• Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
Cass Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Swansea University Featured Masters Courses
0 miles
Engineering×

Masters Degrees in Safety Engineering

We have 30 Masters Degrees in Safety Engineering

Masters degrees in Safety Engineering equip postgraduates with the skills to build structures safely and effectively, through the development of safe materials and engineering procedures.

Taught MSc degrees are typical for the field, though research oriented MRes and MPhil programmes may be available at some institutions. Entry requirements normally include an undergraduate degree in a relevant Engineering subject.

Why study a Masters in Safety Engineering?

Read more...

  • Engineering×
  • Safety Engineering×
  • clear all
Showing 1 to 15 of 30
Order by 
What is the Master of Safety Engineering about? .  The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. Read more

What is the Master of Safety Engineering about? 

 The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. The programme trains you in prevention policy and safety management systems, the safety of products, processes, and installations, qualitative risk analysis techniques, and fire and explosion safety. You’ll obtain detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant, and risk evaluations based on qualitative and quantitative methods. 

Structure

The Master of Safety Engineering comprises a total of 60 credits. The programme consists of a group of common compulsory courses (23 credits) that are taken up by every student. This party contains courses with themes that are of interest to every safety professional, irrespective of the specialisation option. All courses in this part are taught in English. This relatively large core part ensures that every student is given the same broad basic education about the specialised field of safety.

After a general introduction to safety engineering, prevention policy and safety management systems are treated. Safety of products, processes and installations are discussed next and qualitative risk analysis techniques, fire and explosion safety complete this section.

Furthermore, students choose between one of two available options (22 credits each): Option Process Safety or Option Prevention. In turn, each option contains a number of compulsory courses (16 credits) and elective courses (6 credits). 

The Option Prevention focuses on occupational safety and health-related issues. The compulsory courses in this option also discuss non-technical aspects concerning safety. This option is mainly of interest to candidates who want to obtain the Certificaat Preventieadviseur Niveau 1.

The Option Process Safety provides students with a detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant from concept to design, construction and operation to decommissioning. Safety concepts of representative operational units are presented in a series of case studies. Examples of required safety oriented competences in industrial operations are also discussed. It is shown how risk evaluations and estimates based on qualitative and quantitative methods are performed.

Each student also needs to choose elective courses either from a short indicative list, or from any Master’s programme within the Group of Science, Engineering and Technology. 

Finally, students have to complete a Master’s thesis of 15 credits, which represents an effort that is consistent with a programme of 60 credits in total.

The programme can be completed normally in one-year on a full-time basis. However, to facilitate the participation of working professionals, it can also be followed on a two year part-time basis.

Objectives

After finishing this advanced Master's programme, the student should:

  • have a broadly based knowledge of the different scientific disciplines that are needed to study and analyse the diverse technical and non-technical issues related to safety technology, risk management and loss prevention.
  • have acquired the capabilities and competences to perform or co-ordinate a scientifically sound analysis of safety related problems and their solutions within the governing boundary conditions (legal, organisational, technical, environmental, etc.).

To carry out the programme's objectives, teaching activities consist of a combination of classroom lectures, practically oriented seminars and site visits. The instructors themselves come from the academic world both inside and outside K.U.Leuven, or have been recruited from reputable industrial companies because of their long-standing expertise and willingness to contribute to teaching and training.

Career perspectives

In many countries, there is a permanent and growing need for scientists and engineers who are knowledgeable and trained at the academic level in the field of safety engineering and safety management. This is due to the increasing complexity of industrial production processes and the growing number of rules and regulations both in Europe and internationally.

Graduates of the Master of Science in Safety Engineering programme find employment in small national and large multinational industrial companies at home and abroad or are employed in private and/or governmental organisations. Such organisations need experts with the ability to conduct research, carry out analyses, and perform inspections, monitoring and certification in the broad field of safety.

Moreover, in some countries (including Belgium), companies beyond a certain size dealing with specific risks are required by law to hire or even employ a certified prevention advisor. This certification can be acquired through the Prevention option of the Master of Science in Safety Engineering (Certificaat Preventieadviseur Niveau 1).

It is also possible for graduates to begin a career as an independent consultant with expertise in safety and environmental areas.



Read less
"The course structure and the core modules cover the fundamentals of system safety in such depth and breadth as to be applicable to any safety standard, for example the ISO 26262. Read more
"The course structure and the core modules cover the fundamentals of system safety in such depth and breadth as to be applicable to any safety standard, for example the ISO 26262. I chose the modules Human Factors for Safety Critical Systems and Computers and Safety and believe this to be a very good combination for anybody working in the automotive industry. Unlike previous degree courses I refer to my York notes a great deal since they are extremely relevant to my day to day safety activities.”
Robert, Jaguar Land Rover

“As a clinician, I have found this course to be absolutely essential. I would recommend that anyone working in healthcare with an interest in patient safety should take the Foundations of System Safety Engineering module at the very least. For those who have a more focused safety role, particularly in healthcare technology, the University offers a number of modules to choose from, working up to the award of a Postgraduate Certificate, Diploma or MSc Safety Critical Systems Engineering.”
Beverley, Department of Health Informatics Directorate

The discipline of SSE has developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The course therefore has a number of optional modules looking at software safety.

Learning Outcomes

The course aims to provide you with a thorough grounding and practical experience in the use of state-of-the-art techniques for development and operation of safety critical systems, together with an understanding of the principles behind these techniques so that you can make sound engineering judgements during the design, deployment and operation of such a system. On completing the course, you will be equipped to play leading and professional roles in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching are developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

We aim to equip you with the knowledge, understanding and practical application of the essential components of Safety Critical Systems Engineering, to complement previously gained knowledge and skills. As a York Safety Critical Systems Engineering graduate, you will have a solid grounding of knowledge and understanding of the essential areas, as represented by the core modules. The optional modules give you the opportunity to gain knowledge in other areas which are of interest and these are taught by recognised experts in those areas.

Transferable Skills

Information-retrieval skills are an integrated part of many modules; you are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules, are an essential part of project work.

Numeracy is required and developed in some modules. Time management is an essential skill for any student on the course. The formal timetable has a substantial load of lectures and practical sessions. You are expected to fit your private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines, so you must balance your time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Projects

For both full-time and part-time students, the project(s) enable(s) students to:
-Demonstrate knowledge of an area by means of a literature review covering all significant developments in the area and placing them in perspective;
-Exhibit critical awareness and appreciation of best practice and relevant standards;
Investigate particular techniques and methods for the construction of safe systems, possibly involving the construction of a prototype;
-Evaluate the outcome of their work, drawing conclusions and suggesting possible further work in the area.

The project(s) address(es) a major technical problem concerned with real issues. It should, if possible, include the development and application of a practical method, technique or system. It is a natural progression from the taught modules, and builds on material covered in them. Ideally it addresses the problem from a system perspective, including hardware, software and human factors. It will typically have an industrial flavour. If you are a part-time student, you are encouraged, with the help of your managers and academic staff, to select a project which is relevant to your own work in industry.

The project begins at the start of the Summer term after completion of the taught modules, and lasts 18 months part-time / 6 months full-time. For part-time students there are three weeks attendance at York during the project, for progress assessment and access to library facilities: in July near the start of the project; and in the following January and July. Full details are provided during the course.

Read less
The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing. Read more

Aims and Basic Characteristics:

The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing.

The degree course aims at training a professional engineer with a thorough knowledge and understanding of the principles of systems engineering of transportation, logistics and production, in which to realize the acquired ability to conceive, plan, design and manage complex, innovative systems and processes, with particular attention to the related safety aspects.
The degree in Safety Engineering for Transport, Logistics, and Production will support the state exam for a license to practice in all the three areas of Engineering: Civil and Environmental, Industrial, and Information.

The typical professional fields for graduates in Safety Engineering for Transport, Logistics, and Production are those of the design and management of safety systems, with particular reference to the transport systems, the development of advanced innovative services, the management of logistics and production, in private and public enterprises, and public administration.

For any information, feel free to write to Prof. Nicola Sacco: safety_at_dime.unige.it

Job opportunities:

• engineering companies and/or large professional firms operating in the field of design, implementation, security management with reference of the transport systems and territorial
• public and private institutions that handle large lines infrastructure (railways, highways, ...)
• government (municipalities, provinces, regions, port authorities, ...)
• freelance
• research structures (universities, research centers, ...)

What Will You Study and Future Prospects:

The main goal is to enable M.Sc. graduates to operate in the various activities related to safety in transport systems, logistics, and production, but also of the territory where they are located.

The course provides notions about:

• the risk assessment of local systems, and in particular the planning, design and management of both safety (protection against accidental events) and security (protection than intentional events);
• the evaluation in terms of cost/benefits of different design alternatives for risk mitigation in transport, logistics, and production systems;
• the planning and management of the mobility of people and goods, through the knowledge of the fundamental elements of transport and logistic systems, as well as the criteria to define the physical characteristics of isolated infrastructures a network of infrastructures, with particular reference to the relevant functions and interdependencies;
• the design and safe management of transport, logistic, and production systems, with reference to either the systems as a whole, and to the relevant single components, such as infrastructures, facilities, vehicles, equipment;
• the development and use of advanced methods to manage and optimize the performance and safety of road, rail, air and sea infrastructure and transport services, as well as their interactions in an intermodal framework, by means of the design and implementation of monitoring, regulation, and control systems via the most advanced technologies related to their specific disciplines;
• the analysis and evaluation of the externalities of transport and logistic systems, with explicit reference to the particular safety aspect and issues characterizing each phase of the mobility of people and goods, even within the production plants connected, and their interaction with surrounding environment.

The course is articulated into two alternative curricula:

1. TRANSPORT AND LOGISTICS: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective mobility of passengers and freights.

2. INDUSTRIAL LOGISTICS AND PRODUCTION: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective production plant internal logistics and management.

Entry Requirements:

Admission to the Master of Science in Safety Engineering for Transport, Logistics and Production is subject to the possession of specific curricular requirements and adequacy of personal preparation.

The access requirements are equivalent to those provided by the general educational objectives of all three-year university degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering. In fact, one of the following curricular requirements must be fulfilled:

• possession of a Bachelor, or a Master degree, or a five-year degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering, awarded by an Italian University, or equivalent qualifications;
• possession of a Bachelor, or a Master degree, or a five-year degree with at least 36 ECTS (“Base Courses”, e.g. Mathematics, Physics, Chemistry, Informatics) and at least 45 ECTS that pertain to the Engineering classes, awarded by an Italian University, or equivalent qualifications;

To access, a knowledge of English is required, at least equivalent at B1 European Level.

Read less
The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework. Read more

The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework.

This masters programme is jointly offered by the following three full partner universities:

  • The University of Edinburgh, UK
  • Ghent University, Belgium (coordinator)
  • Lund University, Sweden

Additionally, there are three associated partners where students can perform thesis research:

  • The University of Queensland, Australia
  • ETH Zurich, Switzerland
  • The University of Maryland, United States of America

Classes in Edinburgh focus on fire dynamics, fire safety engineering and structural design for fire. Classes in Ghent have a more general fire safety engineering focus. Classes in Lund emphasise enclosure fire dynamics, risk analysis and human behaviour.

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

IMFSE is very pleased to involved seven industrial partners as official sponsors. With their annual financial contributions, it has been made possible to create the IMFSE Sponsorship Consortium, which awards IMFSE students with full or partial scholarships. The current sponsors are:

  • Arup
  • IFIC Forensics
  • UL
  • Promat
  • FPC
  • BRE
  • Fire Engineered Solutions Ghent

Programme structure

The programme consists of four semesters each worth 30 ECTS credits. Changing study location after each semester lets you benefit from the expertise of each university.

Semester 1

Students choose to study at either Ghent or Edinburgh.

Ghent University:

  • Fire Dynamics
  • Basics of Structural Engineering
  • Thermodynamics, Heat and Mass Transfer

And 9 ECTS credits from the following elective courses (subject to approval by the faculty):

  • FSE Based Firefighting (3 credits)
  • Modelling of Turbulence and Combustion (3 credits)
  • Turbomachines (6 credits)
  • Introduction to Entrepreneurship (3 credits)

The University of Edinburgh:

  • Fire Science and Fire Dynamics
  • Fire Safety Engineering
  • Fire Safety, Engineering and Society (this course replaces Fire Investigation and Failure Analysis, which will move to Semester 3 from 2017/18 onward)
  • Engineering Project Management

Semester 2

Lund University:

  • Advanced Fire Dynamics
  • Human Behaviour in Fire
  • Risk Assessment
  • Simulation of Fires in Enclosures

Semester 3

Students choose to study at either Ghent or Edinburgh.

Ghent University:

  • Active Fire Protection I: Detection and Suppression
  • Active Fire Protection II: Smoke and Heat Control
  • Explosions and Industrial Fire Safety
  • Fire Safety Regulation
  • Passive Fire Protection
  • Performance-Based Design

The University of Edinburgh:

  • Fire Science Laboratory
  • Structural Design for Fire
  • Fire Safety, Engineering and Society (this course will be replaced by Fire Investigation and Failure Analysis from 2017/18 onwards)
  • Finite Element Analysis for Solids

Semester 4

The masters thesis can be completed at one of the three full partners universities, or at one of the three associated partners. The thesis work is supervised by at least one of the full partner universities.

Career opportunities

We aim to train the next generation of leaders in this field; there is currently great demand for fire safety engineering graduates worldwide and graduates have gained relevant employment or enhanced career opportunities.

A fire safety engineer fulfils a broad range of duties, in various ways related to fire. This can range from designing fire protection for a space station, to protecting treasures such as the US Constitution, to safely securing the occupants of a high-rise building from fire hazards.

Fire safety engineers are in great demand by corporations, educational institutions, consulting firms, and government bodies around the world. You may find career opportunities in the following industries:

  • consulting engineering firms
  • fire departments
  • fire equipment and systems manufacturers
  • government
  • hospitals and health care facilities
  • insurance industry
  • research and testing laboratories
  • educational institutions
  • entertainment industry
  • forensic investigations


Read less
Risk has become a key concept in modern society. Read more

Programme Background

Risk has become a key concept in modern society. Growing concern about the environment and a number of disasters have served to focus attention on the hazards and risks involved in a wide range of activities from offshore oil production to rail and air transport; from the design of football stadia to the operation of chemical plants and environmental protection. Today there is a wide range of techniques available to assess risk and reliability, both in relation to safety and in the wider sense. These techniques now underpin new legislation on safety and have relevance over a broad spectrum of activities, including environmental and other systems, where risk and reliability are key concerns.

The MSc/PG Diploma programme in Safety, Risk and Reliability Engineering is designed to give a thorough understanding of these techniques and experience of their application to a variety of real-world problems. It aims to provide students with an understanding of safety, risk and reliability engineering in both a qualitative and quantitative manner, and to develop the skills to apply this understanding. The programme will also introduce students to recent developments in analytical techniques, e.g. computer modelling of risk, reliability and safety problems.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Reliability Engineering is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation). This programme has a stronger engineering bias and you should only attempt this if you have done some University level mathematics or equivalent. Otherwise the Safety and Risk Management course might be more appropriate.

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This course aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Systems Reliability
Gives an understanding of the qualitative and quantitative techniques that are used in the reliability, availability and maintainability analysis of all types of engineering systems.

• Learning from Disasters
Provides students with an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Safety, Risk and Reliability
Leads to an understanding of the principles of structural reliability theory and its application to risk and reliability engineering.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Data Analysis and Simulation
Develops knowledge of statistical data analysis and its application in engineering and science and introduces the concepts of using simulation techniques for analysis of complex systems. It also teaches linear optimisation techniques and the ability to apply them to solve simple problems.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

•Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

Read less
Your programme of study. You can study this programme either full time on campus, part time, or online to fit flexibly around work commitments. Read more

Your programme of study

You can study this programme either full time on campus, part time, or online to fit flexibly around work commitments.

Whilst Safety and Reliability Engineering allows you to apply your skills and knowledge to a wider range of industries, this programme is specifically for the oil and gas industry. It provides you with the knowledge to review reliability of engineering facilities, materials and products and legislative framework at the same time. Safety has always been of paramount concern in the oil and gas industry with a lot of learning and knowledge acquired since the oil industry growth of the 1970s. This knowledge has been scrutinised by University of Aberdeen and the industry to provide professional expertise to manage safety and reliability. Future challenges are being met to some extent by the advent of affordable sensors which manage difficult to reach places, but nonetheless require the knowledge and capabilities of professionals working in this discipline to ensure they are fit for purpose.

The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

Courses listed for the programme

Semester 1

Fundamental Safety Engineering and Risk Management Concepts

Statistics and Probability for Safety, Reliability, and Quality

Fire and Explosion Engineering

Offshore Oil and Gas Production Systems

Semester 2

Advanced Methods for Risk and Reliability Assessment

Applied Risk Analysis and Management

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/288/safety-and-reliability-engineering-for-oil-and-gas/

There is also on online delivery:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1081/safety-and-reliability-engineering-for-oil-and-gas/

Why study at Aberdeen?

  • The university is highly regarded within the oil and gas industry for continuous integration with industry needs and knowledge
  • You can study flexibly either part time or online
  • It is supported by the Lloyds Register and Advisory Board which in turn builds on the knowledge within the School of Engineering
  • We are ideally placed to provide this programme of study and support it with strong links to industry

Where you study

  • University of Aberdeen
  • Full time and part time
  • 12 Months or 24 Months
  • September start

There is also an Online delivery of this programme

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

Fees for Online delivery:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1081/safety-and-reliability-engineering-for-oil-and-gas/

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Your programme of study. You can study Safety and Reliability Engineering for Oil and Gas flexibly from anywhere in the world as this delivery is online. Read more

Your programme of study

You can study Safety and Reliability Engineering for Oil and Gas flexibly from anywhere in the world as this delivery is online. You can fit this programme around your work and other commitments part time.

Whilst Safety and Reliability Engineering allows you to apply your skills and knowledge to a wider range of industries, this programme is specifically for the oil and gas industry. It provides you with the knowledge to review reliability of engineering facilities, materials and products and legislative framework at the same time. Safety has always been of paramount concern in the oil and gas industry with a lot of learning and knowledge acquired since the oil industry growth of the 1970s. This knowledge has been scrutinised by University of Aberdeen and the industry to provide professional expertise to manage safety and reliability. Future challenges are being met to some extent by the advent of affordable sensors which manage difficult to reach places, but nonetheless require the knowledge and capabilities of professionals working in this discipline to ensure they are fit for purpose.

The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

Courses listed for the programme

Year 1

Fundamental Safety Engineering and Risk Management Concepts

Statistics and Probability for Safety, Reliability and Quality

Advanced Methods for Risk and Reliability Assessment (Distance Learning)

Applied Risk Analysis and Management (Distance Learning)

Year 2

Fire and Explosion Engineering

Process Design, Layout and Materials (Distance Learning)

Human Factors Engineering

Offshore Oil and Gas Production Systems (Distance Learning)

Year 3

It is supported by the Lloyds Register and Advisory Board which in turn builds on the knowledge within the School of Engineering

We are ideally placed to provide this programme of study and support it with strong links to industry

The university is highly regarded within the oil and gas industry for continuous integration with industry needs and knowledge

You can study flexibly either part time or online

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1081/safety-and-reliability-engineering-for-oil-and-gas/

Why study at Aberdeen?

  • The university is highly regarded within the oil and gas industry for continuous integration with industry needs and knowledge
  • You can study flexibly either part time or online
  • It is supported by the Lloyds Register and Advisory Board which in turn builds on the knowledge within the School of Engineering
  • We are ideally placed to provide this programme of study and support it with strong links to industry

Where you study

  • Online
  • Part Time
  • 5 Months or 27 Months
  • September or January start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis. Read more

Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis.

This programme covers the fundamentals of fire science, including laboratory classes, fire safety engineering and relevant structural engineering topics, such as finite element methods.

You will gain knowledge of the critical issues in structural fire safety engineering, and an understanding of relevant fire and structural behaviours.

You will become familiar with performance-based approaches to design and have an awareness of the capabilities – and limitations – of relevant advanced modelling methods for structures and fire.

This programme is fully accredited by the Joint Board of Moderators (JBM)

Facilities

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses

  • Fire Science and Fire Dynamics
  • State-of-the-Art Review in Fire Safety Engineering
  • Structural Design for Fire
  • Finite Element Analysis for Solids
  • Thin-Walled Members and Stability

Semester 2 courses

  • Pre-Dissertation Project in Fire Safety Engineering
  • Fire Science Laboratory
  • Fire Safety Engineering Analysis and Design
  • The Finite Element Method
  • Structural Dynamics and Earthquake Engineering

Career opportunities

Internationally, there is great demand for graduates in this field, with expertise in structural fire safety engineering particularly sought after as performance-based design expands. All of our previous graduates are in relevant employment, with the majority working in fire teams at engineering consultancies.



Read less
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme. The course is available on a part time basis, taking typically four years to complete. Read more
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme.

The course is available on a part time basis, taking typically four years to complete. Students take 12 Assessed Modules over 3 years, 5 of which are Core (C) and 7 Optional (O), plus a project on a SSE topic within the automotive domain (over the final year). See the Project tab for more details.

This modular MSc is designed to prepare students for work in the demanding field of Safety Systems Engineering (SSE) by exposing them to the latest science and technology within this field. In the core module phase, the course focuses on the principles and practices in SSE across a range of domains, including automotive. In the optional module phase, the course focuses on specialist SSE and automotive topics. The projects are also designed to consider SSE topics within an automotive context.

The discipline of SSE developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products and services. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The optional modules allow students to investigate such areas as the contribution of software, human factors or operational factors within an automotive engineering context in more depth.

Learning Outcomes
The course aims to provide participants with a thorough grounding and practical experience in the use of state-of-the-art techniques for development of safety critical systems, together with an understanding of the principles behind these techniques so that they can make sound engineering judgements during the design, deployment and operation of such systems. Graduates completing the course will be equipped to participate in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching will be developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

The course aims to equip students with knowledge, understanding and practical application of the essential components of System Engineering, to complement previously gained knowledge and skills. A York System Safety Engineering with Automotive Applications graduate will have a knowledge and understanding of the essential areas, as represented by the core modules, knowledge and understanding on a number of specialist topics, as represented by the optional modules. and an ability to identify issues with the safety process in a particular project, identify responses to this gap and evaluate the proposal, as represented by the project.

Transferable Skills
Information-retrieval skills are an integrated part of many modules; students are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules.

Numeracy is required and developed in some modules. Time management is an essential skill for any student in the course. The formal timetable has a substantial load of lectures and labs. Students must fit their private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines which gives students experience of balancing their time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Projects

The MSc System Safety Engineering with Automotive Applications project for part-time students is 60 credits in length:
-Literature survey on a subject to determine the state of the art in that area
-A gap in the state of the art identified in the first part is addressed, a proposal made and evidence provided for the proposal. This project is completed in September of a student's fourth year

The Project(s) enable(s) students to:
-Demonstrate knowledge of an area by means of a literature review covering all significant developments in the area and placing them in perspective
-Exhibit critical awareness and appreciation of best practice and relevant standards
-Investigate particular techniques and methods for the construction of safe systems, possibly involving the construction of a prototype
-Evaluate the outcome of their work, drawing conclusions and suggesting possible further work in the area

The project(s) address(es) a technical problem concerned with real issues in the automotive domain. It should, if possible, include the development and application of a practical method, technique or system. It is a natural progression from the taught modules, and builds on material covered in them. It addresses the problem from an automotive system safety perspective, including hardware, software or human factors. It will typically have an industrial flavour, students are encouraged, with the help of their managers and academic staff, to select a project which is relevant to their own work.

The project begins at the start of the Autumn term after completion of the taught modules, and lasts 12 months part-time. There are three weeks attendance at York during the project, for progress assessment and access to library facilities: in October near the start of the project; and in the following January and July.

Read less
This course aims to provide students with a comprehensive understanding of the scientific and technological principles and techniques associated with fire science and engineering and the skills and expertise to enable them to develop and apply appropriate techniques in building design. Read more
This course aims to provide students with a comprehensive understanding of the scientific and technological principles and techniques associated with fire science and engineering and the skills and expertise to enable them to develop and apply appropriate techniques in building design. Although the focus of the course is on fire safety engineering design, the course may be of interest to those involved in many aspects related to fire safety generally such as fire brigade personnel, architects, regulators, code officials, and managers of complex buildings and facilities.

Visit the website: https://www.ulster.ac.uk/course/msc-fire-safety-engineering-ft-jn

Course detail

- Description -

The programme is offered by the Fire Safety Engineering Research and Technology Centre (FireSERT), a centre which is internationally recognised for its leading edge research in the fields of fire dynamics, structural fire engineering, human behaviour in fire, and fire modelling. The programme draws on the expertise and resources of the Centre in terms of teaching staff (with core teaching staff all actively involved in research) and experimental facilities. Students on the MSc programme have the opportunity to use Fire SERT's state-of-the-art facilities both within the taught programme and to progress experimental research projects which are often designed to complement current research projects being undertaken by staff. Students also have the opportunity to work closely with practitioners in the design module to develop a fire safety strategy for a real complex building.

- Teaching and learning assessment -

Learning and teaching methods include lectures, seminars, tutorials, laboratory work, design project work and computer laboratory work.

Modules are assessed either entirely by coursework or by a combination of coursework and examination. Assessment may include group and individual presentations, laboratory reports, essays, design project work.

Career options

There is strong demand for well educated fire safety engineers, and the majority of students will embark on a career within a fire safety engineering consultancy. Graduates from the Ulster course are also employed in other interesting and diverse careers in fields related to fire safety both in the UK and worldwide e.g. as regulators, fire safety officers in both the public and private sector, researchers in research and testing facilities, and fire brigade officers both in the UK and Europe. Opportunities also exist within the Fire Safety Engineering Research and Technology centre (FireSERT) for PhD studies in a wide range of fire science and engineering related topics.

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.
2. We are a top UK university for providing courses with a period of work placement.
3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.
4. We recruit international students from more than 100 different countries.
5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five* or ten* equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support

Read less
Your programme of study. The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1

Fundamental Safety Engineering, and Risk Management Concepts

Statistics and Probability for Safety, Reliability and Quality

Fire and Explosion Engineering

Subsea Integrity

Semester 2

Advanced Methods for Risk and Reliability Assessments

Applied Risk Analysis and Management

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Safety Engineering Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/

or online delivery at:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1078/safety-and-reliability-engineering/

Why study at Aberdeen?

  • This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
  • Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in  the city
  • This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
  • You are taught by industry professionals with worldwide industry experience

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months or 24 Months
  • September start
  • There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Your programme of study. The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1

Fundamental Safety Engineering, and Risk Management Concepts

Statistics and Probability for Safety, Reliability and Quality

Fire and Explosion Engineering

Subsea Integrity

Semester 2

Advanced Methods for Risk and Reliability Assessments

Applied Risk Analysis and Management

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Safety Engineering Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1078/safety-and-reliability-engineering/

or on campus delivery:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/

Why study at Aberdeen?

  • This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
  • Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in the city
  • This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
  • You are taught by industry professionals with worldwide industry experience

Where you study

  • Online
  • Full Time or Part Time
  • 5 Months or 27 Months
  • September or January start

*• There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
This modular advanced Diploma course is designed to prepare students for work in the demanding field of Safety Systems Engineering (SSE) by exposing them to the latest science and technology within this field. Read more
This modular advanced Diploma course is designed to prepare students for work in the demanding field of Safety Systems Engineering (SSE) by exposing them to the latest science and technology within this field. The discipline of SSE has developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The course therefore offers a number of optional modules looking at software safety.

Learning Outcomes

The course aims to provide participants with a thorough grounding and practical experience in the use of state-of-the-art techniques for development of safety critical systems, emphasising their software; together with an understanding of the principles behind these techniques so that they can make sound engineering judgements during the design and deployment of such a system, particularly when software is involved. Graduates completing the course will be equipped to play leading and professional roles in safety-critical systems engineering related aspects of industry and commerce. New areas of teaching will be developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

The course aims to equip students with knowledge, understanding and practical application of the essential components of Safety Critical Systems Engineering, to complement previously gained knowledge and skills in Computer Science. A York Safety Critical Systems Engineering graduate will have a solid grounding of knowledge and understanding of the essential areas, as represented by the core modules. The optional modules give students the opportunity to gain knowledge in other areas which are of interest to them and which are taught by recognized experts in those areas.

Transferable Skills

Information-retrieval skills are an integrated part of many modules; students are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules.

Numeracy is required and developed in some modules. Time management is an essential skill for any student on the course. The formal timetable has a substantial load of lectures and labs. Students must fit their private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines which gives students experience of balancing their time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Read less
Your programme of study. Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. Read more

Your programme of study

Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. It often informs other industries in terms of best practise knowledge which can provide useful learning to other industries.The knowledge gained in the North Sea has also been transferred to other sites globally to ensure risks are minimised when extracting energy. There are numerous risks associated with energy extraction such as the environment in which operators work in, failure in facilities and machinery, human factors which need process and safety factors designing in, and a very large ignition source. The energy industry can be one of the most hazardous industries to work in but due to the risks involved it can often provide a highly safe environment to work in due to the amount of measures in place to protect everything on site and that is where the discipline of Process Safety can ensure a very high level of safety in which to extract minerals.

If you want to become qualified in Process Safety Engineering and are from a Chemical Engineering background, or a Petroleum or Mechanical Engineering background but with good chemical/chemistry knowledge and you are interested in safety and process in this industry the programme will develop advanced skills in assessing risk, processes and analysis to continuously improve safety in the industry. The programme is offered in Aberdeen city in the heart of the oil and gas industry within Europe and often worldwide and it is informed by close links and support from the industry to ensure it is robust and relevant. Aberdeen has offered advanced knowledge and learning in this area since the inception of the oil and gas industry which cover the entire physical and business supply chain.

Courses listed for the programme

Semester 1

Process Risk Identification and Management

Upstream Oil and Gas Processing

Loss of Containment

Computational Fluid Dynamics

Semester 2

Applied Risk Analysis and Management

Process, Plant, Equipment and Operations

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Process Safety Individual Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/

Why study at Aberdeen?

  • You can study this programme full time or part time to fit around your life
  • The programme offers one of the few opportunities to study this area of oil and gas production with direct links to industry
  • You study in the oil and gas capital of Europe and often the world in Aberdeen City
  • Graduates move into senior industry roles globally

Where you study

  • University of Aberdeen
  • Full Time and Part Time
  • 12 Months or 24 Months
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Upgrade is possible to the Diploma SCSE and MSc SCSE courses. This modular postgraduate Certificate course is designed to prepare students for work in the demanding field of Systems Safety Engineering (SSE) by exposing them to the latest science and technology within this field. Read more
Upgrade is possible to the Diploma SCSE and MSc SCSE courses.

This modular postgraduate Certificate course is designed to prepare students for work in the demanding field of Systems Safety Engineering (SSE) by exposing them to the latest science and technology within this field. The discipline of SSE has developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The optional module allows students to investigate such areas as the contribution of software, human factors or operational factors to SSE in more depth.

Learning Outcomes

The course aims to provide participants with a preliminary grounding and practical experience in the use of state-of-the-art techniques for development of safety critical systems, together with an understanding of the principles behind these techniques so that they can make sound engineering judgements during the design and deployment of such a system. Graduates completing the course will be equipped to participate and in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching will be developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

The course aims to equip students with knowledge, understanding and practical application of the essential components of System Engineering, to complement previously gained knowledge and skills. A York System Safety Engineering graduate will have a preliminary knowledge and understanding of the essential areas, as represented by the core modules.

Transferable Skills

Information-retrieval skills are an integrated part of many modules; students are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules.

Numeracy is required and developed in some modules. Time management is an essential skill for any student in the course. The formal timetable has a substantial load of lectures and labs. Students must fit their private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines which gives students experience of balancing their time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Read less

Show 10 15 30 per page



Cookie Policy    X