• Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
Cass Business School Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
Swansea University Featured Masters Courses
0 miles
Engineering×

Masters Degrees in Quality Assurance Engineering

We have 11 Masters Degrees in Quality Assurance Engineering

Masters degrees in Quality Assurance Engineering equip postgraduates with the skills to devise engineering models which characterise a set of principles for professional practise.

Taught MSc degrees are typical for the field, though research oriented MRes and MPhil programmes may be available at some institutions. Entry requirements normally include an undergraduate degree in a relevant Engineering subject.

Why study a Masters in Quality Assurance Engineering?

Read more...

  • Engineering×
  • Quality Assurance Engineering×
  • clear all
Showing 1 to 11 of 11
Order by 
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Read more
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Our MSc Aviation Engineering and Management course will provide you with the skills, knowledge and expertise to succeed in the aviation industry.
You’ll develop key problem-solving skills within the field of aviation including airlines, corporate aviation, general aviation, component manufacturing organisations, and related industries, and civil aviation governmental agencies.

You’ll gain an understanding of the various complexities facing aviation businesses through a breadth of industry related modules. Your studies will also cover a wide variety of tools, techniques, and research methods, and how they may be applied to research and solve real-life problems within the aviation industry.

See the website http://courses.southwales.ac.uk/courses/1878-msc-aviation-engineering-and-management

What you will study

The course consists of nine modules with a key theme throughout your studies including the ethical dimensions of decision-making and interpersonal relations. This means you can be confident that you will develop personally and professionally as part of the course, ultimately making yourself more employable. You’ll study the following modules:

- Aircraft Systems Design and Optimization (10 Credits)
This module will give you a comprehensive knowledge of the systems of the aircraft, including preliminary designing of systems primary and secondary systems, operation and maintenance concepts. You will be introduced to novel engineering design methods such as Multi Objective Design (MOD) and multi-disciplinary design optimisation. Part of the module will be delivered with the support of industrial partners and experts, which will bring real scale industrial experience and interaction with the industry.

- Aviation Sustainable Engineering
This module will explore the historical and contemporary perspectives in international aviation framework while looking at the socio-economic benefits of aviation since the Chicago Convention of 1944. You will analyse current and future design and manufacturing trends in the aerospace industry.

- Condition Monitoring and Non-Destructive Testing
This module analyses condition monitoring and non-destructive testing, giving you an appreciation for the key concepts and tools in this subject. You will evaluate the use of these tools in different situations within industry and make recommendations on necessary adjustments.

- Advanced Materials and Manufacture
You will look at a range of modern engineering materials and develop an awareness of the selection criteria for aeronautical and mechanical engineering applications. You will also look at a range of “standard” and modern manufacturing processes, methods and techniques.

- Lean Maintenance Operations & Certification
This module will help you develop and understand concepts in Six Sigma, lean maintenance, operational research, reliability centred maintenance and maintenance planning. You will evaluate and critically analyse processes within highly regulated industries.

- Safety, Health and Environmental Engineering Management
Covering the principles and implementation of the safety, health and environmental management within the workplace, you will look at key concepts in human cognition and other human factors in risk management and accident/incident investigation. You will also gain an understanding of the role of stakeholder involvement in sustainable development.

- Strategic Leadership and Management for Engineers
This module will explore a range of purposes and issues surrounding successful strategic management and leadership as well as appraising a range of leadership behaviours and processes that may inspire innovation, change and continuous transformation within different organisational areas including logistics and supply chain management.

- Research Methods for Engineers
The aim of this module is to provide you with the ability to determine the most appropriate methods to collect, analyse and interpret information relevant to an area of engineering research. To provide you with the ability to critically reflect on your own and others work.

- Individual Project
You will undertake a substantial piece of investigative research work on an appropriate engineering topic and further develop your skills in research, critical analysis and development of solutions using appropriate techniques.

Learning and teaching methods

You will be taught through a variety of lectures, tutorials and practical laboratory work.

You will have 10 contact hours per week, you will also need to devote around 30 hours per week to self-study, such as conducting research and preparing for your assessments and lectures.

Work Experience and Employment Prospects

Aerospace engineering is an area where demand exceeds supply. As a highly skilled professional in aircraft maintenance engineering, you will be well placed to gain employment in this challenging industry. The aircraft industry is truly international, so there is demand not only in the UK, but throughout the world.

Careers available after graduation include aircraft maintenance planning, engineering, materials, quality assurance or compliance, technical services, logistics, NDT, method and process technical engineering, aircraft or engine leasing, aviation sales, aviation safety, reliability and maintainability, operations and planning, airworthiness, technical support, aircraft surveying, lean maintenance, certification, production planning and control.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aviation engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The aerospace industry has become increasingly competitive and in recognising this, the University has recently invested £1.8m into its aerospace facilities.

Facilities available to our students have been fully approved by the Civil Aviation Authority (CAA). With access to an EASA-approved suite of practical training facilities, our students can use a range of industry-standard facilities.

Our Aerospace Centre is home to a Jetstream 31 Twin Turboprop aircraft, assembled with Honeywell TPE331 Engines and Rockwell-Collins Proline II Avionics. It has a 19-passenger configuration.

The EASA-approved suite contains training and practical workshops and laboratories. Each area contains the tools and equipment required to facilitate the instruction of either mechanical or avionic practical tasks as required by the CAA.

Students use the TQ two-shaft gas turbine rig to investigate the inner workings of a gas turbine engine by collecting real data and subsequently analysing them for engine performance.

Our sub-sonic wind tunnel is used for basic aerodynamic instruction, testing and demonstrations on various aerofoil shapes and configurations.

The single-seater, full motion, three axes Merlin MP521 flight simulator can be programmed for several aircraft types that include the Airbus A320 and the Cessna 150.

Read less
Why this course?. This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering. Read more

Why this course?

This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering.

Marine engineering involves the systems and equipment onboard marine vehicles including:

  • design
  • construction
  • installation
  • support

There’s a particular emphasis on propulsion and control systems.

High efficiency and low environmental impact of marine engines are the key factors in assuring economical operation and environmental protection in maritime transportation. This has important implications for both economic success and environmental impact.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

The programme consists of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It'll give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by a survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of the aspects learned from other modules within a specific topic. This'll be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in the form of formal lectures supported with tutorials and laboratory experiments.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is exam assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70% exam marks.

Careers

As a graduate you’ll be prepared for a wide range of challenging and rewarding careers in the marine and related industries.

These include:

  • marine engineering machinery & system design
  • surveying
  • technical superintendence
  • project management
  • safety management
  • support services
  • classification societies
  • consultancy services


Read less
Why this course?. As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques. Read more

Why this course?

As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques.

This course is for graduates in naval architecture, offshore engineering, mechanical engineering and related disciplines who want to gain advanced knowledge of subsea systems, designs and installation. This includes systems and equipment such as:

  • pipelines
  • wellheads
  • drilling rigs
  • riser & mooring systems

You’ll study

Your course will be made up of three components:

  • Instructional modules
  • Group project
  • Individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

You’re required to attend an induction prior to the start of the course.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30 to 40% course work and 60 to 70% examination.

Careers

Offshore hydrocarbon activities are moving into area of water depths exceeding 2000m. Subsea drilling, production and control systems are becoming much more important. Therefore, subsea engineers are in great demand world-wide.

Job titles include:*

  • Drilling Fuel specialist
  • I-Drill Engineer
  • Junior Riser Engineer
  • Subsea Engineer
  • Well Engineer
  • Project Engineer

Employers include:*

  • 2H Offshore
  • Aker Solutions
  • BP
  • ENI Saipem
  • Subsea7
  • Talisman Energy
  • Technip
  • Schlumberger

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).



Read less
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. Read more
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. The course is particularly suited to engineers involved in the provision, preservation and operation of highways, but it is open to all those holding a degree or equivalent in Civil Engineering or any other relevant branch of engineering.

The topics covered include: transportation economics; highway planning and programming and route selection; survey methods and instrumentation; computer applications in local authorities; construction law; transportation modelling; theory of traffic flow; impacts of road traffic facilities; traffic: methods for planning, capacity analysis and design; traffic control and management; design of flexible and concrete pavements; pavement maintenance and rehabilitation; surface and sub-surface drainage; bridge design and management; quality assurance plans for road schemes; descriptions of soils and rocks; earthworks technology; stability of fills, slope stability; construction of embankments on soft ground; procurement of civil engineering works; road asset management plans; environmental impact assessment.

Lectures are normally held on Friday evening and Saturday morning each week throughout the two semesters (September to April).

Read less
Why this course?. This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering. Read more

Why this course?

This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering.

It provides you with practical knowledge of offshore floating systems. You’ll look at their conceptions, design and installation. You’ll also gain a sound basis of mathematical and engineering fundamentals.

With the world-wide search for offshore oil and gas moving into increasingly hostile areas of ocean and deep and ultra-deep water, floating systems are becoming more widely used. Floating systems must be designed and built to withstand harsh environments with innovative methods and techniques being adopted to develop robust as well as economically efficient and safe structures. In meeting these challenges, concern for the environment is of increasing importance.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

The programme consists of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • towing/wave tank exclusively for teaching purposes
  • marine engine laboratory
  • hydrogen fuel cell laboratory
  • cutting-edge computer facilities
  • industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST).

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70 examination marks.

Careers

Graduates will be well-prepared for a challenging career in all sectors of offshore engineering dealing not only with offshore floating systems but also fixed marine structures.



Read less
Why this course?. This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures. Read more

Why this course?

This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures.

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines.

You'll be introduced to ultimate strength, fatigue and design concepts for structural components of ships and offshore floating systems. You'll also gain the knowledge of material behaviour together with factors influencing the dynamic behaviour of offshore installations.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities, which will expand your career opportunities in naval architecture, marine, offshore oil and gas industries.

You'll study

Your course is made up of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Career destinations include:

  • Naval Architect
  • Marine Engineer
  • Graduate Engineer
  • Marine Surveyor
  • Offshore Renewables Engineer
  • Project Engineer


Read less
This programme provides advanced academic training in food safety and food control. It includes topics such as food control, hazard analysis and critical control point (HACCP) and food chain security. Read more

This programme provides advanced academic training in food safety and food control. It includes topics such as food control, hazard analysis and critical control point (HACCP) and food chain security.

You will consider the relationship between food and public health, and examine the scientific, technical, managerial, political and legislative factors that influence food safety.

Course details

This programme provides advanced academic training in food safety and food control. You will consider the relationship between food and public health, and examine the scientific, technical, managerial, political and legislative factors that influence food safety.

The course is particularly suitable for those with relevant food related knowledge and/or experience including:

  • Hygiene managers or supervisors already working in the food industry
  • Staff working in competent authorities or enforcement; for example, Environmental Health Officers or Food Safety Officers
  • Staff in diagnostic or food microbiology laboratories
  • Students who have completed relevant undergraduate degrees such as Food Technology and wish to find employment in the food industry or local government
  • Food hygiene and management trainers or consultants

Programme content

The syllabus includes detailed coverage of food safety hazards, especially microbial contamination, and the impact of such contamination on public health. Also covered in depth are the Food Controls used in the EU to contain such hazards.

This postgraduate programme is designed to provide rigorous academic training in Food Safety, Hygiene and Management.

It provides an opportunity for students to develop an appreciation of the relationship between food and public health by focusing on the factors that influence food safety and quality. These are multidisciplinary and include scientific, technical, managerial, political and legislative matters. Topics covered include:

Food Safety

Access to safe food should be a basic human right. Unfortunately food borne illness is universal. Changing methods of food production and the globalisation of the food chain increase the risk that food borne contaminants will cause larger and more serious outbreaks, as well as providing opportunities for emerging pathogens.

The MSc in Food Safety Hygiene and Management differs from other postgraduate food courses in that it focuses on the mechanisms of Food Control and Food Safety Management. All Food Control and Safety Systems seek to prevent food safety hazards from causing illness; microbiological hazards are considered to be some of the most significant food safety hazards in the food chain and the content of the course reflects this viewpoint. 

Food Control

One of the main mechanisms of Food Control is the implementation of food hygiene and food standards legislation. Together with the relevant food microbiology, this legislation forms the basis of the course, underpinning the study of processes and management systems commonly used by industry and the competent authorities.

Hazard Analysis and Critical Control Point (HACCP)

The course also covers HACCP, Risk Assessment, Quality Assurance, Integrated Pest Management, premises and equipment design and other aspects of control in a national and international context. The research projects conducted by the students as part of the MSc reflect these priorities and may be laboratory or practice based.

Food Chain Security

The emphasis on implementation and enforcement of legislation and safety standards is a novel approach and, by offering a comprehensive picture of food chain security, provides progression for those from undergraduate degrees such as food technology, veterinary medicine or microbiology. This legal perspective qualifies successful candidates to work in enforcement or advisory positions for UK competent authorities such as the Food Authority (Local Authority). The course is accredited by the Environmental Health Registration Board.

The legislation considered is EC based and the course welcomes many students from other member states, some of whom return home to work in their own Competent Authorities or to represent their country on specialist food committees at national, EU and international level. Several have also taken up lectureships in food safety. The course has also become increasingly popular with overseas students, especially those from countries wishing to accede to the EU or to trade with it.

Related links

Learning and teaching

Learning, teaching and assessment

Various learning and teaching methods are used on the programme, including traditional lectures, computer-based learning, student-based learning such as case studies and directed learning, laboratories and visits. The programme is assessed using both traditional unseen examination and coursework. The MSc requires candidates to complete a research project and submit a thesis.

Skills gained

Apart from a high level of technical knowledge, students will also gain the ability to critically analyse data and published information, apply scientific principles and legislation to practical situations and become experienced at locating and interpreting government guidance. Successful candidates will also develop an advanced understanding of common food safety management systems such as Hazard Analysis Critical Control Points (HACCP).

Careers

The Postgraduate Diploma and MSc are accredited by the Chartered Institute of Environmental Health /Environmental Health Registration Board as a route to the Higher Certificate in Food Premises Inspection and therefore very appropriate for anyone wishing to work as a food premises officer in a food authority or competent authority. Past students have found work in a variety of areas, including NGOs, competent authorities in the UK and overseas, academic institutions and the food industry.



Read less
With the advent of ever more sophisticated and powerful computer environments, the techniques needed to develop and produce the software to run on these systems are themselves becoming increasingly complex. Read more

With the advent of ever more sophisticated and powerful computer environments, the techniques needed to develop and produce the software to run on these systems are themselves becoming increasingly complex. This course is unique in that it combines software engineering with high performance computing, giving you the tools and techniques that employers are looking for and an advantage in the job market.

This specialist option of the MSc Computational and Software Techniques in Engineering offers a unique insight into the development of computer applications across a wide spectrum of modern computing environments, from multi-core CPUs to specialist GPUs to Cloud Computing, all of which are relevant to the IT industry today.

Who is it for?

If you intend to make a career in software development, whether it is in the data centre, on the desktop or in the rapidly expanding mobile application space, you need to have a strong basis in software engineering. This course is unique in that it combines software engineering with high performance computing, giving you the tools and techniques that employers are looking for and an advantage in the job market.

Why this course?

Cranfield University has many years of specialist knowledge and experience in High Performance Computing. We are able to offer a unique insight into the development of computer applications across a wide spectrum of modern computing environments, from multi-core CPUs to specialist GPUs to Cloud Computing, all of which are relevant to the IT industry today.

We introduce students to parallel software development on the desktop, the super-computer and in the Cloud. Each platform has its own challenges and this course ensure that students become familiar with the best approach to writing software for each one.

Cranfield University is very well located for visiting part-time students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. Part-time students have a flexible commencement date.

This Msc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students

Course details

The course consists of twelve core modules, including a group design project, plus an individual research project. The course is delivered via a combination of structured lectures, tutorial sessions and computer based workshops.

The C++ and Java programming modules, combined with the Software Engineering course, provide the basis of the academic programme and act as a starting point for the more specialist modules encountered later on. The various computational technology platforms are then introduced, giving students both theoretical and hands-on experience of programming in multi-core, General Purpose CPU, distributed and Cloud computing environments.

Group project

The process of software production is rarely an activity undertaken by an individual developer. In today’s software industry, many different specialists are required to contribute to the creation of software. To ensure a high level of quality in the final product, different roles and responsibilities must be brought together into a single team and therefore clear lines of communication between team members are crucial if the project is to be a success.

An important part of this MSc course is the group project, in which we define a realistic problem and ask each group to propose and implement a solution. It is generally a 6 week project taking place between February and March. Members of each group must decide how to organise themselves, assigning roles to each person.

The group project is an opportunity for you to experience first-hand how a software development team is organised and how the different roles contribute to the final product. This is a chance for you to develop an insight into the organisation of development teams in industry, and allows you to understand what is expected from you once you enter employment.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The individual research project allows you to delve deeper into an area of specific interest. All projects are based on real research, whether it is an area of interest for members of the department, or as part of an active research project funded by industry. In some cases our industrial partners sponsor specific research projects into real world problems or areas of development that are of direct interest to them. In recent years, students have proposed their own ideas for their research project. You will generally begin to consider the research project after completing 3-4 modules - it then runs concurrently with the rest of your work.

For part-time students it is common that their research thesis is undertaken in collaboration with their place of work.

Assessment

Taught modules 45%, Group project 5%, Individual research project 50%

Your career

The Software Engineering for Technical Computing masters, attracts enquiries from companies all over the world, who wish to recruit high quality software development graduates. There is considerable demand for students with expertise in engineering software development and for those who have strong technical programming skills in industry standard languages and tools.

Graduates of this course are in demand by financial software developers, mobile application developers, commercial engineering software developers, automotive, telecommunications, medical and other industries and research organisations, have been particularly successful in finding long-term employment. We have had positive feedback from companies in industries as diverse as finance to computer games studios. As such, we enjoy excellent employment statistics, with over 95% of graduates employed within six months.

Some students may go on to register for PhD degrees, many, on the basis of their MSc research project. Thesis topics are most often supplied by individual companies on in-company problems with a view to employment after graduation - an approach that is being actively encouraged by a growing number of industries.



Read less
This part-time, distance learning Masters course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. Read more

This part-time, distance learning Masters course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. It’s designed to provide you with advanced, in-depth knowledge of both the theory and practical application of concrete technology to prepare you for a variety of senior roles.

You’ll gain academic and industrial expertise using a range of online resources that give you the flexibility to study around your work and personal lives. From health and safety and quality control to mixture proportioning, repair and maintenance and life cycle analysis, you’ll develop an understanding of a wide range of issues that affect professionals in the concrete industry today.

If you complete the MSc, you’ll also have the chance to conduct your own research project – a chance to focus on a single topic and demonstrate valuable skills when you present your findings in a comprehensive technical report.



Read less
Your programme of study. This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. Read more

Your programme of study

This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. You can study this programme from anywhere in the world and it offers the same academic rigour you would expect if you were studying on campus at University of Aberdeen but you can fit it around a busy life, work, other responsibilities and much more.

If have an engineering, science or mathematics degree and you are considering work in the oil and gas industry worldwide Petroleum Engineering can provide you with a wide range of knowledge and skills within the upstream oil and gas extraction area. The programme mainly focuses on the skills you need to extract oil which can be the initial geoscience knowledge through to core analysis and reservoir engineering. Within reservoir and well engineering there are several areas of analysis, testing and development you then specialise in. This ensures you have a very robust approach to offshore production with the type of advanced skills to problem solve and troubleshoot different situations.

The programme also develops your skills in formation evaluation, simulation, and appraisal plus safe production and enhancing the recovery of hydrocarbon oil and gas. This programme is highly regarded in the industry internationally and it is recognised by all major players in the oil and gas industry. Careers can be anything from Drilling, Operations, Piping Specification, Production, Reservoir, Subsurface and Wellhead Engineer. The degree hold accreditation from the Energy Institute and Institute of Mechanical Engineers

Courses listed for the programme

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The programme is fully flexible to allow you to study wherever you are online
  • You will acquire skills and knowledge from a programme closely linked to industry needs
  • You study with a university situated in the heart of the European and world Energy Industry, many companies are located here
  • You study with two highly regarded departments in Geology and Engineering and at University of Aberdeen which is very well known in the oil and gas industry globally
  • You can pay by module and take the degree over a longer period up to six years

Where you study

  • Online Learning
  • 5 Months, 27 Months, or 30 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

You may be also interested in the campus delivery of this programme

Related Postgraduate Degrees

Other engineering disciplines you may be interested in:



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X