We have 15 Masters Degrees in Solid-State Physics

  • Physics×
  • Solid-State Physics×
  • clear all
Showing 1 to 15 of 15
Order by 
The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. Read more

Mission and goals

The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. The physical engineer can approach all sectors in which advanced technological systems are developed: lasers, photonics, materials technology, biomedical optics, etc.

The course has three possible finalizations:
- Nano-optics and Photonics
- Nano and Physical Technologies
- Semiconductor nanotechnologies

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Career opportunities

The graduate in Engineering Physics can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical optics.
The physical engineer can therefore find employment in companies working in the fields of materials engineering and optical technologies; companies which use innovative systems and technologies; public and private research centres; companies operating in the physical, optical and photonic technologies and diagnostics market.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Engineering_Physics.pdf
The objective of this programme is to prepare an engineer able to produce innovation both in the industrial environment as well as in basic research. The graduates will have a broad cultural and scientific foundation and will be provided with the latest knowledge of solid-state and modern physics, optics, lasers, physical technology and instrumentation, nanotechnologies and photonics. Thanks to the experimental laboratory modules, available within different courses, the students face realistic problems throughout their studies. Career opportunities in the Physics Engineering field are extremely wide and varied. In particular, graduates can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical technology.
Moreover, master graduates can work in strategic consultancy companies or can continue their Academic Education with a PhD Program toward a professional career in academic or industrial research. The programme is taught in English.

Subjects

Three tracks available: Photonics and Nanotechnologies; Nanophysics and nanotechnology; Semiconductor nanotechnologies

Subjects common to all the tracks:
Mathematical Methods for Engineering, Solid State Physics, Photonics I, Automatic Controls, Electronics, Computer Science, Management

Other subjects:
- TRACK: PHOTONICS AND NANO OPTICS
Micro and Nano Optics, Photonics II
- TRACK: NANOPHYSICS AND NANOTECHNOLOGY
Physics of Low Dimensional Systems, Electron Microscopy And Spintronics
- TRACK: SEMICONDUCTOR NANOTECHNOLOGIES
Physics of Low Dimensional Systems, Physics of Semiconductor Nanostructures, Graphene and Nanoelectronic Devices

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The course gives you the opportunity to explore and master theoretical, computational and experimental physics skills with wide application. Read more

Why this course?

The course gives you the opportunity to explore and master theoretical, computational and experimental physics skills with wide application.

Our four divisions – Nanoscience, Optics, Plasmas and the Institute of Photonics – all contribute research-based teaching expertise to the course. You can choose taught elements relevant to your career interests from a wide range of topics, including:
- theoretical & computational physics
- quantum optics and quantum information
- complexity science
- physics and the life sciences
- solid-state physics
- plasma physics

The knowledge you gain in the taught components is then put to use in a cutting-edge research project, which can be theoretical, computational or experimental.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedphysics/

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

- Facilities
This course is run by the Department of Physics. The department’s facilities include:
- cutting-edge high-power laser research with SCAPA, researching the future of particle accelerators via laser-based acceleration
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- access to the top-of-the-range high performance and parallel computer facilities of ARCHIE-WeSt
- a scanning electron microscopy suite for analysis of hard and soft matter
- new high-power microwave research facility in the Technology & Innovation Centre
- advanced quantum optics and quantum information labs

English language

IELTS 6.0 is required for all non-English speakers.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments, and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral examination.

Careers

A Masters degree in physics prepares you for a wide and versatile range of careers in science and engineering as well as all areas of management, financial services, etc. Many graduates proceed to a PhD.

Strathclyde physics graduates are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorneys
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. Read more
The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. This is a broad-based MSc, designed for graduates who wish to acquire skills in energy and materials science in order to participate in the emerging challenges to meet climate change targets.

Degree information

Students gain an advanced knowledge of materials science as it applies to energy and environmental technologies and research skills including information and literature retrieval, critical interpretation and analysis, and effective communication. They can benefit from modules in chemistry, physics, chemical engineering or mechanical engineering, thus offering future employers a wide-ranging skills base. Graduates will be well qualified to deal with the problems of energy decision-making and the implications for the environment.

Students undertake modules to the value of 180 credits. The programme consists of five core modules (90 credits), two optional modules (15 credits each) and a research project (60 credits). An exit-level only Postgraduate Diploma (120 credits) is available. An exit-level only Postgraduate Certificate (60 credits) is available.

Core modules - students take all of the following, totalling 90 credits, and a 60 credit research dissertation.
-Advanced Topics in Energy Science and Materials
-Microstructural Control in Materials Science
-Energy Systems and Sustainability
-Transferable Skills for Scientists
-Research Project Literature Review

Optional modules - students take 30 credits drawn from the following:
-Climate and Energy
-Materials and Nanomaterials
-Electrical Power Systems and Alternative Power Systems
-Atom and Photon Physics
-Solid State Physics
-Mastering Entrepreneurship

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000 words, an oral presentation and a viva voce examination (60 credits).

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through unseen written examination and coursework. The literature project is assessed by written dissertation and oral presentation, and the research project is assessed by a written report, an oral presentation and a viva voce examination.

Careers

The UK has committed to 80% reduction in CO2 emissions on a 1990 baseline by 2050. CERES, the organisation that represents the largest institutional investors would like to see 90% reduction by 2050. National Systems of Innovation (NSI), which includes the universities, research centres and government departments working in conjunction with industry, will need to apprehend new opportunities and change direction, diverting personnel to energy and climate issues in response to changing markets and legislation. This MSc will contribute to the supply of personnel needed for the era of sustainability.

Top career destinations for this degree:
-Process Innovation Executive, Samsung Electronics UK
-Chemical Engineer, Jing Eong Fang
-Research Intern, CECP
-PhD Nanomaterials, University of Oxford
-PhD Sugar Chemistry, Monash University

Why study this degree at UCL?

This programme is designed for graduates from a wide range of science and engineering backgrounds who wish to broaden their knowledge and skills into materials science with an emphasis on the energy and climate change issues that will drive markets over the next century. It delivers courses from five departments across three faculties depending on options and includes a self-managed research project which is intended to introduce the challenges of original scientific research in a supportive environment.

Research activities span the whole spectrum of energy-related research from the development of batteries and fuel cells to the prediction of the structure of new water-splitting catalytic materials.

Students develop experience in scientific method, techniques for reporting science and in the many generic skills required for a future career.

Read less
The Masters in Physics. Advanced Materials provides an understanding of the principles and methods of modern physics, with particular emphasis on their application to global interdisciplinary challenges in the area of advanced materials and at a level appropriate for a professional physicist. Read more
The Masters in Physics: Advanced Materials provides an understanding of the principles and methods of modern physics, with particular emphasis on their application to global interdisciplinary challenges in the area of advanced materials and at a level appropriate for a professional physicist.

Why this programme

◾The School of Physics & Astronomy hosts the Kelvin Nanocharacterisation Centre, which houses state-of-the-art instrumentation for studying materials at the nanoscale or below.
◾Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
◾With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾You will gain the theoretical, experimental and computational skills necessary to analyse and solve a range of advanced physics problems relevant to the theme of this global challenge, providing an excellent foundation for a career of scientific leadership in academia or industry.
◾You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
◾You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
◾This programme has a September and January intake*.

Programme structure

Modes of delivery of the MSc in Physics: Advanced Materials include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The programme draws upon a wide range of advanced Masters-level courses. You will have the flexibility to tailor your choice of optional lecture courses and project work to a wide variety of specific research topics and their applications in the area of advanced materials.

Core courses include
◾Advanced data analysis
◾Nano and atomic scale imaging
◾Research skills
◾Solid state physics
◾Extended project.

Optional courses include
◾Detection and analysis of ionising radiation
◾Detectors and imaging
◾Environmental radioactivity
◾Nuclear power reactors
◾Semiconductor physics
◾Statistical mechanics.

For further information on the content of individual courses please see Honours and Masters level courses.

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Read more

The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Though it may be taken as a free-standing qualification, most students take this programme as a pathway to the MSc. This pathway forms the first year of a two-year programme with successful students (gaining a merit or distinction) progressing onto the MSc Physics in second year.

Key benefits

  • King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.
  • Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".
  • The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".
  • Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials.

Description

Students will undertake a total of 120 credits

Course purpose

For students with an undergraduate degree or equivalent who wish to have the experience of one year in a leading UK Physics Department, or who may not be immediately eligible for entry to a higher degree in the UK and who wish to upgrade their degree. If you successfully complete this programme with a Merit or Distinction we may consider you for the MSc programme.

Course format and assessment

The compulsory modules are assessed via coursework. The majority of the other optional modules avaiable are assessed by written examinations.

Career destinations

Many students go on to do a higher Physics degree, work in scientific research, teaching or work in the financial sector.



Read less
What is the Master of Physics all about?. The programme aims to train physicists capable of working in research institutes or corporate environments. Read more

What is the Master of Physics all about?

The programme aims to train physicists capable of working in research institutes or corporate environments. Upon successful completion of the programme, students will have acquired:

  • thorough knowledge of physics in general as well as more in-depth knowledge of at least one specialized area;
  • the ability to make sound judgments informed by current research;
  • the ability to gain new insights and results and to develop new methods;
  • the ability to solve physical problems using the most appropriate experimental and/or theoretical methods and to report on research findings;
  • the ability to structure and analyse specific problems in different situations;
  • strong teamwork skills;
  • the ability to communicate findings and insights;
  • a critical understanding of the role that physics plays in society.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

After a semester with advanced courses in different disciplines of physics, you choose a major research specialization consisting of advanced and specialized courses and a master’s thesis of 30 ECTS.

The remaining 30 ECTS allow you to follow one of two options: Research or Physics in Society.

  • The Research option prepares you for a research career in academia or industry. You broaden your research skills by choosing a minor research domain, including at least 12 ECTS courses from that domain and complemented by a research internship or with other courses.
  • The Physics and Society option offers you the opportunity to prepare for a career as a physicist outside academia, through courses preparing you for entrepreneurship or via an internship in a company.

Department

The mission of the Department of Physics and Astronomy is exploring, understanding and modelling physical realities using mathematical, computational, experimental and observational techniques. Fifteen teams perform research at an international level. Publication of research results in leading journals and attracting top-level scientists are priorities for the department.

New physics and innovation in the development of new techniques are important aspects of our mission. The interaction with industry (consulting, patents...) and society (science popularisation) are additional points of interest. Furthermore, the department is responsible for teaching basic physics courses in several study programmes.

Objectives

The master students will grow into independent and critical scientists. Masters of physics will have developed sufficient knowledge and skills to participate in competitive national or international PhD programmes. Moreover the acquired research methodology will prepare the student for employment as a scientist in any chosen profession.

The curriculum is constructed in a way that the student can specialize in an area of choice by joining one of the research groups of the department. This specialization can be in the field of nuclear physics, condensed matter physics ortheoretical physics. A major part of the curriculum consists of research resulting in a master thesis. The subject of the thesis is chosen by the student during the course of the second semester of the 1st Master year and students join a research team from the 3th semester onwards.

The students can choose an option to prepare themselves better for a future in research or in industry or society related fields.

In the option "research" the student can take courses from another research specialization than its major one, which can be accompanied by an internship in one of the research teams of this minor discipline. As such our students have the possibility to broaden their knowledge in at least two scientific disciplines (in physics or a related field), which is invaluable when a further research career in or out of academia is considered.

In the option "Physics for society" students can choose for an internship of a full semester in a company or they can take courses from the LCIE Entrepreneurship Academy who wants to prepare academics for entrepreneurschip.

The Erasmus programme of the European Union offers an excellent opportunity for Belgian students who would like to combine their study with experience outside the KU Leuven. All research groups of the department have a network of European collaborators and we advise interested students to integrate this exchange with their thesis research during their second Master year. Choices concerning the Erasmus programme need to be made in December of the 1st Master year. Address the Erasmus coordinator to obtain specific information on this European programme.

Career perspectives

The Department of Physics and Astronomy at KU Leuven generates substantial research funding. Consequently, many research positions are available, and more than half the students obtaining a master’s degree in physics eventually start a PhD programme in one of the department’s research groups.

A number of graduates prefer to pursue a second master’s degree, with medical radiation physics, environmental sciences, and statistics as the most popular subjects. There are also excellent career opportunities in industry (ICT, material research, electronics), consulting, government, banking (statistics), and higher education. Unemployment is nonexistent among newly graduated physicists.



Read less
This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering. You can choose classes relevant to your career interests from a wide range of topics including. Read more

Why this course?

This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering.

You can choose classes relevant to your career interests from a wide range of topics including:
- high-power microwave technology
- laser-based particle acceleration and enabled applications
- physics and the life sciences
- materials and solid state physics
- photonics
- quantum optics and quantum information technology

You‘ll put the knowledge gained in the taught classes to use on a research project. You can design the project to fit in with your interests and career plans.

The course gives you the opportunity to explore and master a wide range of applied physics skills. It teaches you transferable, problem-solving and numeracy skills that are widely sought after across the commercial sector.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/appliedphysics/

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

Facilities

This course is run by our Department of Physics. The department’s facilities include:
- cutting-edge high-power laser and particle acceleration research with SCAPA, enabling generation of radiation from the terahertz to - the X-ray region, and biomedical applications
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- a scanning electron microscopy suite for analysis of hard and soft matter
- access to top-of-the-range high-performance and parallel computer facilities
- state-of-the-art high-power microwave research facility in the Technology & Innovation Centre
- advanced quantum optics and quantum information labs
- several labs researching optical spectroscopy and sensing

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral exam.

What kind of jobs do Strathclyde Physics graduates get?

To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorney
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

- Success story: Iain Neil
Iain Neil graduated from Strathclyde in Applied Physics in 1977 and is an optical consultant, specialising in the design of zoom lenses for the film industry. He has received a record 12 Scientific and Technical Academy Awards, the most for any living person.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows. Read more
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows.

We make every attempt to allocate you to a supervisor directly in your field of interest, consistent with available funding and staff loading. When you apply, please give specific indications of your research interest – including, where appropriate, the member(s) of staff you wish to work with – and whether you are applying for a studentship or propose to be self-funded.

Visit the website https://www.kent.ac.uk/courses/postgraduate/212/physics

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Study support

- Postgraduate resources

The University has good facilities for modern research in physical sciences. Among the major instrumentation and techniques available on the campus are NMR spectrometers (including solutions at 600 MHz), several infrared and uvvisible spectrometers, a Raman spectrometer, two powder X-ray diffractometers, X-ray fluorescence, atomic absorption in flame and graphite furnace mode, gel-permeation chromatography, gaschromatography, analytical and preparative highperformance liquid chromatography (including GC-MS and HPLC-MS), mass spectrometry (electrospray and MALDI), scanning electron microscopy and EDX, various microscopes (including hot-stage), differential scanning calorimetry and thermal gravimetric analysis, dionex analysis of anions and automated CHN analysis. For planetary science impact studies, there is a two-stage light gas gun.

- Interdisciplinary approach

Much of the School’s work is interdisciplinary and we have successful collaborative projects with members of the Schools of Biosciences, Computing and Engineering and Digital Arts at Kent, as well as an extensive network of international collaborations.

- National and international links

The School is a leading partner in the South East Physics Network (SEPnet), a consortium of seven universities in the south-east, acting together to promote physics in the region through national and international channels. The School benefits through the £12.5 million of funding from the Higher Education Funding Council for England (HEFCE), creating new facilities and resources to enable us to expand our research portfolio.

The School’s research is well supported by contracts and grants and we have numerous collaborations with groups in universities around the world. We have particularly strong links with universities in Germany, France, Italy and the USA. UK links include King’s College, London and St Bartholomew’s Hospital, London. Our industrial partners include British Aerospace, New York Eye and Ear Infirmary, and Ophthalmic Technology Inc, Canada. The universe is explored through collaborations with NASA, ESO and ESA scientists.

- Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Nature; Science; Astrophysical Journal; Journal of Polymer Science; Journal of Materials Chemistry; and Applied Optics.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/tstindex.html) for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The Nanoscale Engineering master is a two-year program corresponding to 120 ECTS credits. Students receive a universal and profound training in physics, materials science and electronics at the nanoscale, but also in nanobiotechnology. Read more
The Nanoscale Engineering master is a two-year program corresponding to 120 ECTS credits. Students receive a universal and profound training in physics, materials science and electronics at the nanoscale, but also in nanobiotechnology.

Elective courses can be followed by the students in their desired area of specialization and/or to broaden their horizons. The entire curriculum is taught in English.

A key educational concept of the program is that each student is immersed in a high-quality research environment for at least half of the time in the curriculum. Throughout the academic year, lab practicals and projects are carried out in research institutions that participate in the program, and thesis projects are undertaken in research laboratories or in nanotechnology companies.

In addition to the scientific and technological aspects, ethical issues and the societal impact of nanotechnology, as well as business considerations, are addressed in specialized seminars and courses.

Structure of the Curriculum

First Year (60 ECTS)

The major part of semester 1 is dedicated to lectures: The students follow 7 courses from the core modules and 2 elective modules. Laboratory practicals and mini-projects ensure a smooth transition into semester 2 with its four-month internship in a research group. This internship is prepared in semester 1 already with a dedicated literature survey. Seminars of speakers from both academia and industry complement the educational program throughout the entire first year.

Second Year (60 ECTS)

Semester 3 is again dedicated to lectures, featuring 5 slots for core modules and 3 for electives, as well as some ancillary courses. The entirety of semester 4 is taken up by the six-month Master thesis project, which can be conducted in a research laboratory or in a company, in France or abroad. As in the first year, seminars of speakers from both academia and industry complement the educational program.

Modules and Courses

Core Modules

These courses impart the fundamental knowledge in the nanotechnology field applied to physics, electronics, optics, materials science and biotechnology. Students are required to follow at least twelve core module courses during the two-year program.

Core modules in the first year There are four obligatory core modules in the first year:

Introduction to Nanoscale Engineering
Micro- and Nanofabrication, part 1
Characterization Tools for Nanostructures
Quantum Engineering

Furthermore, there is a remedial physics course to which students are assigned based on the results of a physics test at the beginning of semester 1:

Basics of Physics

Finally, students have to select a minimum of three courses from the following list for their first year:

Solid State Physics at the Nanoscale
Continuum Mechanics
Physics of Semiconductors, part 1
Physical Chemistry and Molecular Interactions
Biomolecules, Cells, and Biomimetic Systems

Core modules in the second year Students have to choose at least four courses from the following selection for their second year:

Nano-Optics and Biophotonics
Surface-Analysis Techniques
Physics of Semiconductors, part 2
Micro- and Nanofluidics
Micro- and Nanofabrication, part 2
Biosensors and Biochips
Computer Modeling of Nanoscale Systems

Elective Modules

These courses cover a wide range of nanotechnology-related disciplines and thus allow the students to specialize according to their preferences as well as to broaden their expertise. Elective modules in the first year Three courses from the following list have to be chosen for the first year:

Nanomechanics
MEMS and NEMS
Introduction to System Design
Drug-Delivery Systems

Elective modules in the second year Students follow a minimum of three courses from the following selection in the second year:

Multi-Domain System Integration
Solar Cells and Photovoltaics
Nanomagnetism and Spintronics
Nanoelectronics
Tissue and Cell Engineering

Experimental Modules

Students conduct lab practicals that are integrated into the various courses, during which they familiarize themselves hands-on with all standard techniques for fabrication and characterization of nanostructures. They furthermore have the opportunity to work more independently on individual or group projects.

Ancillary Courses and Seminars

This module deals with complementary know-how, relevant both for academia and in an industrial environment. Students follow a course on intellectual-property issues. Ethical aspects and the societal impact of nanotechnology are covered in specialized seminars, which also allow for networking with national and international nanotechnology companies and research laboratories. Communication skills are likewise developed through written and oral presentations of all experimental work that is carried out during the Master program.

Internship

In the second semester, students conduct two-month internships in two of the research laboratories participating in the program. The students choose their projects and come into contact with their host laboratories earlier in the academic year already, by spending some time in these laboratories to carry out an extensive literature survey and to prepare their research projects under the guidance of their supervisors.

Master Thesis Project

The final six-month period of the program is devoted to the master project, which can be carried out either in an academic research laboratory or in an industrial environment. Students have the option to conduct their thesis project anywhere in France or abroad.

Read less
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. Read more

Mission and Goals

This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. The objective of the programme is to prepare a professional figure expert in materials and in the design of processes and manufactured goods. Within the scope of the study plan a number of specific specialisations are foreseen:
- Surface Engineering
- Polymer Engineering
- Nanomaterials and Nanotechnology
- Engineering Applications
- Micromechanical Engineering

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Career Opportunities

The Master of Science graduate in Materials and Nanotechnology Engineering has the ability to devise and manage innovation in the materials industry; he/she finds employment mainly in companies specialised in producing, processing and design various materials and components, as well as in the area of the development of new applications in the mechanical, chemical, electronics, energy, telecommunications, construction, transport, biomedical, environmental and restoration industries as well as in research and development centres of companies and public bodies.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Materials_Engineering_and_Nanotechnology_04.pdf
The Master of science programme aims at preparing specialists with strong technical skills for innovation of processes and applications of new materials and nanotechnologies. One of the major focuses of the MSc is on sustainable technologies and nanotechnologies for advanced applications. The city of Milan and its surroundings are fertile ground for social and technical culture, with a variety of small enterprises open to innovation and new technologies and working in niche fields, where non-traditional materials are key to future developments. The job market welcomes Material Engineers as professionals capable of handling complex problems directly related to the production, treatment and applications of materials, acknowledging the high level of education obtained at the Politecnico di Milano through original methodologies and new technologies.
The programme is taught in English.

Subjects

- Mathematical methods for materials engineering
- Advanced materials chemistry
- Polymer science and engineering
- Principles of polymer chemistry + Fundamentals of polymer mechanics
- Solid state physics
- Mechanical behavior of materials
- Cementitous and ceramic materials engineering
- Advanced Materials
- Functional materials + nanostructured materials
- Durability of materials
- Failure and control of Materials
- Surface engineering
- Thesis work

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics. Read more
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics.

The project will be devoted to one of several topical areas of modern physics including high-temperature superconductivity, terahertz semiconductor and superconductor electronics, quantum computing and quantum metamaterials, physics of extreme conditions and astrophysics.

Core study areas currently include mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience and a research project.

Optional study areas currently include characterisation techniques in solid state physics, quantum information, advanced characterisation techniques, quantum computing, and physics of complex systems.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2

Optional Modules:
- Characterisation Techniques in Solid State Physics
- Fundamentals of Quantum Information
- Matlab as a Scientific Programming Language
- Advanced Characterisation Techniques
- Quantum Computing
- Physics of Complex systems

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Read less
We have a long history of internationally recognized research in the study and development of new materials. Read more
We have a long history of internationally recognized research in the study and development of new materials. This course gives the possibility of working with and learning from expert researchers in the physics of materials in a friendly and vibrant research atmosphere provided by the international team of scientists at the Department of Physics.

This programme contains a combination of supervised research work, development of research skills and taught material. The programme involves a set of taught modules and an experimental or theoretical research project.

The theme of the project will be dedicated to one of the topical areas in physics of materials including graphene-based materials, thin film materials, shape memory compounds or nanomaterials or experimental study of properties of materials.

Core study areas mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience, characterisation techniques in solid state physics, and a research project.

Optional study areas include polymer properties, polymer science, advanced characterisation techniques, simulation of advanced materials and processes, and materials modelling.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2
- Characterisation Techniques in Solid State Physics

Optional Modules:
- Polymer Properties
- Polymer Science
- Advanced Characterisation Techniques
- Simulation of Advanced Materials and Processes
- Materials Modelling

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Read less
Material science in a scientific point of view wants to connect the characteristics on the microscopic scale to the effect (expected or undesirable) on a macroscopic scale. Read more

The Program

Material science in a scientific point of view wants to connect the characteristics on the microscopic scale to the effect (expected or undesirable) on a macroscopic scale. The international “Master of Science in Chemistry and Physics of Functional Materials” therefore integrates concepts of Chemistry and Physics as well as neighboring sciences, math and computer science. Due to its interdisciplinary and applied approach, the program enables its graduates to synthesize and characterize functional materials. An international direction of the study program is realized by our international research staff, regular talks of guest lecturers from abroad and internships which can be undertaken all over the world. All mandatory courses are taught in English. The program could be completed entirely in English. Only for internships (not required) or later work in regional industry German language skills are necessary.

In general, our program aims at people with a bachelor’s degree in physics, chemistry or material science.

Job Outlook

Our graduates are duly qualified for jobs in scientific facilities, research institutes, authorities or industry. In addition, the master’s program prepares for further research and a PhD in this field.

Study Contents

• Synthesis and Characterization of functional materials
• Electives allow for setting an individual focus (mathematics, biology, geo science, economics and computer science)
• Lectures will be held in English (choices in elective are therefore restricted)
• Possibility of studying a term abroad

The Master's program comprises three semesters of full-time study with a total amount of 90 ECTS. For students with a bachelor with 180 ECTS additional 30 LP (one semester) is offered, finally 300 LP have to be earned.
The program consists of a compulsory part on solid state physics, the synthesis and characterization of functional materials. This gives a broad knowledge in the field of functional materials (15 LP). Furthermore, three optional modules (18 LP) out of six in specific application fields of chemistry and physics in materials science have to be chosen. Electives (12 LP) and a research project (15 LP) prepare the students for their final master thesis with a final oral exam (30 LP).

Study abroad unit(s)

Not necessary, but optional for internship or Master's thesis

Forms of assessment

Written and oral exams, project work, lab report, presentations, Master's thesis

Additional information

The Modules which make it possible to complete the entire program in English are only a selection of the modules of the Master “Chemie und Physik funktionaler Materialien” which contains also modules in German Language.

Application

International applicants with bachelor's degrees from outside Germany need to apply through uni-assist. For more information about the application process, please check:
http://www.uni-koblenz-landau.de/en/international-en/support-contact/welcome-center/application-procedures

Our Welcome Center supports international applicants with all organisational matters. Information and contact details you can find under:
http://www.uni-koblenz-landau.de/en/welcome

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X