• University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Derby Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Durham University Featured Masters Courses
Middlesex University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Warwick Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
University of Leeds Featured Masters Courses
0 miles
Environmental Sciences×

Masters Degrees in Soil Science

Masters degrees in Soil Science offer advanced study of the properties of soils, the processes involved in their formation, and their distribution.

Taught MSc degrees are typical for the field, though research-based MRes and MPhil programmes may be available at some institutions. Entry requirements normally include an undergraduate degree in a relevant subject such as Environmental Science or Geology.

Why study a Masters in Soil Science?

Read more...

  • Environmental Sciences×
  • Soil Science×
  • clear all
Showing 1 to 15 of 27
Order by 
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Soil Science aims at training researchers, academics, government staff and expert consultants in the inventory and detailed characterization of land capacity, and of soils in particular. Graduates should be able to understand the development and evolution of soils under natural conditions or following human interference using field, map, laboratory and remote sensing data. They should have the scientific knowledge to use and manage soil and water in a sustainable way, and to optimize land use under different natural and environmental conditions.

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning Outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
A collaboration between the Faculty of Land and Food Systems and Faculty of Forestry, the inter-faculty Soil Science Graduate Program offers opportunities for advanced study and research leading to MSc and PhD degrees. Read more
A collaboration between the Faculty of Land and Food Systems and Faculty of Forestry, the inter-faculty Soil Science Graduate Program offers opportunities for advanced study and research leading to MSc and PhD degrees. Students are registered in the Faculty of Graduate Studies through either the Faculty of Land and Food Systems or Faculty of Forestry, depending upon their research interests.

Areas of study include biometeorology, forest nutrition and nutrient cycling, mycorrhizal ecology, soil biology, soil quality and fertility, soil-plant interactions, ecosystem services, land an water systems.

Program Overview

Soil Science offers opportunities for advanced study and research leading to Ph.D. and M.Sc. degrees in the areas of soil microbial ecology, organic matter, soil physics, irrigation and drainage, biometeorology, soil pollution, soil and water conservation, soil management, and land use, with application to forest, agricultural, urban, and range soils, as well as a professional Master of Land and Water Systems (M.L.W.S.) degree. The Ph.D. and M.Sc. degrees include a combination of courses in both basic and applied sciences, with research leading to the completion of a thesis/dissertation. The M.L.W.S. degree is intended for students seeking a post-baccalaureate degree for professional practice in the land and water resources management realm. The program is designed to be completed in one calendar year.

Soil Sciences programs are enriched through collaboration with: colleagues in other graduate programs, such as Forestry, Geography, Plant Science, Institute for Resources and Environment, Integrated Studies in Land and Food Systems, and Landscape Architecture; and agencies such as Environment Canada, Canadian Forest Service, Agriculture and Agri-Food Canada, BC Ministry of Forests and Range, and other provincial, municipal, and regional government agencies.

Research facilities are housed both within the MacMillan and Forest Sciences Buildings and, on a shared basis, in other buildings on campus. Research facilities within the MacMillan Building include modern analytical laboratories and other equipment for conducting chemical and biometeorological research, while excellent facilities for soil biological research are located in the Forest Sciences Centre.

Quick Facts

- Degree: Master of Science
- Specialization: Soil Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Career Prospects

Graduates of the soil science degree program often obtain positions with government or the private sector. Some graduates decide to continue in the area of research and academia with various universities and colleges. Examples of where some graduates are employed:
- Agriculture and Agri-Food Canada
- BC Ministry of Forests
- Canadian Forest Service
- Consultant
- Associate Professor, University of Guelph
- Associate Professor, Yale University
- Associate Professor, University of Northern BC
- Environment Canada
- Assistant Professor, University of Bengukulu, Indonesia
- Assistant Professor, University of Venda for Science and Technology, South Africa

Read less
The Master of Physical Land Resources has two specializations. Soil Science (organized by the Universiteit Gent) and Land Resources Engineering (organized by the Vrije Universiteit Brussel). Read more
The Master of Physical Land Resources has two specializations: Soil Science (organized by the Universiteit Gent) and Land Resources Engineering (organized by the Vrije Universiteit Brussel). During your training you acquire a profound knowledge of pedology, soil physics and chemistry, soil mineralogy, soil prospection and classification, statistics and computer science, climatology and meteorology. Depending on the chosen modules you can specialize in the fields of: land evaluation, soil fertility, soil-water management, etc.

This master offers

 Knowledge and skills which enable you to start and build a successfull career as scientist specialised in either Soil Science or Land Resources Engineering in a professional way.
 The ability to formulate hypotheses and design experiments to test them, report results and findings to both your peers and to a general public.
 You to learn to think analytically, synthetically, creatively and in a problem solving way
 The ability to work both autonomously and in a team.
 The ability to apply knowledge as required for the overall development policy of your country
 The skills to function in fundamental as well as in applied research at universities, research institutions and (other) government or private institutions and companies.

International Course Programme

This programme is one of the International Course Programmes supported by the Flemish Interuniversity Council - University Development Cooperation (VLIR-UOS). A limited number of scholarships is available for students coming from specific developing countries.

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course.

The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a dissertation. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources.
The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are organised at the "Vrije Universiteit Brussel". Students in Land Resources Engineering have to reside in Brussels during the second year.

The academic year starts the last week of September. Students are expected to arrive in Gent ten days before the start of the programme. There are two examination periods, in January and in June respectively. For students who fail, there is a re-examination session in August-September.

Curriculum

For the specialization Land Resources Engineering the curriculum is available on http://www.vub.ac.be/en/study/physical-land-resources/programme

For the specialization Soil Science the curriculum is available on http://www.plr.ugent.be/main.htm#course

Student profile

You want to know what (a) soil is?
You want to know which factors and properties determine the soil suitability to be used for both agricultural and non-agricultural purposes and how this is established?
You want to know how the soil can be improved to suit specific applications?
You want to know how to address problems of degradation and desertification?
You want to know how to manage the land and how to protect it?
You want to know what the impact of the soil factor is in the dynamics of natural ecosystems and how this knowledge can be applied in the area of nature conservation?
You want to know what the soil teaches us about current environmental issues?
You want to know how soil and water management can be improved in the frame of sustainable agriculture?
You want to know how we can manage our scarce water supplies?

Read less
You learn about soil science, sustainability, food security, GIS, and land use with intensive laboratory analysis from one of the top centres in the world for soil science. Read more
You learn about soil science, sustainability, food security, GIS, and land use with intensive laboratory analysis from one of the top centres in the world for soil science.

COURSES
Semester 1
Core Skills in Environmental Science
Global Soil Geography
Soils for Food Security
Applications for GIS

Semester 2
Environmental Analysis
Land Use and the Changing Environment on Deesside
Optional
Environmental Impact Assessment
Remediation Technology
Catchment Management
Ecological and Environmental Modelling

Semester 3
Project in Soil Science

Read less
World populations and economies are rapidly increasing their demands for food and fibre. At the same time, agricultural systems are being placed under pressure to meet environmental, social and economic goals. Read more
World populations and economies are rapidly increasing their demands for food and fibre. At the same time, agricultural systems are being placed under pressure to meet environmental, social and economic goals. To meet these goals and to maintain or increase production levels, an understanding of the complex factors that shape agricultural systems is required.

Course description, features and facilities

Australian agriculture is a key part of the world's food supply system. The challenges of a rapidly growing population, climate change, and the limitations of land and fresh water all impact on the ability of agriculture to meet the demand for food, fibre and fuel. To address this demand, an understanding of the complex factors that shape agricultural systems is necessary.


Agricultural Science provides the research, technology and information for the sustainable, profitable and ethical development of the agricultural industry. Studies in agriculture include soil science, genetics, cropping and pasture systems, soil-plant interaction, livestock production, agricultural economics and agribusiness.


UWA is well equipped for teaching and research in agricultural science, with a field station at Shenton Park and the University's new research farm near Pingelly, which aims to be self-supporting, sustainable, carbon-neutral, clean, green and ethical – a best practice farm.

Teaching in agricultural science is also supported by the outstanding research and outreach activities of the Institute of Agriculture, the Centre for Legumes in Mediterranean Agriculture (CLIMA), the International Centre for Plant Breeding Education and Research (ICPBER) and the Australian Herbicide Resistance Initiative (AHRI).

Students must nominate a specialisation on application, the Master of Agricultural Science has specialisations in;

Agricultural Economics
Agricultural Systems
Genetics and Breeding
Soil Science and Plant Nutrition

The Faculty of Science offers Master's by Coursework bursaries for domestic students and Postgraduate Merit scholarships for international students. Please visit the Faculty of Science website for details.

Domestic students may be eligible for a Commonwealth supported place within this course.

Structure

The Master of Agricultural Science is offered by coursework or coursework and dissertation.

While the standard timeframe for completion of this degree is two years' (full time), if you have previously completed an undergraduate degree in a cognate (related) area it may be possible to complete within 1.5 years'.

The course offers a focused, advanced learning experience that will enhance career choices. You must complete all core units and specialisation core units. This degree also provides the flexibility to choose from a range of units to complement your specific interests.

Course structures for the master's degrees with the new 1.5 to 2 years' structure (72 to 96 points) are now available via the UWA Handbook.

Career opportunities

This course prepares students with the knowledge and skills they need for a future in the rapidly evolving field of agricultural science. There is a shortage of agricultural science graduates and career opportunities range from the laboratory to the field, from the city to rural areas, as breeders, agronomists, farm managers, market development officers, journalists and bankers.

Graduates are employed as consultants, managers or researchers, by government agencies, universities, consulting firms, food industries, fertiliser companies, and international agencies.

Career Harvest is a website launched by the Australian Council of Deans Of Agriculture to assist with finding professional careers in agriculture.

Read less
This course provides in-depth study in the chosen specialisation. The course adds significantly to a relevant undergraduate degree through coursework and major research in the approved area of interest within the program. Read more

Introduction

This course provides in-depth study in the chosen specialisation. The course adds significantly to a relevant undergraduate degree through coursework and major research in the approved area of interest within the program. By enhancing the student's knowledge of their chosen field of study through advanced coursework units and extensive, independent research, the Master of Science (Thesis and Coursework) opens up a range of possible career opportunities, depending on the student's area of specialisation.
This is a Research Training Scheme course for domestic students.

Course description, features and facilities

A Master of Science by thesis and coursework degree is suitable for qualified students who wish to undertake further research in any of the following subject areas:

Agricultural Economics;
Agricultural Science;
Animal Science;
Botany;
Climate Studies;
Conservation Biology;
Ecology and Evolution;
Environmental Economics;
Environmental Management;
Environmental Science;
Genetics and Breeding;
Geography;
Geoscience;
Hydrogeology;
Marine Science;
Mineral Geoscience;
Natural Resource Management;
Plant Production Science;
Soil Science and Land Rehabilitation;
Urban and Regional Planning;
Water Management and Hydrology; and
Zoology.

Structure

Key to availability of units:
S1 = Semester 1; S2 = Semester 2; S3 = summer teaching period; N/A = not available in 2015;
NS = non-standard teaching period; OS = offshore teaching period; * = to be advised

All units have a value of six points unless otherwise stated.

Note: Units that are indicated as N/A may be available in 2016 or 2017.

Take unit(s) to the value of 42 points:

S1, S2 SCIE5590 Literature Review and Research Proposal
S1, S2 SCIE5721 Master of Science Thesis (full-time) (36 points)
S1, S2 SCIE5722 Master of Science Thesis (part-time) (36 points)

Take unit(s) to the value of 6 points:

Group A

S1 AGRI5501 Advanced Breeding and Biotechnology in Action 1
NS AGRI5502 Advanced Breeding and Biotechnology in Action 2
S2 AGRI5503 Animal Production Systems
NS AGRI5504 Organic Agriculture
NS BIOL5501 Plant Diversity in WA: Evolution and Conservation
NS BIOL5502 Animal Resource Management
S2 BIOL5503 Sampling Techniques in Wildlife Research
NS BIOL5505 Marine Neuroecology and Behaviour
NS ECON5510 Applied Demand and Production Analysis
NS ECON5511 Climate, Energy and Water Economics
NS ENVT5502 Marine and Coastal Planning and Management
NS ENVT5503 Remediation of Soils and Groundwater
NS ENVT5510 Soil Dynamics
NS ENVT5511 Advanced Geographic Information Systems
NS ENVT5512 Ecosystem Biogeochemistry
NS GEOS5501 Advanced Hydrogeology
NS, S1, S2 GEOS5502 Hydrogeology Industry Placement
NS GEOS5504 Mining Hydrogeology
NS GEOS5505 Multiscale Tectonic Systems
NS MING5501 Applied Structural Geology
NS MING5502 Exploration Targeting
N/A MING5503 Ore Deposit Field Excursion
NS MING5504 Advanced Ore Deposits
NS MING5505 Mineral Exploration Data Analysis
S1, S2 PLNG5510 Advanced Studies in Geography and Planning
NS PLNG5511 Climate Change Policy and Planning
NS PLNG5512 Regional Planning
NS SCIE5500 Scientific Modelling
NS SCIE5505 Global Change and the Marine Environment

Career opportunities

This degree is designed for professionals interested in further study who are seeking to familiarise themselves with recent developments in the field or to enhance their intellectual and research skills.

Read less
This course aims to develop knowledge and skills relating to the sustainable management of soil and water resources. Specifically, it aims to provide students with the ability to evaluate the potential of sites for plant growth and determine the soil and water factors affecting production. Read more
This course aims to develop knowledge and skills relating to the sustainable management of soil and water resources. Specifically, it aims to provide students with the ability to evaluate the potential of sites for plant growth and determine the soil and water factors affecting production. The course also focuses on the availability of water from surface or groundwater supplies and how this is utilised by irrigation and drainage. The course is underpinned by research and consultancy activities in the Crop Production & Science and Engineering departments.

The course

Soil and water are key resources for agriculture that determine levels of food production and thus food security on a local, national and global scale. Effective management of soil and water is essential for society in general, but critical for agriculture. Management of water is also of key importance as water is likely to become an increasingly limited resource in a world subject to climatic and environmental change.

This course aims to develop knowledge and skills relating to the sustainable management of soil and water resources. Specifically, it aims to provide students with the ability to evaluate the potential of sites for plant growth and determine the soil and water factors affecting production.

The course also focuses on the availability of water from surface or groundwater supplies and how this is utilised by irrigation and drainage. The course is underpinned by research and consultancy activities in the Crop and Environment Sciences, and Engineering departments.

A new Soil and Water Management Centre was launched at Harper Adams University in 2012.

How will it benefit me?

By completing the course you will be able to identify soil, plant and climatic variables for cropping systems in a range of geographical locations, and critically identify the social and environmental impacts of water use on catchments at a local and national scale. You will also be able to produce irrigation and drainage schemes that pay due regard to agronomic, social, economic and environmental requirements for a range of geographic locations.

You will learn to effectively source, review and analyse key information and disseminate findings and concepts relating to efficient water use in food production systems to a range of audiences. The research project will allow you to test hypotheses relevant to soil and water management through the design, execution, analysis and interpretation of appropriate experiments.

Careers

Students will be suitably qualified for careers in agri-business, agricultural consultancy and statutory bodies such as the Environment Agency.

Read less
This programme aims to introduce students to the concepts of soil for the 21st century and is suitable for students wishing to pursue a career in land-based management or environmental protection. Read more

Programme description

This programme aims to introduce students to the concepts of soil for the 21st century and is suitable for students wishing to pursue a career in land-based management or environmental protection.

Soils underpin the sustainability of terrestrial ecosystems and are key to food production. Soils form the basis of all agricultural production, but they also store water, mediate the impact of pollutants, provide biological habitats, have an impact on the accumulation of greenhouse gases in our atmosphere, are involved in dealing with society’s waste, are a source of extractable minerals and provide the foundations for the housing and roads on which society depends.

You will learn about soil function and management, and soil classification, assessment and analysis, with a strong emphasis on practical skills. You will gain expertise in the relationship between soil and sustainable approaches to land resource use.

This programme is run in collaboration with Scotland’s Rural College (SRUC).

Programme structure

This programme involves two semesters of compulsory and option taught courses followed by a period of individual dissertation project work.

Compulsory courses typically include*:
•Soil Protection and Management
•Soils Science Concepts and Application
•Dissertation

Option courses:

In consultation with the Programme Director, you will choose from a range of optional courses*. We particularly recommend:
•Analysing the Environment
•Analysing the Environment Study Tour
•Culture, Ethics & Environment
•Ecosystem Dynamics and Functions
•Human Dimensions of Environmental Change and Sustainability
•International Development in a Changing World
•Principles of Environmental Sustainability
•Principles of GIS
•Project Appraisal
•Atmospheric Quality and Global Change
•Frameworks to Assess Food Security
•Integrated Resource Management
•Spatial Modelling
•Ecosystem Values and Management
•Environmental Impact Assessment
•Land Use/Environmental Interactions
•Participation in Policy and Planning
•Sustainability of Food Production
•Interrelationships in Food Systems

*Please note: courses are offered subject to timetabling and availability and are subject to change each year.

Field trip

This programme typically includes a field trip. This integral, week-long study tour lets you refresh skills learned on the programme and develop new tools and techniques, useful during the dissertation process. Past study tours have taken place in Mende, France. In addition to the formal taught component, students also had the opportunity to go rafting and visit the Aven Armand caves.

There may also be a short tour during induction week, to give students a chance to get to know each other..

Learning outcomes

Students will:

•gain a knowledge and understanding of the relationship between soils and sustainable land management
•gain an understanding of soil sampling and analysis, interpretation and reporting
•be able to assess soil management issues and develop improved management plans
•understand the function of soils in relation to sustainable land use and societal needs

Career opportunities

A recent report by the British Society of Soil Science (BSSS) identified soil science as an area in which there are critical skills shortages, meaning graduates will be in high demand.

Soil scientists are employed in a broad range of vocations including environmental consultancy, research, overseas development, environmental impact assessment and analysis, site reclamation and remediation, and conservation as well as advising on government policy, archaeological excavations and laboratory analyses, forensics, and landscape design.

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.
https://edingeoscistudents.wordpress.com/

Read less
This taught one-year course will give students a thorough understanding of all aspects of wetland science and ecology. Students will also gain experience and knowledge on the complex conservation, restoration and management issues associated with wetlands. Read more
This taught one-year course will give students a thorough understanding of all aspects of wetland science and ecology. Students will also gain experience and knowledge on the complex conservation, restoration and management issues associated with wetlands. Field and laboratory work will cover the latest techniques in environmental analysis needed for contemporary wetland monitoring and experimentation.

Taught wetland and conservation modules

Wetland ecology
Classification of wetland types
Properties and functions of wetlands
Wetland zoology and botanical adaptations
Wetland hydrology and biogeochemistry
Carbon sequestration in wetlands
Use of wetlands for carbon offsetting
Wetland conservation and restoration techniques
Use and design of constructed wetlands
Wetland plant identification

Instrumental and environmental analysis

Students will learn a variety of instrumental analysis techniques suitable for ecologists interested in environmental analysis and those studying a wide variety of aquatic and terrestrial habitats – not just wetlands. The theory, practical use and basic maintenance of the instruments will be covered, along with sample collection and analysis.

The lab and field based techniques covered include:

pH, conductivity and Redox potential
Greenhouse gas (GHG) collection and analysis using a gas chromatograph (GC) and infra-red gas analysis (IRGA)
Cation and anion concentration analysis using ion chromatography (IC)
Stable isotope analysis with an isotope ratio mass spectrometer (IRMS)

Wetland-based research project

The research project comprises a third of the MSc and is supervised by research active staff with excellent publication record and experience in their field.
Career Options

Students choosing this MSc will enjoy a modular course that will teach both the practical and theoretical aspects of wetland science and conservation. Successful students will therefore develop the skills and experience required to enable progression onto PhD studies in a wide-range of biological, biogeochemical, environmental and conservation based subjects.

The course will also allow students to seek employment in areas related to wetlands, soil science, water treatment and quality, conservation and environmental consultancy.

Read less
Areas of research include, but are not limited to. pre-harvest stress on ascorbic acid content in baby leaf spinach; spatial heterogeneity for the design and layout of experimental sites; improving soil and crop yield sustainability; post-harvest losses in radishes. Read more
Areas of research include, but are not limited to: pre-harvest stress on ascorbic acid content in baby leaf spinach; spatial heterogeneity for the design and layout of experimental sites; improving soil and crop yield sustainability; post-harvest losses in radishes.
Research Degrees




Strategic and applied research underpins Harper Adams' mission to provide higher education for a sustainable food chain and rural economy. Our research and reach-out strategies are focused to meet the challenge of rural sustainability.


Professor Peter Mills
Deputy Vice-Chancellor

■Choice of one year (MRes), two year (MPhil) or three year (PhD) research degrees
■Excellent completion rates for higher degrees
■Good job prospects for PhD candidates in industry, government organisations and academia
■Accessible academic staff
■Rural location and collegiate atmosphere
■Unique facilities
■Fortnightly research seminar programme

PhD and MPhil research at the University has been developed over the last 20 years to its current position of national and international recognition in a number of areas. There are strong links with agri-business which give postgraduates the chance to develop close contacts with industry and this has led to more than 90 per cent of our PhD graduates getting jobs in their areas of interest.

The MRes is a new, shorter research degree, developed in response to increasing demand.

All MPhil/PhD research students have their own office space and a dedicated personal computer. You will be encouraged to participate in seminars and conferences appropriate to your research.

Read less
Land (soil) and water are two essential resources required to sustain the human goals of food security and maintenance of environmental goods and services, including all forms of useable energy. Read more

General Information

Land (soil) and water are two essential resources required to sustain the human goals of food security and maintenance of environmental goods and services, including all forms of useable energy. Managed, as an integrated system, provides a framework to aid society to achieve food security and environmental services.

The goal of the innovative Master of Science in Land and Water Systems is to offer a professional degree that will serve both practicing resource managers, and recent graduates from cognate undergraduate academic programs, the necessary credentials to address the emerging concerns of land and water resources conservation and management.

Quick Facts

- Degree: Master of Land and Water Systems
- Specialization: Land and Water Systems
- Subject: Specialty
- Mode of delivery: On campus
- Program components: Coursework only
- Faculty: Faculty of Land and Food Systems

The MLWS program provides an opportunity for students to obtain science-based skills, training and knowledge to address emerging environmental issues of food security, effects of increasing urbanization, maintenance of ecological services, restoration of degraded lands, adapting to climate change, and resource conservation. The program draws from a broad range of academic and professional expertise in disciplines including geochemistry, biology, soil science, hydrology, terrestrial and aquatic ecology, forest sciences and more. The program is aimed at both recent graduates and practicing professionals who are seeking additional academic qualification.

Learning Objectives

Upon successful completion of the program, graduates will:
1. Have the necessary background and analytical skills to address the issues related to land and water systems based on an understanding of the integration of the ecological, carbon (energy), hydrological and pedalogical cycles and the impacts of human activity.
2. Obtain proficiency in developing analytical frameworks for the identification, articulation and analysis of land and water resource issues and concerns.
3. Develop skills to develop, apply, evaluate, and adapt alternate practices through scenario frameworks.
4. Develop professional communication skills.

Read less
Studying how ecosystems benefit humanity and how we use and manage them, this programme assesses the trade-offs involved in our use of the environment. Read more

Programme description

Studying how ecosystems benefit humanity and how we use and manage them, this programme assesses the trade-offs involved in our use of the environment.

This is a rapidly developing area, involving both natural and social sciences, and an increasingly common approach to environmental policy-making and management in government agencies and businesses.

On this programme you will study the complex relationships between ecosystem functions and how humanity uses and values ecosystems.

This programme has typically included a field trip which takes place in the spring, giving you insights into methods and approaches that will be useful for your dissertation work. The field trip has historically taken place in the Cairngorms in the Scottish highlands.

Programme structure

The programme has been designed with a focus on building up skills that are in particularly short supply in the environmental sector. The full-time programme is divided into two semesters of taught courses, followed by a field trip at Easter before the dissertation period over the summer. We are happy to accommodate different working patterns for part-time students, including a half day a week schedule for three-year part time study.

Compulsory courses typically include*:
•Ecosystem Services 1: Ecosystem Dynamics and Functions
•Analysing the Environment
•Ecosystem Services 2: Ecosystem Values and Management
•Analysing the Environment Study Tour
•Research Project in Ecosystem Services
•Dissertation

Option courses:

In consultation with the Programme Director, you will choose from a range of option courses*. We particularly recommend:
•Culture, Ethics & Environment
•Environmental Geochemistry
•Foundations in Ecological Economics
•Frameworks to Assess Food Security
•Human Dimensions of Environmental Change and Sustainability
•Integrated Resource Management
•Principles of Environmental Sustainability
•Principles of Geographical Information Science
•Encountering Cities
•Fundamentals for Remote Sensing
•Soil Protection and Management
•Values and the Environment
•Marine Systems and Policies
•Research Skills in the Social Sciences: Data Collection
•Understanding Environment and Development
•Climate Change and Corporate Strategy
•Environmental Impact Assessment
•Forests and Environment
•Hyperspectral Remote Sensing
•Integrated Resource Planning
•Introduction to Radar Remote Sensing
•Land Use/Environmental Interactions
•Participation in Policy and Planning
•Political Ecology
•Soil Science Concepts and Application
•Sustainability of Food Production
•Water Resource Management
•Waste Reduction and Recycling
•Energy & Society
•Novel Strategies for Carbon Storage in Soil
•Applications in Ecological Economics
•Research Design

Field trip

A spring field trip will develop students’ practical experience and skills. Historically this field trip has taken place in the Cairngorms in the Scottish Highlands.

Career opportunities

UK research councils cite the skills gained on this MSc as those ‘most wanted’ in the environmental sector. As demand for sound evidence of ecosystem services increases, so does demand for graduates who can translate complex science into policy and business opportunities.

We have strong links with businesses and key industry players who want to make use of these skills. Committed to helping you meet prospective employers and network with those active in the field, we organise careers events, and encourage dissertations conducted in partnership with external organisations.

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.
https://edingeoscistudents.wordpress.com/

Read less
The Faculty of Bioscience Engineering at Ghent brings you. -More than 40 years of experience in environmental education and research. Read more
The Faculty of Bioscience Engineering at Ghent brings you:
-More than 40 years of experience in environmental education and research
-Multidisciplinary and integrated approach to deal with environmental issues
-Raising the professional careers of its graduates to a higher level, through continuous mutual cooperation and networking

Since 1988, the Centre Environmental Science & Technology of UGent offers the Master of Science in Environmental Sanitation, aiming to train environmental experts who have a good knowledge of all compartments and processes of the environment (soil, water, air), can make use of integrated insights and multidisciplinary approaches in environmental science and
technology and combine preventive and remediation instruments to support a sustainable exploitation of the environment.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses
-Basic knowledge through general courses
-Possibility to take elective courses
Semester 2 (Febr-June)
-Basic knowledge through general courses
-Possibility to take elective courses
Semester 3 (Sept-Jan)
-Specialized courses major courses (soil-water-air)
-Elective courses
-Master dissertation
Semester 4 (Febr-June)
-Specialized courses major courses (soil-water-air)
-Elective courses
-Master dissertation

Learning outcomes

Our programme will prepare you to become:
-Experts in environmental issues on a local and global scale in a multi-stakeholder perspective, with a particular set of tools and standards useful in developing countries.
-Experts in prevention and sanitation of environmental pollution operating in governmental institutions and NGO’s, universities and research institutes, industries and consultancy firms.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted):
-TOEFL IBT 80
-TOEFL PBT 550
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing
-CEFR B2 Issued by a European university language centre
-ESOL CAMBRIDGE English CAE (Advanced)

Read less
There has never been a more urgent need to train scientists in the area of food security, equipped with skills in agronomy; plant pathology, plant disease and plant genetics; and knowledge of modern agricultural systems and agricultural policy. Read more

Food security: a global concern

There has never been a more urgent need to train scientists in the area of food security, equipped with skills in agronomy; plant pathology, plant disease and plant genetics; and knowledge of modern agricultural systems and agricultural policy. The Royal Society report Reaping the Benefits: science and the sustainable intensification of global agriculture published in October 2009, provided the clearest evidence of the challenge of ensuring global food security during the next 50 years. Crop yields need to rise significantly, but in a manner that requires much lower dependency on chemical intervention and fertilisers.

Meeting the challenge of sustainable agriculture

This programme was developed in collaboration with the agricultural industry, government agencies including Department for Environment, Food and Rural Affairs (Defra) and The Food and Environment Research Agency (Fera), and farmers and food manufacturers, to provide a multi-disciplinary training in sustainable agriculture and global food security. Research-led teaching in molecular plant pathology, plant sciences and microbiology is strongly supplemented by Rothamsted Research, North Wyke expertise in grassland management, soil science and sustainable farming systems. Leading social scientists also provide valuable input in rural land use and the rural economy. The combination of expertise in both arable and pastureland systems ensures a truly rounded learning experience.

The curriculum takes account of the key skills shortages in the UK to train highly skilled individuals who can enter government agencies, agriculture and food industries and fulfil very valuable roles in scientific research, advice, evaluation, policy development and implementation tackling the challenges of food security. The programme provides opportunities to gain industrial and practical experiences including field trips.

Expert teaching

Teaching is enriched by expert contributions from a broad cross-section of the industry. Scientific staff from Fera provide specialist lectures as part of the Crop Security module, members of the Plant Health Inspectorate cover field aspects of plant pathology, and a LEAF1 farmer addresses agricultural systems and the realities of food production using integrated farm management. In addition, teaching staff from the University and BBSRC Rothamsted-North Wyke will draw on material and experiences from their academic research and scientific links with industry.

Industrial and practical experience

All students will have opportunities to gain industrial and practical experiences. Teaching visits will be made to the Plant Health Inspectorate in Cornwall to see quarantine management of Phytophthora, and to a local LEAF farm to review the challenges and approaches to food production in integrated farm management systems. You will gain specialised experience in practical science or policy making through a dissertation or project placement with external agencies. Defra and Fera, for example, are offering five dissertation and/or project placements annually.

Programme structure

The programme is made up of modules. The list of modules may include the following; Professional Skills; Research Project; Sustainable Land Use in Grassland Agriculture; Crop Security; Sustainable Livestock and Fisheries; Political Economy of Food and Agriculture and Research and Knowledge Transfer for Food Security and Sustainable Agriculture

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Please see the website for an up to date list (http://www.exeter.ac.uk/postgraduate/taught/biosciences/foodsecurity/#Programme-structure)

Addressing a skills shortage to tackle global food security

The MSc Food Security and Sustainable Agriculture curriculum has been designed in collaboration with the agricultural industry to tackle the skills shortage that exists in this vital interdisciplinary area. This programme will provide the highly skilled individuals required in government agencies, agriculture and food industries for critical roles in scientific research, advice, evaluation, policy development and implementation tackling the challenges of food security.

Global horizons

With food security and sustainable agriculture a global concern, opportunities for specialists in the areas of agronomy, plant pathology, plant disease and plant improvement will be worldwide. By combining expertise across the natural, social and political sciences, this programme provides valuable interdisciplinary knowledge and skills in both arable and pastureland systems. Graduates will be prepared to take on the global challenges of food security and sustainable agriculture, being able to adapt to farming systems across the world and identify cross-disciplinary solutions to local agricultural problems.

Learning enhanced by industry

The programme is enriched by expert contributions from a broad cross-section of the industry, with specialist lectures, teaching visits to observe the practical application of techniques, and industrial placement opportunities for project work or dissertations in practical science or policy making.

Read less
This programme will give you a fundamental understanding of the issues affecting the Earth enabling you to play a vital role in devising and enacting strategies to protect and conserve the environment, both in Europe and beyond. Read more

Programme description

This programme will give you a fundamental understanding of the issues affecting the Earth enabling you to play a vital role in devising and enacting strategies to protect and conserve the environment, both in Europe and beyond.

Human activities are recognised as having an increasingly significant effect on the Earth’s biosphere. Our use of natural resources, deforestation, soil erosion, the release of potentially toxic compounds and pathogens, and the increase in greenhouse gases are all examples of pressures that have potentially serious consequences for humanity and other life on Earth.

On this programme you will learn about the issues that face the Earth and gain an in-depth understanding of natural resource management and the processes that give rise to environmental degradation and pollution problems.

It will allow you to play a vital role in planning and putting into action strategies to protect and conserve the environment.

This programme is run in collaboration with Scotland’s Rural College (SRUC).

This programme is affiliated with the University's Global Environment & Society Academy.

Programme structure

This programme involves two semesters of taught courses, which are a balance of lectures, seminars, workshops and visits, plus a research dissertation project of about 16,000 words.

Compulsory courses typically include:
•Atmospheric Quality and Global Change
•Analysing the Environment
•Land Use/Environmental Interactions
•Analysing the Environment Study Tour
•Dissertation

Option courses:


In consultation with the Programme Director, you will choose from a range of option courses*. We particularly recommend:
•Soil Protection and Management
•Integrated Resource Management
•Ecosystem Dynamics and Functions
•Marine Systems and Policies
•Archives: History, Geography, Politics
•Carbon Capture and Transport
•Culture, Ethics & Environment
•Encountering Cities
•Environmental Geochemistry
•Foundations in Ecological Economics
•Human Dimensions of Environmental Change and Sustainability
•Principles of Environmental Sustainability
•Principles of GIS
•Project Appraisal
•Understanding Environment and Development
•Values and the Environment
•Environmental Impact Assessment
•Waste Reduction and Recycling
•Sustainability of Food Production
•Participation in Policy and Planning
•Forests and Environment
•Carbonate Sequence Stratigraphy
•Climate Change and Corporate Strategy
•Hyperspectral Remote Sensing
•Integrated Resource Planning
•Introduction to Environmental Modelling
•Political Ecology
•Ecosystem Values and Management
•Soil Science Concepts and Application
•Water Resource Management

Field trip

This programme typically includes a week-long study tour in spring. Past study tours have been held in France, Greece, Portugal, Israel and Morocco.

Learning outcomes

Students will:

•develop a scientific understanding of some of the major processes which influence the quality of land, air and water resources
•acquire knowledge of the most effective methods of environmental protection
•develop expertise in the design and implementation of programmes of environmental protection
•have the opportunity to study the integrated protection and management of particular ecosystems or resources

Career opportunities

Our graduates have a solid record in finding employment in the environmental sector while some choose to further their studies through a PhD.

There are also opportunities in consultancy positions and with environmental regulators, government and NGOs.

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.
https://edingeoscistudents.wordpress.com/

Read less

Show 10 15 30 per page



Cookie Policy    X