• University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Surrey Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Cranfield University Featured Masters Courses
Cranfield University Featured Masters Courses
University of Manchester Featured Masters Courses
Ulster University Featured Masters Courses
0 miles
Chemistry×

Masters Degrees in Physical Chemistry

We have 27 Masters Degrees in Physical Chemistry

Masters degrees in Physical Chemistry equip postgraduates with advanced knowledge of the structure and function of atoms and molecules, and their chemical bonding capabilities.

Courses range from taught MSc degrees, to research-based MRes and MPhil programmes. Entry requirements normally include an undergraduate degree in a relevant subject such as Chemistry, Physics or Chemical Engineering.

Why study a Masters in Physical Chemistry?

Read more...

  • Chemistry×
  • Physical Chemistry×
  • clear all
Showing 1 to 15 of 27
Order by 
This one-year taught programme offers the opportunity to study Chemistry at an advanced level, covering both the traditional core areas of chemistry, as well as more specialist courses aligned to the research groupings of the department. Read more

This one-year taught programme offers the opportunity to study Chemistry at an advanced level, covering both the traditional core areas of chemistry, as well as more specialist courses aligned to the research groupings of the department. The course provides opportunities for you to develop and demonstrate advanced knowledge, understanding, and practical/research skills.

Introducing your course

Would you like to upgrade your bachelor’s degree to a master’s and gain access to a chemistry career in industry or research? Join the MSc Chemistry and develop your lab and theoretical skills. Specialise in inorganic and materials, organic or physical chemistry, or maintain a broad portfolio, for a more detailed description of the available pathways, click the Pathways tab. Courses are available in synthesis, advanced structural, analytical and spectroscopic techniques, materials chemistry, modelling, biological and medicinal chemistry, and electrochemistry.

Overview

The MSc Chemistry course combines the opportunity for students to take modules from a wide range of cutting-edge fields in chemistry with sessions on practical, technical skills, and scientific writing, communication and presentation and a three month summer project supervised by one of Southampton’s expert academics. The course aims to:

  • Provide you with advanced knowledge the core areas of chemistry and your chosen area of specialisation;
  • Provide you with an opportunity to work in state-of-the-art laboratories dedicated both to education and also to research;
  • Develop your knowledge and research skills applicable to a career in chemistry, particularly in research project driven roles.

Find out more about the course visit the programme specification

Career Opportunities

A Chemistry masters degree will give students valuable insight into postgraduate research skills. Independent project work will support students to develop transferable skills in areas such as time management, communication and presentation skills that are key for career success in a wide range of areas such as industry, analysis, policymaking and scientific communication. Completing an MSc qualification will help individuals tackle the challenges of an advanced research degree at PhD level and prepare them for a career in academia.

Pathways

The following information summarises the typical pathways offered when choosing the MSc Chemistry degree programme:

Organic Chemistry

This area focuses on synthetic organic chemistry, total synthesis, synthetic methodology, reaction mechanism, organocatalysis, organofluorine chemistry, photochemistry and carbohydrate chemistry, both towards the synthesis of bioactive compounds and organic materials, and includes the study of organic reactions under flow conditions. This pathway offers the opportunity to specialise in the following areas

  • organic synthesis
  • medicinal chemistry
  • bio-organic chemistry

This pathway consists of advanced postgraduate courses in synthetic reaction mechanisms and is best suited to students who already have a thorough BSc level grounding in aspects of nomenclature, stereochemistry, reaction mechanisms.

Inorganic chemistry and materials

This area focuses on the synthesis of functional inorganic, solid-state and supramolecular materials and assemblies to address key challenges in energy, sustainability, healthcare and diagnostics and the deposition of nanostructured materials. This pathway will give you the opportunity to specialise in the following areas

  • inorganic synthesis
  • metal organic framework
  • supramolecular chemistry
  • zeolites
  • catalysis
  • materials characterisation

This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of inorganic chemisry.

Physical chemistry

This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of inorganic chemistry. This area covers a wide range of fundamental and applied topics. This pathway will give you the opportunity to specialise in the following areas

  • computational chemistry
  • spectroscopy
  • electrochemistry
  • surface science
  • magnetic resonance

This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of physical chemistry, in particular quantum chemistry, spectroscopy, thermodynamics and kinetics

General chemistry

You can choose to further your knowledge across a blend of advanced courses from organic, inorganic and/or physical chemistry (any combination). This pathway is suited to those wishing to develop an interdisciplinary expertise. If you choose this pathway you should already have a sound BSc-level grounding in the areas of chemistry in which you intend to choose modules (see other boxes).



Read less
Chemistry research at Swansea University is vibrant and covers a wide range of research areas and interests, and will be growing at a fast pace over the next 2-3 years. Read more

Chemistry research at Swansea University is vibrant and covers a wide range of research areas and interests, and will be growing at a fast pace over the next 2-3 years. It is focused on 4 themes: Energy, Health, New and Advanced Molecules and Materials, and Water and the Environment. These research initiatives transcend the traditional discipline boundaries, integrate the core areas of inorganic, organic, physical and analytical chemistries and intersect with other scientific disciplines, engineering and medicine.

Key Features of MSc by Research in Chemistry

The new Department of Chemistry has excellent, purpose-built modern laboratories and has access to a diverse type of laboratories research infrastructures to develop its research. For example, high-quality, high-impact chemistry research is already taking place in World Class Centres based in Swansea such as The Centre for NanoHealthThe Institute of Mass SpectrometryThe Institute of Life SciencesThe Energy Safety Research InstituteMultidisciplinary Nanotechnology CentreThe Centre for Water Advanced Technologies and Environmental Research and The Materials Research Centre. The integration of the new Chemistry Department with Engineering, the Medical School and other departments in the College of Science provides an environment of research excellence and allows our chemistry students and research staff to invent, innovate and develop products in a way that is best suited to research in the 21st century and the need to generate disruptive, step-change advances with impact on current global challenges.

Department of Chemistry Research Group:

Energy: One of the key areas where advances in chemistry will be needed is in providing solutions to the global energy challenge. Chemistry research in Swansea University is participating in fundamental and applied research initiatives focused on: 

  • Conversion and storage of electrochemical and solar energy 
  • Capture, storage, and chemical conversion of carbon dioxide 
  • Development of new molecules, materials and nanotechnologies related to energy production, conversion, transport, and storage and their incorporation into devices.
  • Electron transfer reactions
  • Development and implementation of advanced characterisation techniques for acquiring in-depth understanding of photovoltaics, batteries and processes, which enable improvement in performance.
  • Routes for rapid processing and manufacturing at scale.
  • Optimized utilization of fossil energy 
  • Hydrogen as an energy vector

Health: Chemistry research provides new routes to more effective, cheaper and less toxic therapies and to non-invasive disease detection and diagnosis tools – a requirement to transform the entire landscape of drug discovery, development and healthcare, which is unaffordable and needs to benefit more patients. The chemistry research laboratories for this theme are adjacent to Swansea Medical School – which ranked 1st in the UK for research environment, and 2nd for overall research quality in the REF 2014.

Current chemistry research includes: 

  • Nanoparticle-based drug delivery
  • Antibody-drug conjugates
  • Nanoparticle-enabled chemoimmunotherapy and immunoengineering
  • Chemical systems for cell and tissue imaging
  • Stimuli-responsive and adaptive systems for drug activation and release
  • Construction of biofunctional artificial motor systems
  • Bioelectronic medicines and sensors
  • Mass spectrometric analysis of clinical samples, lipids, proteins and natural products
  • Pharmaceutical analysis and analytical technologies for medical/chemical analysis
  • Magnetic nanoparticles for magnetic resonance and multimodal imaging
  • Silicon processing, microfabrication and microelectronic fabrication
  • Self-assembly of colloids at interfaces and the use of colloids and nanoparticles dispersed in complex biological fluids
  • Microneedles for transdermal blood sampling and drug delivery
  • Biosensors – surface functionalization, fluorescence detection, electrochemistry, chemical sensing and lab-on-a-chip
  • Microfluidics and MEMS 
  • Studying structure, dynamics and function of enzymes as a route to understanding and controlling nature's chemistry
  • Natural products biosynthesis (particularly involving compounds with antibiotic, antifungal, or other medically relevant activity).

New and Advanced Molecules and Materials: There is major interest in synthesing, designing and controllling molecular and macromolecular assemblies at multiple length scales. In Swansea this research involves use of: 

  • Soft condensed matter including surfactants, colloids and polymers
  • Synthesis and characterization of transition metal-based and organic dye molecules for application in dye sensitized solar cells
  • Materials for efficient multiphoton absorption and upconversion 
  • Natural products
  • Molecular recognition and self-assembly to generate novel materials
  • Continuous flow synthesis
  • Molecular scale and nanoscale characterisation of ordered and amorphous assemblies
  • Development of nanocomposites comprising metallic nanoparticles and hydrogels
  • Autonomous and remotely guided micro- and nanoscale objects
  • Studying and tuning the characteristics of nanomaterials and biomaterials 

Water and the Environment: Chemistry at Swansea university has a strong profile in the development of analytical tools for measuring environmental impact, environmental impact assessment of polymer-based materials through their lifetime (including the effects of recycling and biopolymers), technologies for the efficient removal of environmentally harmful materials (and thus reduced emissions per output of discharge), membrane technologies and new methodologies for desalination, and for dewatering and killing pathogens for sanitation applications and the use of new molecules and materials for photocatalytic water splitting and development of self-propelled micro and nanomotor systems for environmental remediation. In collaboration with the Biocontrol and Natural Products (BANP) group in the Department of Biosciences, there is also growing research interest around the characterisation and application of natural products, in particular those derived from fungi and microalgae, to provide therapeutics and nutraceuticals and to act as agents for biocontrol and bioremediation.

Facilities in the Department of Chemistry

Our new state-of-the-art teaching laboratories are being built as part of a multi-million pound investment to create a chemistry hub for the high quality Chemical Sciences research being carried out across the Colleges of Science, Engineering and Medicine.

Careers for Chemistry Graduates

A chemistry qualification opens the door to a wide range of careers options, both in and out of the lab. There are endless interesting and rewarding science-based jobs available – these can be in research, outdoors or in other industries you might not have thought of. Please visit the Royal Society of Chemistry website for details. 

Find out more about the huge range of jobs in chemistry by exploring the job profiles on the Royal Society of Chemistry website (eg Cancer Researcher, Flavourist & Innovation Director, Chief Chemist, Sustainability Manager, Fragrance Chemist, Household Goods Senior Scientist, Analytical Scientist, and many more).



Read less
Learning how to make discoveries that will contribute to a better understanding of the fundamental behaviour of molecules and materials. Read more

Learning how to make discoveries that will contribute to a better understanding of the fundamental behaviour of molecules and materials.

Most chemical research involves synthesising and characterising new molecules. So basically, a trial and error system. This specialisation goes one step further: it aims at fundamentally unravelling the properties of molecules and materials. How do pharmaceutical molecules arrange in different forms and how does this affect their efficiency as a drug? And in what way does the molecular structure of a polymer influence the mechanical strength of plastics? We try to find the answers by developing theory and applying physical set-ups for advanced spectroscopic experiments, such as high magnetic fields, free-electron lasers and nuclear magnetic resonance.

Thanks to all our research facilities being located on the Radboud campus, you’ll be able to perform your research with advanced spectroscopic methods. You get to choose the focus of your research. Some students work on biomolecules while others prefer for example solar cells, plastics or hydrogels. It’s even possible to specialise in the development of new technology.

Studying at the interface between physics and chemistry means collaborating and communicating with people from different scientific backgrounds. Moreover, you’ll be trained to work with large-scale facilities and complex devices. These qualities will be useful in both research and company environments. Jobs are plentiful, as almost all industrial processes involve physical chemistry.

See the website http://www.ru.nl/masters/science/physical

Why study Physical Chemistry at Radboud University?

- Unlike at (many) other universities, all physical and chemical Material Science departments are combined in one institute: the Institute for Molecules and Materials (IMM). Therefore, collaborating is second nature to us.

- Radboud University hosts a large number of advanced spectroscopic facilities. As a Master’s student, you’ll get the chance to work with devices that are unique in Europe and even some that cannot be found anywhere else in the world.

- We have multiple collaborations with companies that, for example, analyse complex mixtures such as biofuels, characterising hydrogels, and develop anti-caking agents for rock-salt.

- During the courses and internship(s), you’ll meet a wide group of researchers in a small-scale and personal setting: a good starting point for your future network.

Career prospects

About 75 percent of our students start their career with a PhD position. However, eventually most students end up as researchers, policy advisors, consultants or managers in companies and governmental organisations. Whatever job you aspire, you can certainly make use of the fact that you have learned to:

Solve complex problems in a structured way

Understand the professional jargon of different disciplines and work in a multidisciplinary environment

Use mathematical computer tools

Perform measurements with complex research equipment

Graduates have found jobs at for example:

- ETH Zurich

- MIT

- UC Berkeley

- ASML

- AkzoNobel

- DSM

- Shell

- Unilever

- Various spin-off companies, like Noviotech and Spinnovation

Our approach to this field

Physical Chemistry at Radboud University goes beyond the characterisation of molecules and materials. We focus on fundamental knowledge: What do spectroscopic measurements really mean? And how can we explain the behaviour of certain molecules or materials?

- Advanced spectroscopy

Radboud University hosts a large range of advanced spectroscopic facilities. Think of the High Field Magnetic Laboratory, FELIX laboratory for free-electron lasers, NMR facility, scanning probe lab, etc. As a Master’s student in Physical Chemistry, you’ll get an overview of all these different methods, and you’ll be able to apply your knowledge as a member of a laboratory. Some of our students choose to focus on the development of new scientific methods.

- Bridging the gap between chemistry and physics

We believe in knowledge transfer between chemists and physicists. That’s why in Nijmegen all material research is combined in one institute: the Institute for Molecules and Materials (IMM). During your Master’s, you’ll experience this interplay in the lectures and internships. Once graduated, you’ll be able to understand the vernacular of both disciplines and in that way bridge the gap between chemistry and physics.

See the website http://www.ru.nl/masters/science/physical



Read less
The PCCP program aims to integrate Master students within academic and industrial fields of fundamental physical chemistry. Read more

The PCCP program aims to integrate Master students within academic and industrial fields of fundamental physical chemistry. Various aspects are concerned: study of matter and its transformations, analysis and control of physical and chemical processes, light-matter interactions and spectroscopy techniques, modelling of physical and chemical processes from molecular to macroscopic scale. Applications cover scientific fields ranging from nanotechnologies, photonics, optoelectronics and organic electronics, to environmental sensors and detection systems.

The PCCP Master is supported by high-level educational and research partners, represented by the consortium of universities engaged in the program. Students follow their courses within a challenging, international environment. Annual summer schools, organized by the consortium partners, complete the students’ training by offering a focus on several topics relative to PCCP.

Program structure

The first year of the Master degree is focused on the fundamental aspects of Physical Chemistry (thermodynamics, quantum chemistry, spectroscopy and numerical tools). International aspects of the program are introduced progressively during the first year, with some courses taught in English. A remote research project is also programmed to promote collaboration between students of the partner universities within the context of international scientific project management.

The second year is dedicated to specialized topics (advanced spectroscopy and imaging, photonics, computational chemistry, environmental sciences). All courses are taught in English and international mobility is mandatory (at least during the second semester for the Master thesis work), thus strengthening the international dimension of the degree. Numerous mutualized lectures are carried out featuring high-level, local research activity. Practical aspects are emphasized to favor the future integration of the student within the working world. 

Master students following the specific UBx-USFQ double degree program spend between five and nine months in Quito (Ecuador) to complete the Master thesis. During this period, assistant professor positions at the USFQ are available for Master students of the program. 

Year 1: Courses are in French, except when international students are attending.

  • Numerical methods (6 ECTS)
  • Thermodynamics (6 ECTS)
  • Quantum mechanics (6 ECTS)
  • Inorganic materials or structural analysis (6 ECTS)
  • Theory of chemical bond (6 ECTS)
  • Solid state physics (6 ECTS)
  • Analytical chemistry (6 ECTS)
  • Spectroscopy (6 ECTS)
  • Quantum Chemistry and molecular simulation (6 ECTS)
  • Remote research project/English (6 ECTS)

Year 2: Courses are in English.

  • Photonics, lasers and imaging (6 ECTS)
  • Dielectric and magnetic properties (6 ECTS)
  • Large scale facilities or auto-assembly, polymers and surfactants, or hybrid and nano-materials (6 ECTS)
  • Computational chemistry or energy, communication and information (6 ECTS)
  • Research project/English (6 ECTS)
  • Professional project (6 ECTS)
  • Master thesis/internship in one of the universities of the consortium (24 ECTS)

Strengths of this Master program

  • High-level educational and research environment, proposed by the partner institutions.
  • Master students acquire project management skills at an international level.
  • Mobility during the second year offers access to a wide range of courses and training.
  • International mobility facilitates integration within both academic and industrial domains.
  • Supported by the International Master program of the Bordeaux “Initiative of Excellence” program.

After this Master program?

After graduation, students are fully prepared to pursue doctoral studies and a career in research. They may also work as scientists or R&D engineers within the industrial field.

Associated business sectors:

  • Chemical analysis
  • Chemistry of the atmosphere and environmental science
  • Energy and photovoltaic technologies
  • Nanotechnologies
  • Aeronautics and space
  • Chemical industries, pharmaceutical technologies
  • Fine chemicals and cosmetics
  • Forensic science and artwork restoration
  • Molecular modeling and simulation

Academic research domains:

  • Spectroscopy/analytical chemistry
  • Astrochemistry
  • Properties of materials, solid state physics, reactivity at the interfaces
  • Nanotechnology
  • Imaging, bio-detection
  • Organic electronics, optoelectronics, and photonics
  • Theoretical chemistry, molecular modeling and simulation etc.

Other possible activities:

  • Teaching, education and dissemination of scientific knowledge
  • Linking public and private actors in research, development and marketing
  • Participating in the purchase and investment of scientific equipment


Read less
About the Master’s Degree. MP. 2. is a 2 year, course-based, full-time international research Master's Degree focused on Microbiology and related processes and Physicochemistry applied to food and wine Processes, offered by the. Read more

About the Master’s Degree

MP2 is a 2 year, course-based, full-time international research Master's Degree focused on Microbiology and related processes and Physicochemistry applied to food and wine Processes, offered by the University of Burgundy - Franche-Comté and AgroSup Dijon. This master aims at training future researchers and managers of the food and wine science and industry.

Indeed, today several factors influence and explain the dynamism of employment of researchers and managers in the field of the food science and food-processing industries:

  • the increase of the regulations and the control of agro-industries,
  • the changes of uses and technologies in the production and the elaboration of food,
  • the energy transition
  • Urgent need of innovation to meet the challenge to feed the whole planet in very close future.

Course content

The topic of the main courses of the first year of this international master will be the consumer’s perceptions of food and introduction to food and wine physical chemistry, microbiology and food processes. Then students will rapidly focus their courses (lectures, tutorials, practicals and projects) in biotechnology, analytical chemistry, physical chemistry, microbiology, mass transfer, food processes. Back to Dijon in the second year, the students have to choose an option to specialize in microbiology and microbiological processes or in physicochemistry applied to food and wine science. Finally they will have to perform a six months research internship in a laboratory (in France or in a foreign country) to validate a master thesis.

During the second semester of the first year all the students have to perform an international mobility in another European university through an Erasmus learning agreement.

Program description

Our approach is student-centered and participative. It combines lectures, seminars and practicals, workshops and individual/team projects. The modules below are indicative of those offered in this program. This list is based on the current organization and may change year to year in response to new needs in the food industry:

  • 1st year (60 credits)
  • 1st year, first semester (30 credits)

UE1-Toolbox (project management, statistics, mathematics, french-english, visits….)

UE2- Chemosensory perception, emotions, memory and food choices

UE3- Perception and sensory evaluation

UE4- Microbiology and Microbiological processes

UE5- Chemistry and Physical chemistry

 

  • 1st year, second semester (30 credits)

Units to be choose through a learning agreement with academic European partners through:

Analytical chemistry, biotechnology, bioinformatics, chemistry, microbiology, heat and mass transfer, physical chemistry, food technology and processing…..

 

  •  During the 1st year, students carry out a 2 months internship in a research laboratory or an industry.

 

  • 2nd year (60 credits)
  • 2st year, first semester (30 credits) students have to choose an option (1 or 2) to specialize in microbiology and microbiological processes (option 1) or in physical chemistry (option 2)

 

Option1:  New insigths in microbiology and food processes

UE1: Toolbox and project management

UE2A: Microbiology applied to food safety: pathogens and flora alterations

UE3A: Interactions and adaptations of microorganisms to their environments

UE4A: Food and wine design by the mean of microbiology

UE5A: Food processes and emerging technologies

 

Option1:  New insights in chemistry and physicochemistry for food design

UE1: Toolbox and project management

UE2B: Food and wine analysis

UE3B: Food and wine stability

UE4B: Food design by the mean of physicochemistry

UE5B: Chemistry and toxicology applied to food safety

 

  • 2st year, second semester (30 credits)

UE6: Training

During the 2nd year, students carry out a 6 months research internship (France or international) to validate a master thesis

 

About the University

The University “Bourgogne Franche – Comté” has been ranked 2nd best French University in the field of Food Sciences (Shangaï, 2017). Most of the lecturers and scientists involved in the Master’s program are members of the Food and Microbiological Processes research unit (UMR PAM). The PAM Research Centre plays a major role in scientific and technological advances in the field of food and wine. The joint scientific focus of all the members is to understand the physical, chemical, and biological phenomena that determine food quality with the ambition of developing new products and new food processes. In addition to the pedagogical team, international invited lecturers will be involved.

Funding and tuition fees

As an international postgraduate you will benefit from France’s low tuition fees and have access to a wide range of funding programs (Grants from I-SITE UBFC, ERASMUS, French embassies, AUF bursaries, etc.). You can also apply for funding from the Université Bourgogne Franche - Comté (25 grants in 2017).

Entry requirements

Applicants must hold a Bachelor’s Degree or equivalent (180 ECTS) in biology, food science, chemistry, physical chemistry or engineering science. Those having completed a Master’s Degree or equivalent (240 ECTS) related to biology, chemistry or physical chemistry can enter directly in the 2nd year.

Candidates should have good English proficiency (B2 required).

Career  

This Master’s Degree aims at providing students with job-relevant competencies and skills for a career as research project leader in academic laboratories, research institutes or R&D departments of international companies. The expertise will be in the field of microbiology and microbiological processes, chemistry and physical chemistry applied to food and wine science. Students will be encouraged to perform a PhD after this master degree

More Information

Facebook: https://www.facebook.com/AgrosupInternational/

LinkedIn: https://www.linkedin.com/company/11457379

YouTube: https://www.youtube.com/user/agrosupdijon



Read less
This course aims to. extend your comprehension of key chemical concepts and so provide you with an in-depth understanding of specialised areas of chemistry. Read more

This course aims to:

  • extend your comprehension of key chemical concepts and so provide you with an in-depth understanding of specialised areas of chemistry.
  • provide you with the ability to plan and carry out experiments independently and assess the significance of outcomes.
  • develop your ability to adapt and apply methodology to the solution of unfamiliar types of problems.
  • instil a critical awareness of advances at the forefront of the chemical sciences.
  • prepare you effectively for professional employment or research degrees in the chemical sciences.

What happens on the course?

You will build upon your previous undergraduate studies to develop an in depth knowledge of selected aspects of advanced cutting edge topics in chemistry.

MSc Chemistry Level 7 Programme (all modules are 20 credits unless otherwise specified)

*Advanced Topics in Organic Chemistry

*Advanced Topics in Inorganic Chemistry

*Advanced Topics in Physical Chemistry

*Advanced Topics in Chemical Analysis

MSc Research Project (120 credits)

*Select three from these four core option modules.

Why Wolverhampton?

  • Chemistry, and related science students, have excellent job prospects or go on to further study and/or research.
  • Our existing chemistry-related programmes, BSc Biochemistry and BSc Pharmaceutical Science have excellent student satisfaction rates (95% respectively) and we anticipate that our new Chemistry developments will achieve similar results.
  • Our compliment of existing, experienced staff (including several research professors), will expand as the course develops. We recently moved into our new £25m “state of the art” science facility. The new laboratory facilities were accompanied by generous investment in a range of new teaching, research and consultancy equipment.
  • Our chemistry-based subjects have maintained links with several local/regional chemical companies and we’ve had many successful collaborative research and development knowledge transfer programmes (KTP’s), our most recent was independently rated as “outstanding”, the highest grading possible. We shall continue to build upon our existing and expanding capacity to develop links with local employers.

Career path

The UK’s chemical industry is one of the leading industrial contributors to the national economy and there are many opportunities to apply chemical knowledge, principles and skills to a successful career in the chemistry, pharmaceutical science, chemical engineering or other chemistry-related disciplines. “Chemistry will underpin economic growth, say industry leaders”, it was reported in the Royal Society of Chemistry (RSC) publication, Chemistry World, on the “Strategy for delivering chemistry-fuelled growth of the UK economy”. Currently the Chemistry-using industries contribute ~£195bn to the UK economy with approximately £10bn coming from chemical manufacturing and £9bn from pharmaceutical manufacturing. The areas of chemical manufacture, process technology, product development and application, and formulation skills are key areas of these chemical sciences. In chemicals (including pharmaceuticals) 95.6% of UK companies are SME’s employing 42% of the total workforce and account for 29% of turnover.

If you choose not to go into the chemical industry there are still extensive career opportunities in teaching and academic research

What skills will you gain?

You will have evidenced good practical skills, be literate, numerate, have high level of IT skills and be capable of logical, scientific, critical thinking and problem solving. You will have developed a great deal of autonomous decision making and research capability and you will be able to evidence a range of professional, personal transferable skills and be well versed with the concept of continuous professional development. These skills will make you well equipped for the workplace, be it in a chemistry environment or the wider world of work in general, or for further research if you so choose.

Who accredits this course?

We are currently working with the RSC to achieve accreditation of our new BSc (Hons) Chemistry degree. This will be an on-going process over the first two years of the course, which started in September 2014, and will mean that our first cohort of graduates in July 2017 will be eligible for Associate Membership of the RSC shortly thereafter. We will look towards accreditation of our MSc courses in the foreseeable future.



Read less
Penn’s Master of Chemical Sciences is designed for your success. Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. Read more
Penn’s Master of Chemical Sciences is designed for your success
Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. As new discoveries are made, so are new industries — and new opportunities. Whether you’re currently a chemistry professional or seeking to enter the field, Penn’s rigorous Master of Chemical Sciences (MCS) builds on your level of expertise to prepare you to take advantage of the myriad career possibilities available in the chemical sciences. With a faculty of leading academic researchers and experienced industry consultants, we provide the academic and professional opportunities you need to achieve your unique goals.

The Penn Master of Chemical Sciences connects you with the resources of an Ivy League institution and provides you with theoretical and technical expertise in biological chemistry, inorganic chemistry, organic chemistry, physical chemistry, environmental chemistry and materials. In our various seminar series, you will also regularly hear from chemistry professionals who work in a variety of research and applied settings, allowing you to consider new paths and how best to take advantage of the program itself to prepare for your ideal career.

Preparation for professional success
If you’ve recently graduated from college and have a strong background in chemistry, the Master of Chemical Sciences offers you a exceptional preparation to enter a chemistry profession. In our program, you will gain the skills and confidence to become a competitive candidate for potential employers as you discover and pursue your individual interests within the field of chemistry. Our faculty members bring a wealth of research expertise and industry knowledge to help you define your career direction.

For working professionals in the chemical or pharmaceutical industries, the Master of Chemical Sciences accelerates your career by expanding and refreshing your expertise and enhancing your research experiences. We provide full- and part-time options so you can pursue your education without interrupting your career. You can complete the 10-course program in one and a half to four years, depending on course load.

The culminating element of our curriculum, the capstone project, both tests and defines your program mastery. During the capstone exercise, you will propose and defend a complex project of your choice, that allows you to stake out a new professional niche and demonstrate your abilities to current or prospective employers.

Graduates will pursue fulfilling careers in a variety of cutting-edge jobs across government, education and corporate sectors. As part of the Penn Alumni network, you’ll join a group of professionals that spans the globe and expands your professional horizons.

Courses and Curriculum

The Master of Chemical Sciences degree is designed to give you a well-rounded, mechanistic foundation in a blend of chemistry topics. To that end, the curriculum is structured with a combination of core concentration courses and electives, which allow you to focus on topics best suited to your interests and goals.

As a new student in the Master of Chemical Sciences program, you will meet with your academic advisor to review your previous experiences and your future goals. Based on this discussion, you will create an individualized academic schedule.

The Master of Chemical Sciences requires the minimum completion of 10 course units (c.u.)* as follows:

Pro-Seminar (1 c.u.)
Core concentration courses (4-6 c.u., depending on concentration and advisor recommendations)
Elective courses in Chemistry, such as computational chemistry, environmental chemistry, medicinal chemistry, catalysis and energy (2-4 c.u., depending on concentration and advisor recommendations)
Optional Independent Studies (1 c.u.)
Capstone project (1 c.u.)
Pro-Seminar course (CHEM 599: 1 c.u.)
The Pro-Seminar will review fundamental concepts regarding research design, the scientific method and professional scientific communication. The course will also familiarize students with techniques for searching scientific databases and with the basis of ethical conduct in science.

Concentration courses
The concentration courses allow you to develop specific expertise and also signify your mastery of a field to potential employers.

The number of elective courses you take will depend upon the requirements for your area of concentration, and upon the curriculum that you plan with your academic advisor. These concentration courses allow you to acquire the skills and the critical perspective necessary to master a chemical sciences subdiscipline, and will help prepare you to pursue the final capstone project (below).

You may choose from the following six chemical sciences concentrations:

Biological Chemistry
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Environmental Chemistry
Materials
Independent Studies
The optional Independent Studies course will be offered each fall and spring semester, giving you an opportunity to participate in one of the research projects being conducted in one of our chemistry laboratories. During the study, you will also learn analytical skills relevant to your capstone research project and career goals. You can participate in the Independent Studies course during your first year in the program as a one-course unit elective course option. (CHEM 910: 1 c.u. maximum)

Capstone project (1 c.u.)

The capstone project is a distinguishing feature of the Master of Chemical Sciences program, blending academic and professional experiences and serving as the culmination of your work in the program. You will develop a project drawing from your learning in and outside of the classroom to demonstrate mastery of an area in the chemical sciences.

The subject of this project is related to your professional concentration and may be selected to complement or further develop a work-related interest. It's an opportunity to showcase your specialization and your unique perspective within the field.

Your capstone component may be a Penn laboratory research project, an off-campus laboratory research project or a literature-based review project. All components will require a completed scientific report. It is expected that the capstone project will take an average of six months to complete. Most students are expected to start at the end of the first academic year in the summer and conclude at the end of fall semester of the second year. Depending on the capstone option selected, students may begin to work on the capstone as early as the spring semester of their first year in the program.

All capstone project proposals must be pre-approved by your concentration advisor, Master of Chemical Sciences Program Director and if applicable, your off-campus project supervisor. If necessary, nondisclosure agreements will be signed by students securing projects with private companies. Additionally, students from private industry may be able to complete a defined capstone project at their current place of employment. All capstone projects culminate in a final written report, to be graded by the student's concentration advisor who is a member of the standing faculty or staff instructor in the Chemistry Department.

*Academic credit is defined by the University of Pennsylvania as a course unit (c.u.). Generally, a 1 c.u. course at Penn is equivalent to a three or four semester hour course elsewhere. In general, the average course offered at Penn is listed as being worth 1 c.u.; courses that include a lecture and a lab are often worth 1.5 c.u.

Read less
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows. Read more
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows.

We make every attempt to allocate you to a supervisor directly in your field of interest, consistent with available funding and staff loading. When you apply, please give specific indications of your research interest – including, where appropriate, the member(s) of staff you wish to work with – and whether you are applying for a studentship or propose to be self-funded.

Visit the website https://www.kent.ac.uk/courses/postgraduate/18/chemistry

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Research areas

- Applied Optics Group (AOG):

Optical sensors
This activity largely covers research into the fundamental properties of guided wave interferometers, and their application in fields ranging from monitoring bridge structures to diagnostic procedures in medicine.

Biomedical imaging/Optical coherence tomography (OCT)
OCT is a relatively new technique which can provide very high-resolution images of tissue, and which has a major application in imaging the human eye. We are investigating different time domain and spectral domain OCT configurations.

The Group is developing systems in collaboration with a variety of different national and international institutions to extend the OCT capabilities from systems dedicated to eye imaging to systems for endoscopy, imaging skin and tooth caries. Distinctively, the OCT systems developed at Kent can provide both transverse and longitudinal images from the tissue, along with a confocal image, useful in associating the easy to interpret en-face view with the more traditional OCT cross section views.

The Group also conducts research on coherence gated wavefront sensors and multiple path interferometry, that extend the hardware technology of OCT to imaging with reduced aberrations and to sensing applications of optical time domain reflectometry.

- Forensic Imaging Group (FIG):

The research of the forensic imaging team is primarily applied, focusing on mathematical and computational techniques and employing a wide variety of image processing and analysis methods for applications in modern forensic science. The Group has attracted approximately £850,000 of research funding in the last five years, from several academic, industrial and commercial organisations in the UK and the US. The Group also collaborates closely with the Forensic Psychology Group of the Open University.

Current active research projects include:

- the development of high-quality, fast facial composite systems based on evolutionary algorithms and statistical models of human facial appearance

- interactive, evolutionary search methods and evolutionary design

- statistically rigorous ageing of photo-quality images of the human face (for tracing and identifying missing persons)

- real and pseudo 3D models for modelling and analysis of the human face

- generating ‘mathematically fair’ virtual line-ups for suspect identification.

- Functional Materials Group (FMG):
The research in FMG is concerned with synthesis and characterisation of functional materials, as exemplified by materials with useful optical, catalytic, or electronic properties, and with an
emerging theme in biomaterials. The Group also uses computer modelling studies to augment
experimental work. The research covers the following main areas:

- Amorphous and nanostructured solids
- Soft functional material
- Theory and modelling of materials

- Centre for Astrophysics and Planetary Science (CAPS):
The group’s research focuses on observational and modelling programmes in star formation, planetary science and early solar system bodies, galactic astronomy and astrobiology. We gain data from the largest telescopes in the world and in space, such as ESO’s Very Large Telescope, the New Technology Telescope, the Spitzer Space Telescope and the Herschel Space Observatory. We also use our in-house facilities which include a two-stage light gas gun for impact studies.

Staff are involved in a wide range of international collaborative research projects. Areas of particular interest include: star formation, extragalactic astronomy, solar system science and instrumentation development.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
USF’s Master of Science in Chemistry is designed for graduate students seeking a research-based degree with personalized direction from research advisers and training from experienced full-time faculty. Read more
USF’s Master of Science in Chemistry is designed for graduate students seeking a research-based degree with personalized direction from research advisers and training from experienced full-time faculty. Hands-on training opportunities prepare our students for a future in professional research and development, further studies in a PhD program or health-related professional programs, and teaching positions at the high school and community college level.

Full-Tuition Merit Scholarships

Students admitted to the program are funded, including a full graduate scholarship, and most earn a salary earned through teaching or research assistantships.

Research Areas

Students are accepted into specific research groups and immediately join a research project supervised by their assigned research adviser, with whom they develop a program of directed scientific research. To qualify for admission to the program, you must be interested in pursuing research in one of the following areas:

Analytical Chemistry: Lawrence Margerum & Ryan West
Biochemistry: Megan Bolitho & Janet Yang
Inorganic Chemistry: Lawrence Margerum
Medicinal Chemistry: Jie Jack Li
Organic Chemistry: Megan Bolitho & Jie Jack Li
Physical Chemistry: Giovanni Meloni & Ryan West

Read less
Overview. The Department of Chemistry is committed to providing excellence in teaching, research and in the training of PhD students. Read more

Overview

The Department of Chemistry is committed to providing excellence in teaching, research and in the training of PhD students. Our aim is to provide graduate students with every opportunity to enhance and develop their career, by providing good supervision, training in research methodology and associated professional skills; all of which will prepare them for their subsequent career.

The main objective of this programme is to provide graduate students with an integrated broad-based training in the discipline of chemistry including the most advanced research methodology in physical, organic, inorganic and analytical chemistry.

Closing date

Research applications are generally accepted at any time

Commences

September (or other agreed time)

Course Structure

Students must take a minimum of 10 credits in taught modules (at least 5 in generic/transferable modules and at least 5 in subject specific/advanced specialist modules) from the structured PhD programme.

Duration: 2 years Full-time, 3 years Part-time




Read less
Our society is currently facing major challenges in the areas of energy, medicine, ecology, construction and transportation. For further advancements in these key areas, it has become crucial to discover and develop. Read more

Our society is currently facing major challenges in the areas of energy, medicine, ecology, construction and transportation. For further advancements in these key areas, it has become crucial to discover and develop novel functional materials.

The International Master program Chemistry and Physics of Materials offered at the Department of Chemistry and Physics of Materials (CPM) prepares students for these important issues. It is opened to students from all countries and different scientific backgrounds and is taught in English.

It is focused on the synthesis, characterization and processing of synthetic and naturally-occurring functional materials. Through both fundamental and applied science courses, this program provides students with a complete understanding of the influence that the physical, chemical and biological properties of materials can have over their integration within functional devices and real-life applications. Students enrolled in this program will gain a well-rounded education in materials science and engineering that meets the needs of industry and academia.

Studying in Salzburg

The Austrian city of Salzburg is internationally renowned for its baroque architecture and is one of the best-preserved city centers north of the Alps. It was listed as a UNESCO World Heritage Site in 1997. The city is surrounded by mountains on its Western and Southern border providing a perfect location for hiking, skiing and mountaineering. It is well-known for its cultural life as well as for being the central location of the Sound of Music movie. 

No tuition fees

No tuition fees are required for students coming from the European Union. Third-country nationals are charged tuition fees of € 726.72 per semester. A small obligatory activity fee (currently € 18.70/semester) in support of the Austrian Student Union is collected from all students.

Organization (Curriculum)

Language of study: English

Academic Degree: M.Sc.

Program duration: 3 semesters

ECTS units: 90

Start-date: Winter (October) or Summer (March) semester

Structure

The CPM Master of Science program is an English-based curriculum. It is research orientated and is three semesters in length. A balanced mix of required core courses and elective modules provides a flexible and individualized curriculum. The first two semesters introduce a number of modern methods of synthesis, processing, and characterization of functional materials. The third semester is dedicated to the Master’s thesis research work.

Research 

During the course of the M.Sc. degree program, students will become familiar with the means of independent experimental scientific research, through a constant interaction with our Faculty members. This will provide students with the ability to find innovative solutions to material-, processing- and sustainability-related problems.

Further information about this curriculum is available here.



Read less
This international Master program provides a complete training offer in the domain of chemistry and physical chemistry of materials. Read more

This international Master program provides a complete training offer in the domain of chemistry and physical chemistry of materials.

Program outline

The aim of this Master program is to provide students with a complete training in the domain of chemistry and physical chemistry of materials, starting from the stage of conception, synthesis and elaboration, to physico-chemical characterizations, and their use for specific functions and applications.

The studied materials are very diverse (inorganic materials, polymers, colloidal materials, hybrids, composites etc…) and draw upon the main research fields studied within the laboratories of the University of Bordeaux.

Strengths of this Master program

  • Students develop skills based on the large range of materials topics studied in the University of Bordeaux campus laboratory: inorganic materials, colloids, polymers, hybrid and composite materials etc… 
  • Students are trained and equipped to enter both academic (fundamental research) or industrial (more applied research) fields. Whatever their profile, upon completion of their studies, they master a high level of skills in materials science.
  • Students have the opportunity to test and apply their skills during two training periods occurring in Year 1 (two months) and Year 2 (six months) of the Master. These training periods most often take place in the chemistry labs (eight in total) located on the Bordeaux campus but other opportunities are available and may arise in other academic or industrial laboratories.

After this Master program

  • Master students with good marks may apply for PhD applications in chemistry labs. The local labs offer many opportunities with funding included from various agencies. After a PhD, the majority of our students find employment in the R&D department of chemical companies of various sizes. 
  • Master students who do not wish to apply for a PhD have a suitable profile for engineering positions in companies.


Read less
Your programme of study. Study at one of the most renowned international Institutes for health nutrition research which has continued to play an important part in research for over 100 years at Aberdeen and internationally. Read more

Your programme of study

Study at one of the most renowned international Institutes for health nutrition research which has continued to play an important part in research for over 100 years at Aberdeen and internationally. The Rowett Institute informs policy and continues to join the dots between diet and health. If you are interested in health and dietary factors this programme will provide much theory and research towards answers and questions you want to ask. You look at dietary assessments, macronutrients, energy balance, metabolism, micronutrients, nutrition and body influence, body composition and nutrition throughout life. You also apply statistics to uncover answers to questions.

Understanding the link between diet and health can be the differentiator between good health and issues affecting public health. This major area of interest has grown considerably over the past few years with increasing awareness of disease and its prevention and the growth in population using health services and the service ability to cope in the future. There has also been a steady increase in the amount of professionals providing consultancy and support to people who have realised the link and want to take action to become healthier with books, films and many other supporting communications in what has almost become an industry in itself.

The Rowett Institute in Aberdeen is known UK wide and internationally as a major research contributor to many discoveries within food and nutrition, informing policy, debating health and food security and many other issues relating to the food we eat and its effects on our bodies.

The aim of this innovative programme is to provide training in human nutrition for graduates in biological or other sciences. The main focus of the programme is on the relationship between diet, health and disease, and the nutritional mechanisms involved in disease development and disease with three specialist areas harnessing Aberdeen’s unique range of expertise in Metabolic Nutrition, Molecular Nutrition and Public Health Nutrition. This programme can take in in several directions after graduation. You may want to work as a Nutritionist, within Public Health as a Policy Manger, as a Dietitian, or within private practice as a Fitness and Nutrition Counsellor or teaching and studying for a PhD.

Courses listed for the programme

Semester 1

  • Foundations of Nutrition
  • Assessment of Nutritional Status
  • Applied Statistics
  • Nutrition and Health
  • Generic Skills

Semester 2

  • Research Methods and Professional Practice

Optional

  • Clinical Nutrition
  • Molecular Nutrition
  • Public Health Nutrition

Semester 3

  • Specialist Research Project Human Nutrition
  • Diploma Literature Review in Human Nutrition

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You can specialise in Clinical Nutrition, Molecular Nutrition or Public Health Nutrition, the MSc is accredited by the Association for Nutrition
  • You are taught by researchers from the Rowett Institute of Health and Nutrition in a new purpose designed building at the health campus, Foresterhill
  • Lord Boyd Orr won a Nobel Peace Prize for contributions to the worldwide fight against hunger at University of Aberdeen and insulin was first developed at the university

Where you study

  • University of Aberdeen
  • 12 or 24 months
  • Full Time or Part Time
  • September

International Student Fees 2017/2018

Find out about international fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
This masters in chemistry by research is a one year course beginning in October each year and is intended for participants with high quality first degrees in chemistry or a closely related subject. Read more

This masters in chemistry by research is a one year course beginning in October each year and is intended for participants with high quality first degrees in chemistry or a closely related subject.

Introducing your course

Would you like to carry out an extensive piece of research whilst developing your theoretical skills? Our most research-intensive MSc programme includes a year-long research project embedded into one of our leading research groups and with access to our state of the art facilities.

Theory modules can be selected from topics in synthesis, advanced structural, analytical and spectroscopic techniques, materials chemistry, modelling, biological and medicinal chemistry, and electrochemistry.

Overview

 You can specialise in a research area of your choice, within one of our main six research groups:

This programme provides training in chemical research and involves both lecture based units and a one year research project that constitutes 66 per cent of the assessment. In addition to units to enhance knowledge in chemistry, participants are offered training with regard to safety in the laboratory and to improve their professional skills, such as data analysis and presentation and oral presentations for example.

View the programme specification document for this course



Read less
Your programme of study. Read more

Your programme of study

Do you have an undergraduate degree in Chemistry or a substantive element within the subject and are you wondering what to study next to get into a specialised field? An oil and gas chemist is a highly skilled, highly paid professional with a vital impact on the world's energy industry production both now and in the future. You would not only look at the production side of energy exploration but you are looking at bioremediation, analysis, flow risk, natural gas and in depth analysis to ensure that energy producers supply the correct quality constantly.

You also get involved in corrosion prevention in terms of facilities and development of a new supply of chemical products to ensure improved production and remediation techniques are applied. This is a highly skilled profession with international applications across global facilities often working within interdisciplinary teams. The programme draws on expertise at Aberdeen which has been known for its energy production since the 1970s. This has allowed for both strong academic rigour and industry input to develop a consistently high standard of industry relevant vocational advanced degrees specifically for the oil and gas industry. Programmes are run from the university or online from Aberdeen where it is possible to do this. Aberdeen, Scotland is located at the heart of the European oil and gas industry and on a par with Houston, Texas in terms of knowledge and skills in the city.

The programme addresses a growing need for environmental responsibility looking at production and refining materials, energetics and environmental impact remediation in a constantly evolving oil and gas environment and within a constantly changing regulatory environment internationally.

Courses listed for the programme

Semester 1

  • Materials for the Oil and Gas Industry
  • Processes, Materials and Bioremediation for the Energy Industry
  • Chemistry at Interfaces and Enhanced Oil Recovery
  • Analytical and Instrumentation Methods

Semester 2

  • Flow Assurance and Oil Field Chemicals
  • Chemistry of Refinery and Natural Gas
  • Applied Analytical and Instrumental Methods
  • Industrial Engagement and Applications

Semester 3

  • Extended Research Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The programme is accredited by the Royal Society of Chemistry and high commended as an exceptional programme
  • You are taught by a research intensive university with close interaction with the oil and gas industry
  • The department was ranked 1st IN Scotland for Chemistry research impact (REF 2014)
  • Your skills will enable you to perform a wide variety of industrial processes

Where you study

  • University of Aberdeen
  • 12 Months
  • Full time
  • September to January start

International Student Fees 2017/2018

Find out about fees:

Find out more from the programme page

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

You may be interested in:



Read less

Show 10 15 30 per page



Cookie Policy    X