• Goldsmiths, University of London Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Bocconi University Featured Masters Courses
University of Leeds Featured Masters Courses
0 miles
Engineering×

Masters Degrees in Rehabilitation Engineering

We have 11 Masters Degrees in Rehabilitation Engineering

Masters degrees in Rehabilitation Engineering equip postgraduates with the skills to substitute lost or reduced functionality in parts of the human body, through the development of devices such as prosthetic limbs.

Courses range from taught MSc degrees, to research oriented MRes and MPhil programmes. Entry requirements normally include an undergraduate degree in a relevant subject such as Design Technology, Medicine or Sports Science.

Why study a Masters in Rehabilitation Engineering?

Read more...

  • Engineering×
  • Rehabilitation Engineering×
  • clear all
Showing 1 to 11 of 11
Order by 
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

WHY THIS PROGRAMME

The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

Applications of biomedical engineering
Biological fluid mechanics
Cellular biophysics
Energy in biological systems
Medical imaging
Statistics for biomedical engineering
MSc project.
Optional courses

Advanced imaging and therapy
Applied engineering mechanics
Bioinformatics and systems biology
Biomechanics
Biosensors and diagnostics
Microscopy and optics
Nanofabrication
Rehabilitation engineering
Scaffolds and tissues
Signal processing of bio-signatures
Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.

Read less
This exciting programme focuses on the design, development and clinical application of novel rehabilitative and assistive technologies. Read more
This exciting programme focuses on the design, development and clinical application of novel rehabilitative and assistive technologies. The programme is delivered by the Aspire Create team, which is engineering the next generation of these technologies, in partnership with clinicians at the Royal National Orthopaedic Hospital.

Degree information

You will engage in research-based learning and work on real-world medical engineering projects which are driven by a clinical need. Throughout the MSc, you will receive core training in “anatomy for engineers", biomechanics and research methodologies, before choosing modules that explore cutting-edge topics ranging from robotics and electronic implants to social cognitive rehabilitation and “disability and development”.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), a group research module (30 credits) and an individual project (60 credits).

Core modules
-Anatomy and Physiology for Engineers
-Assistive Technology Devices and Rehabilitation Robotics
-Biomechanics for Assistive Technologies
-Research Methods and Experiment Design
-Group research projects
-Individual research project

Optional modules - all students participate in two group research projects which put the theory from the core modules into practice. Each project results in a group report and an individual mini-viva.
-Disability and Development
-Electronic Devices and Implant Technologies
-Inclusive Design and Human-Machine Interfaces
-Social Cognitive Rehabilitation

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning
The programme is delivered through a combination of interactive lectures, seminars and hands-on laboratory sessions, supported by exercise/problem sheets and opportunities for reflection and discussion. Assessment is through coursework, research project reports, mini-vivas, MCQs and written exams.

Careers

Typical career destinations for our graduates range from, but are not limited to: academic researchers, biomedical R&D engineers, clinical scientists, and entrepreneurs who spin out their project work into start-up companies.

Employability
This course will give you the opportunity to enhance your employability by gaining and refining both technical and transferrable skills. Not only will you gain specialist theoretical knowledge, you will also learn how to put this into practice through our research based learning activities. The highly interdisciplinary research focus of this course will give you experience of the academic, clinical and third sectors. Importantly, you will refine your communication skills by interacting with different audiences (technical, clinical and lay) and learn how to pitch your arguments at the right level – this is a highly valued skill in any sector.

Why study this degree at UCL?

Rehabilitation engineering promises to revolutionise the way patients regain their independence. Complementary to drugs and surgery, this unique MSc focuses on how state-of-the-art technologies can be developed and translated into clinical practice.

You will tackle real problems, faced by people with complex and challenging medical conditions, such as spinal cord injuries and stroke.

There are plenty of networking opportunities throughout the course, which is run by internationally renowned UCL academics, in conjunction with clinicians at the Royal National Orthopaedic Hospital; assistive technology specialists from the Aspire charity; and our industrial research partners.

Read less
Technology has always been central for the diagnosis and treatment in orthopaedics, biomechanics and rehabilitation, and the use of technology has never been greater than it is at the present time. Read more
Technology has always been central for the diagnosis and treatment in orthopaedics, biomechanics and rehabilitation, and the use of technology has never been greater than it is at the present time. For instance, twenty-five years ago there was only one type of artificial hip and today there are more than forty. This rapid development has considerable implications for all those working in the fields of orthopaedics and rehabilitation. This programme aims to provide an understanding of the principles involved in the development, application and evaluation of orthopaedics, biomechanics and rehabilitation technology.

The programme consists of two seperate courses, the Postgraduate Diploma in Orthopaedic and Rehabilitation Technology and the MSc in Orthopaedic and Rehabilitation Technology. For each course there are four groups of distance learning modules. In addition, the MSc course includes a project. The courses must be completed within a period of two to five years from the start date.

This programme is delivered by the Orthopaedic & Trauma Surgery Department.

In the 2008 Research Assessment Exercise, to reflect the multi-disciplinary aspect of the research carried out at the Orthopaedic & Trauma Surgery Department where the majority of staff are tutors on this programme, the respective staff were returned into Unit of Assessment 25 (General Engineering - Biomedical Engineering) and Unit of Assessment 8 (Primary Care and Other Community Based Clinical Subjects) where 90% and 85% of our quality profile was deemed of international class.

Aims of the Programme

The programme is intended to provide students with an understanding and knowledge of the technological aspects of orthopaedics and rehabilitation.

Programme Content

The programme consists of four taught modules: Introductory Topics, Biomechanics, Rehabilitation Technology and Orthopaedic Technology. In addition, those studying for an MSc, undertake a research project in a relevant area.

Each student is assigned a tutor, who is available for direct contact by telephone; a telephone answering service is available after office hours, and you may also contact your tutor by email, post or fax. Email is the preferred option for all tutor contact.

For detailed information on the syllabus, visit the course website.

Methods of Assessment

The modules are assessed by a combination of written examination and continuous assessment. In addition, the research project, undertaken by those studying towards an MSc, is assessed by dissertation and oral examination.

Coursework:
At the end of each module group you submit an assignment to your tutor(s) for assessment. A copy of the assignment is returned to you with your marks and the original is retained by the University. The assignment forms the coursework element of the final assessment.

Examinations:
Written examinations are held during March every year in Dundee and also by arrangement at fully approved examination centres throughout the United Kingdom and overseas. You will sit either four or five examinations, depending on the introductory modules you have studied. You must complete all the modules in a module group, including the assignment, before you can sit the exam(s) for that group. You may choose to sit all the exams together or spread them throughout your course.

Dissertation:
The Masters project is assessed by dissertation and viva (oral examination). Vivas are held during September each year in Dundee. Course regulations require MSc students to pass the final assessment for the Diploma course before they may submit their dissertation.

Learning Materials

For each module, you receive learning materials consisting of a module guide and one or more study guides. The module guide for each module provides information about the structure, recommended reference materials and the tutor support system. Modules consists of several individual units, each unit dealing with a different aspect of the module. For every unit there is a study guide that explains the objectives of that unit (what you will have learned by the end of the unit) and leads you through the learning material, section by section, using text, illustrations, activities, exercises and references to the recommended textbooks.

You monitor your own progress through the unit by completing the self-assessment questions, which are placed at regular intervals throughout the text, and checking your answers against those provided in the study guide. At the end of each study guide, there is a short exercise which you complete and return to your tutor for marking.

Tutor Support

When you need to discuss any aspects of your study, you may contact your tutor for support. Your tutor is available for direct contact by telephone at set times during the week, as specified in the module guide for each module. A telephone answering service is available after office hourse and you may also contact your tutor by email, post or fax.
You recieve a regular newsletter and are encouraged to contact other students, even to form local groups where possible, to share ideas.

Students wishing to pursue the MSc must complete the Diploma within 3 years part-time or 9 months full-time. The MSc must be completed within a period of 1 year full-time or 2-5 years part-time.

Fees must be paid in full prior to commencing the course (in-house only).

Read less
Your programme of study. If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Read more

Your programme of study

If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Did you know the first MRI (Magnetic Resonance Imaging) scanner was invented at Aberdeen over 30 years ago? Major innovations to this technology are still being researched at Aberdeen today. You learn everything you need to know as an advanced grounding in medical physics such as understanding anatomy and how cells are altered by disease. You look at the engineering behind MRI and other visual scanning techniques to understand how applications are made in areas such as nuclear, Positron, Tomography, Radio diagnosis (X-ray), MRI and Ultrasound. You understand radiation and you apply electronics and computing to medical physics. The degree ensures plenty of practical understanding and application and you learn MRI within the department that built it.

If you want to work within imaging and medical physics to pursue a medical career in hospitals, industry and healthcare and diagnose disease by different methods of imaging the degree in Medical Physics will help you towards this goal. You can also develop your own research portfolio and PhD from this MSc and work within academia to pursue innovation in the discipline.

You receive a thorough academic grounding in Medical Physics, are exposed to its practice in a hospital environment, and complete a short research project. Many graduates take up careers in health service medical physics, either in the UK or their home country. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. You can also work as a researcher, risk manager, radiation physics specialist and within the medical device industry in product development and innovation.

Courses listed for the programme

Semester 1

Biomedical and Professional Topics in Healthcare Science

Imaging in Medicine

Radiation in Medicine

Computing and Electronics in Medicine

Generic Skills

Semester 2

Radiation and Radiation Physics

Nuclear Medicine and Post Emission Tomography

Magnetic Resonance Imaging

Medical Electronics and Instrumentation

Medical Image Processing and Analysis

Diagnostic Radiology and Radiation Protection

Semester 3

Project Programmes in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/180/medical-physics/

Why study at Aberdeen?

  • You are taught by renowned researchers with opportunity to contribute to the expanding research portfolio
  • You learn in a cutting edge medical facility adjacent to the teaching hospital including a PET-CT scanner, radiotherapy centre and linac treatment machines, plus MRI scanners
  • The MRI scanner was invented and developed at University of Aberdeen

Where you study

  • University of Aberdeen
  • 12 months or 24 months
  • Full time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
This UK masters in Sports and Biomechanical Medicine programme is designed to cover a wide variety of sport-related topics including. Read more
This UK masters in Sports and Biomechanical Medicine programme is designed to cover a wide variety of sport-related topics including:

research design and medical statistics
measurement systems in motion analysis
biomechanics in sport
sports injury management and rehabilitation
dissertation on a substantive laboratory-based or focused research project in the field of sports rehabilitation and biomechanics

We offer you a wide ranging curriculum that will help you to achieve your career goals no matter what your speciality. Our distinguished visiting lecturers are specialists at the forefront of sport, sports injury, biomechanics, exercise physiology and other sports medicine related areas. You will have access to:

Fully equipped Sports Lab (Institute of Motion Analysis and Research)
Opportunities to publish your research in peer-reviewed sports journals
Lectures from leading multi-disciplinary teaching faculty from medicine, sports and biomechanics
Close working relationships with the University of Dundee's Institute of Sports & Exercise (ISE)
Facilities within Ninewells, a large, modern teaching hospital

Graduates from this sports MRes will be able to use their skills and knowledge to successfully increase their level of integration of sport and exercise medicine within their respective professions and disciplines at an advanced practitioner level. Graduates will be able to contribute to team work with a greater understanding of the inter-relationship between movement mechanisms, the fundamental nature of human performance at all levels and clinical outcome.

Aims of the programme

After completing the course, you will be able to demonstrate:

Expert knowledge on the roles of physical activity and sports exercise in rehabilitation.
The means and techniques to ensure athletes and sports people can perform to their maximum capacity whilst limiting the injury process.
The ability to use your skills and knowledge to successfully increase your level of integration of sport, biomechanics, exercise medicine and rehabilitation within your respective profession or discipline.
The skills and knowledge to undertake a substantive research project in your specialty. You will gain new insights and also the foundations for studying for a higher research degree.

What you will study

The MRes programme consists of five mandatory modules.

Taught modules: 90 credits

Research Project: 90 credits

Module 1: Research Design and Medical Statistics
Module 2: Biomechanics in Sport
Module 3: Measurement Systems in Motion Analysis
Module 4: Management of Soft Tissue and Sports Injuries and Rehabilitation
Module 5: Research Project
After completing the research project, the Master of Research (a minimum of 180 credits) will be awarded.

How you will be taught

Teaching of this MRes Sports Biomechanics and Rehabilitation will primarily be through a combination of flexible learning modules and formal lectures.

Assignments and coursework will foster the development of an enquiry-led, self-directed student approach to learning.

Assessment of modules 1-4 will be by examination upon completion of each individual module and a summative assessment on completion of all four modules. Assessment is weighted - 80% exam and 20% coursework.

During the research project, learning will be partly experiential, partly directed and partly self-directed. The research project will be assessed through the presentation of a dissertation, and the final mark will be moderated through an oral exam in Dundee (90 credits).

Careers

This MRes Sports Biomechanics and Rehabilitation will prepare graduates for a research-focused clinical graduate career in either the NHS or academia, and is particularly well positioned to prepare for entry into a clinical academic career path if you are a clinical graduate. Those students not already in academia or the NHS will broaden their scope of being able to do so and additionally benefit from the multitude of opportunities in the public and private sectors involving sport and exercise.

Read less
Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics. Read more

Why this course?

Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics.

This newly-launched MSc course is the first one-year taught course in the world dedicated to Biofluid Mechanics. It covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics.

The one-year full-time programme offers you a unique opportunity to lead the next generation of highly-skilled postgraduates that will form a new model worldwide for academia – with world-class research knowledge, industry – with highly-competitive skills in both biomedical engineering and fluid dynamics, and for society – with better training to work with clinicians.

This course is taught by the Department of Biomedical Engineering, with input from other departments across the Faculty of Engineering and the wider University. You'll be supported throughout the course by a strong team of academics with global connections. You'll benefit from a unique training and an innovative teaching and learning environment.

You'll study

In Semesters 1 and 2, you'll take compulsory classes and a choice of optional classes. 
The remaining months are dedicated to project work, submitted as dissertation (Diploma students) or as a research thesis (MSc students).

Compulsory Classes

Biofluid Mechanics
Industrial Software
Medical Science for Engineering
Research Methodology
Professional Studies in Biomedical Engineering

Optional Classes

Haemodynamics for Engineers
Numerical Modelling in Biomedical Engineeirng
Cardiovascular Devices
The Medical Device Regulatory Process
Entrepreneurship and Commercialisation in Biomedical Engineering
Introduction to Biomechanics
Finite Element Methods for Boundary Value Problems and Approximation
Mathematical Biology and Marine Population Modelling
Design Management
Risk Management

Masters Research Project

The project provides MSc students with the opportunity to experience the challenges and rewards of independent study in a topic of their own choice; the project may involve an extended literature review, experimental and/or computational work.

Postgraduate Diploma Dissertation

The dissertation is likely to take the form of an extended literature review. Your project work will have been supported by a compulsory research methods module and specialist knowledge classes throughout the year designed to assist with technical aspects of methodology and analysis.

Industrial Partnerships

We have established strong partnerships with industrial companies that have offered their support through the provision of software licenses and/or teaching material.

Fees & funding

How much will my course cost?

All fees quoted are for full-time courses and per academic year unless stated otherwise.

Scotland/EU

2017/18 - £5,500
Rest of UK

2017/18 - £9,000
International

2017/18 - £19,100
How can I fund my course?

Scholarship search

Scottish and non-UK EU postgraduate students

Scottish and non-UK EU postgraduate students starting in 2017 can apply for support from the Student Awards Agency Scotland (SAAS). The support is in the form of a tuition fee loan and for eligible students a living cost loan. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from England

Students ordinarily resident in England can apply for Postgraduate support from Student Finance England. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Wales

Postgraduate students starting in 2017 who are ordinarily resident in Wales can apply for support from Student Finance Wales. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. We are waiting on further information being released about this support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Northern Ireland

Postgraduate students starting in 2017 who are ordinarily resident in Northern Ireland can apply for support from Student Finance NI. The support is a tuition fee loan of up to £5,500. We are waiting on further information being released about this support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

International students

We have a large range of scholarships available to help you fund your studies. Check our scholarship search for more help with fees and funding.

Please note

The fees shown are annual and may be subject to an increase each year. Find out more about fees.

Read less
Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics. Read more

Research opportunities

Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics.

Our new MRes course covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics (CFD), focusing on research. The MRes differs from an MSc in that you'll have the opportunity to perform multidisciplinary research for a longer time, preparing you for a research career and equipping you with world-class research knowledge.

The course is taught by the Department of Biomedical Engineering, with input from other departments across the faculty and the University.

During the course, you'll be supported by a strong team of academics with worldwide connections and you'll be offered a unique training and innovative teaching and learning environment.

Course director: Dr Asimina Kazakidi

Lecturer in Biofluid Mechanics

Course co-director: Professor Dimitris Drikakis

Executive Dean of Engineering and Professor of Engineering Science

What you'll study

This one-year programme consists of compulsory and optional classes in the first two semesters. Each class has timetabled contact hours, delivered predominantly in lectures, laboratories and tutorials.

The MRes research project will be chosen and started in semester one with guidance from a supervisor. Throughout the year you'll be working on your project.

Compulsory classes

Professional Studies in Biomedical Engineering
Research Methodology
MRes project

Elective classes

Biofluid Mechanics
Industrial Software
Medical Science for Engineering
Haemodynamics for Engineers
Numerical Modelling in Biomedical Engineering
Cardiovascular Devices
The Medical Device Regulatory Process
Entrepreneurship & Commercialisation in Biomedical Engineering
Introduction to Biomechanics
Finite Element Methods for Boundary Value Problems and Approximation
Mathematical Biology & Marine Population Modelling
Design Management
Risk Management

Guest lectures

During the course, academics and industrial speakers will be invited as part of the training. You'll also benefit from departmental seminars and knowledge exchange events.

Fees & funding

Fees

All fees quoted are per academic year unless otherwise stated.

Here are our fees for 2017/18:

Scotland/ EU

£4,195
Rest of UK

£4,195
International students

£19,100
Funding

If you can't find what you're looking for, try our scholarship search instead.

The fees shown are annual and may be subject to an increase each year.

Support & development

Careers

The new MRes course aims to train students in the Biofluid Mechanics field, targeting primarily the academic research market, but also the Medical Devices and Simulation/Analysis software industries and other related and new emerging markets.

Our postgraduates will benefit from acquiring world-class training and competitive skills in both biomedical and fluid dynamics disciplines that will make them highly employable at the following markets and related sectors/companies:

academic research
medical device market
simulation & analysis software market
biosimulation market
NHS & the healthcare/medical simulation market
life science research tools & reagents market
We've identified the current key vendors in each of the above markets and aim to create links with the relevant industry and monitor the changing market and employability trends, in order to adjust teaching modules and approaches and to enhance employability of our graduates.

Industrial partnerships

We've already established strong partnerships with industrial companies that have offered their support through the provision of software licenses and/or teaching material.

Student support

From financial advice to our IT facilities, we have loads of different support for all students here at our University. Get all the information you need at Strathlife.

Read less
MESc & PhD graduate degree programs in Biomedical Engineering with specializations in Biomaterials, Biomechanics, and Imaging. Biomedical Engineering is a program that promotes the cooperative involvement of clinical and basic researchers in allied disciplines such as imaging, biomaterials, biomechanics and robotics. Read more
MESc & PhD graduate degree programs in Biomedical Engineering with specializations in Biomaterials, Biomechanics, and Imaging.

Biomedical Engineering is a program that promotes the cooperative involvement of clinical and basic researchers in allied disciplines such as imaging, biomaterials, biomechanics and robotics. This program encourages multidisciplinary links between the faculties of Engineering, Medicine & Dentistry, and Health Sciences, Robarts Research Institute and London Health Research Institute, and Western’s teaching hospitals.

Visit the website: http://grad.uwo.ca/prospective_students/programs/program_NEW.cfm?p=19

Fields of Research

• Biomaterials
• Biomechanics
• Imaging and Robotics

How to apply

For information on how to apply, please see: http://grad.uwo.ca/prospective_students/applying/index.html

Financing your studies

As one of Canada's leading research institutions, we place great importance on helping you finance your education. It is crucial that you devote your full energy to the successful completion of your studies, so we want to ensure that stable funding is available to you.
For information please see: http://grad.uwo.ca/current_students/student_finances/index.html

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X