• University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Cranfield University Featured Masters Courses
Staffordshire University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Cardiff University Featured Masters Courses
0 miles
Chemistry×

Masters Degrees in Pharmaceutical Chemistry

We have 74 Masters Degrees in Pharmaceutical Chemistry

Masters degrees in Pharmaceutical Chemistry equip postgraduates with the techniques to study drug design, function and development.

Taught MSc courses are typical in this field, though research-oriented MRes and MPhil programmes may also be available. Entry requirements normally include an appropriate undergraduate degree such as Chemistry, Biochemistry or Chemical Engineering

Why study a Masters in Pharmaceutical Chemistry?

Read more...

  • Chemistry×
  • Pharmaceutical Chemistry×
  • clear all
Showing 1 to 15 of 74
Order by 
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
What you will study. Students who have completed our . BSc Pharmaceutical Science degree . will follow Route A; all other students will follow Route B. Read more

What you will study

Students who have completed our BSc Pharmaceutical Science degree will follow Route A; all other students will follow Route B.

Route A: MSc Pharmaceutical Chemistry degree

  • Toxicology
  • Advanced Quality Control and Management in the Pharmaceutical Industry
  • Advanced Formulation Science
  • Advanced Separation Science
  • Project Design, Management and Enterprise with Prince 2 qualification
  • Major Project, Professional Practice for Pharmaceutical Chemists
  • Advanced Research Topics in Chemistry

Route B: MSc Pharmaceutical Chemistry degree

  • Advanced Drug Design and an Introduction to Formulation Science
  • Advanced Formulation Science
  • Quality Assurance in the Manufacture and Distribution of Medicines
  • Advanced Separation Science
  • Project Design, Management and Enterprise with Prince 2 qualification
  • Major Project, Professional Practice for Pharmaceutical Chemists
  • Advanced Research Topics in Chemistry

 

Teaching

The MSc Pharmaceutical Chemistry course is delivered primarily in block mode. A blended learning and teaching approach is used to provide you with key and subject specific skills. Typically all modules will consist of a mix of lectures, tutorials, and workshops/practical laboratory sessions. Students are provided with numerous learning activities including written coursework; project work; group work; practicals (with group sizes tailored to the activity); problem solving sessions; self­-study assignments; oral and poster presentations; independent study; work related learning and on-line self assessments.

The pharmaceutical chemistry course is full time for one year, and each module is generally around 48 hours of contact spread over two to three weeks. The first term is spent doing mainly taught modules, the second term is for the work placement/project.

Assessment

Assessments are undertaken on an individual, pair or small group basis, and include:

  • Formal unseen closed-book examinations
  • In-class tests
  • Laboratory/practical reports and skills
  • Oral presentations
  • Themed portfolios of work
  • Essays and dissertations
  • Computer assignments
  • Project work including planning, conducting, documenting and reporting
  • Overall monitoring of safe practice in the laboratory


Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr02/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits) or

Research Project Nodule (30 credits)

CM6022 Research Project and Dissertation in Pharmaceutical Analysis (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr03/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6026 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)

Elective modules

EV4002 Environmental Monitoring (10 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits)

Research Project Module (30 credits)

CM6020 Research Project and Dissertation in Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MSc Pharmaceutical Science programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing. Read more

The MSc Pharmaceutical Science programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing.

The programme will generate graduates with in-depth theoretical knowledge and extensive laboratory skills, allowing students to be involved in many disciplines of pharmaceutical science from drug discovery and medicinal chemistry through to product development and manufacture and including pharmaceutical analysis, quality control and quality assurance.

Teaching and learning methods

Delivery on this programme involves a series of lectures, seminars, workshops and lab-based exercises. Many of the lectures on this programme are delivered by leading industrial experts. Problem-based learning and case studies will provide students with experience of team-working that simulates an industrial setting. Students will develop team-working, critical thinking and analytical problem solving abilities which are important in the modern pharmaceutical industry.

Research project

The main part of the programme is a research project that runs over the whole academic year and gives students the opportunity to work with modern research equipment to carry out novel research. Project work will help students enhance practical skills, analytical thinking, time management, communication skills and independence.

Outcomes

The aims of the programme are to:

  • Acquire a sound core knowledge base together with knowledge of a specialist area of pharmaceutical science to support current and future developments of pharmaceutical and related science
  • Enhance students' critical, analytical, practical and communication skills relevant to the modern, multidisciplinary pharmaceutical industry
  • Develop research skills in terms of: planning, conducting, evaluating and reporting the results of investigations
  • Gain the knowledge and skills necessary to solve a range of pharmaceutical drug development and processing problems
  • Enable students to use and develop advanced theories and develop novel concepts to explain pharmaceutical development and processing data.

Full time

Year 1

Students are required to study the following compulsory courses.

Part time

Year 1

Students are required to study the following compulsory courses.

Year 2

Students are required to study the following compulsory courses.

Assessment

Students are assessed through examinations, coursework and a dissertation.

Careers

Graduates from this programme can pursue careers in the NHS, the pharmaceutical industry or industries manufacturing other health care products.



Read less
Developed in partnership with the pharmaceutical industry, the four pathways of our MSc in Pharmaceutical Industrial Advanced Training (PIAT) are postgraduate-level training programmes designed for scientists and managers working in the pharmaceutical industry and NHS in the fields of product development, manufacturing and quality assurance. Read more

Developed in partnership with the pharmaceutical industry, the four pathways of our MSc in Pharmaceutical Industrial Advanced Training (PIAT) are postgraduate-level training programmes designed for scientists and managers working in the pharmaceutical industry and NHS in the fields of product development, manufacturing and quality assurance.

  • Clinical Trials : This is ideal for those wishing to specialise in this key area and is of relevance to those working in the NHS, as well as in industrial settings.
  • Pharmaceutical Microbiology : We work with PharMIG on the content and curriculum of this programme, ensuring that it is recognised as a leader within the field.
  • Pharmaceutical Business Development and Licensing : Our programme is delivered in partnership with the Pharmaceutical Licensing Group, enabling you to learn from leaders in networking and the legal field.
  • Industrial Pharmacy : This programme covers the industrial pharmacist role from formulation through to QA and QC, and also regulatory affairs and lean processes (including Six Sigma).

Many of our units have been developed to support those seeking to build their QP portfolio and our team includes QPs who are willing to support your development through this pathway.

You can also take individual units as standalone CPD courses. Please contact us for further details of the units that can be taken.

We offer a three-day summer school each year to allow you to meet fellow students and your tutors while attending workshops to support your learning and development in the units.

For our Business Development and Licensing pathway, we offer a two-day winter school held in London that covers the units within this key course for business development executives.

Additional course information

Below are some links that may be useful if you're thinking about studying PIAT.

Coursework and assessment

Example dissertation titles

Below are examples of previous dissertations undertaken on the PIAT course.

  • 'Comparison of the Chemical and Physical Stability of Three Different Dry Powder Inhalers containing Salmeterol Xinafoate and Fluticasone Propionate' - Joanne Ridgway
  • 'Simulation of Modelling of Clinical and Pre-clinical Trial Supply Units' - Robert Jones
  • 'Evaluation of Inspection Efficiency in a Sterile Vial Manufacturing Process' - Julia Deacon
  • 'The Use of a Compaction Simulator in Preformulation' - Richard Iain Bell
  • 'An Evaluation of the Impact of the Environmental Protection Agency on the Irish Pharmaceutical Industry' - Michael G Bizzell
  • 'Physical Characterisation of a Multi-particulate Dosage Form using an Image Analysis System' - David K Brown
  • 'Commissioning and Validation of a Small-scale Manufacturing Facility for the Production of Aseptically-prepared Products and the Subsequent Validation for a Specific Product Line' - Sarah Dawson
  • 'Formulation of a Bioequivalent Immediate Release Tablet Preparation' - Roland T Green

Course unit details

All units commence in April and October. You can see a list of units in the table below, or view units specific to each of the four pathways:

Career opportunities

Our alumni have used the learning and opportunities gained from this course to advance their careers in a range of roles and areas.

Some have moved to management positions, while others have taken on roles with more responsibility, becoming team leaders, heads of projects or responsible for new and larger areas, regions or territories.

As part of the course, our students build networks of contacts and join a growing community of leaders within the industry.



Read less
Your programme of study. Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. Read more

Your programme of study

Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. The programme at Aberdeen is accredited by the Royal Society of Chemistry. Aberdeen is noted for Nobel prizes within Chemistry which include the invention of modern chromatography (Synge 1952) and the discovery of a new element - protactinium (Soddy 1921).  Teaching at Aberdeen is informed by world class research within food security. Class sizes are kept small to enable you to have strong teaching interaction and support in your studies. You will be taught by many staff in the environment group (TESLA) and (MBC)

The programme focuses on specialised modern analytical methodology. The range of industries or institutes where these skills are asked for includes the pharmaceutical industry, environmental institutions, research institutes and also the oil & gas industry. There are many new innovations which require chemists with advanced skills to analyse and test new methods of providing health via IOT devices, smart phones and small sensors deployed throughout the body to quickly provide analysis and customised recommendations.

Courses listed for the programme

Semester 1

  • Advanced Analytical Methodologies A and B
  • Practical Exercise and Professional Skills in Analytical Chemistry

Semester 2

  • Research Techniques and Professional Skills and Problem Solving Theory and Practice
  • Research Project in Analytical Chemistry

Semester 3

  • Research Project in Analytical Chemistry

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • A Royal Society of Chemistry accredited degree programme
  • Alumni feedback and mentor students on this programme
  • Main areas are Bimolecular Chemistry (Natural products, medicinal chemistry, environmental chemistry, surface and catalysis

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

Find out more from the programme page

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

You might be interested in:



Read less
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills. Read more
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills.

The programme comprises a broad range of modules covering the major aspects of analytical and pharmaceutical chemistry, complemented by studies in transferable and professional skills.

Core study areas include research methods, separation techniques, pharmacokinetics and drug metabolism, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include mass spectrometry and associated techniques, drug targets, drug design and drug synthesis, sensors, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

The programme is for those who wish to extend their knowledge in a particular area or broaden their field in order to increase their career prospects.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Read less
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis. Read more
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis.

The programme comprises a broad range of modules covering all the major analytical techniques, complemented by studies in transferable and professional skills, with the option to study aspects of medicinal and pharmaceutical chemistry if desired.

Core study areas include research methods, separation techniques, mass spectrometry and associated techniques, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include sensors, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis and innovations in analytical science.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries including pharmaceuticals, chemicals, food, environmental management, contract analysis laboratories, public laboratories, regulatory authorities and instrument manufacturers in either technical or marketing functions or preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Read less
The Organic Chemistry. Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Read more

The Organic Chemistry: Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Students gain outstanding training in synthetic organic chemistry applied to drug design, together with a breadth of experience in several areas of synthetic methodology and chemical biology.

About this degree

The programme provides a thorough foundation in drug design, advanced organic synthesis and biological chemistry, together with modules on research techniques, professional development and entrepreneurship. Students will carry out a substantial research project on organic/medicinal chemistry or chemical biology over a ten-month period.

MRes students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits) and a research project /dissertation (105 credits).

Core modules

Students take five 15-credit modules including two Master's-level chemistry modules, one transferable/research skills module, one analytical chemistry module, and one professional development module.

  • Transferable/Research Skills
  • Analytical Chemistry
  • Biological Chemistry
  • Principles of Drug Design
  • Professional Development

Optional modules

There are no optional modules for this programme.

Dissertation/report

Students will undertake a laboratory-based research project lasting 10months. An interim report is submitted after five months, and at the end of the project each student writes a dissertation, gives a short presentation and has a viva voce examination.

Teaching and learning

The programme is delivered through a combination of lectures, problem classes, workshops and projects. Assessment is through unseen written examination, coursework, project reports and presentations.

Further information on modules and degree structure is available on the department website: Organic Chemistry: Drug Discovery MRes

Funding

Students can be self-funded or find sponsorship from funding agencies such as research councils, the European Union, industry or charities.

There are also a number of Graduate School Scholarships and departmental bursaries and prizes available.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The MRes has been developed in response to the needs of the pharmaceutical and biotechnology sectors for highly qualified students as leaders in the discovery of new medicines. The pharmaceutical sector is a major employer in the UK and high-quality graduates with an understanding of the sector are always in demand. Our recent graduates have taken up PhD positions, are working in industry and have entered teacher training.

Why study this degree at UCL?

This degree involves a cutting-edge research project in the laboratory a member of research staff at UCL Chemistry. This is one of the leading research departments in the UK with staff undertaking world-leading research in all areas of chemistry and chemical biology.



Read less
* We still have a position on the course starting in September 2018 – this will lead to a placement in Synthetic Organic Chemistry. Read more

* We still have a position on the course starting in September 2018 – this will lead to a placement in Synthetic Organic Chemistry. Please apply by Tuesday 31 July*

Overview

Our pioneering two-year MSc programme is unique in the UK, and builds on the foundations of our very successful one-year programme in Drug Discovery and Pharmaceutical Sciences, to equip students with an in-depth knowledge of all aspects of drug discovery, and industry standard training. 

The course is designed to develop graduates who have exceptional scientific understanding and a host of transferable skills, including leadership skills. It is therefore especially recommended to high-achieving and ambitious students seeking an opportunity to gain extensive hands-on training in an industrial environment, working as part of a multidisciplinary team.

The course blends the two fundamental disciplines underpinning drug discovery and provides students with the opportunity to practise background theory within the productive, research-led environments offered by the School of Pharmacy. This school has world-leading expertise in the areas of drug discovery and pharmaceutical science, and students on this course will have the chance to learn directly from staff at the forefront of the field.

The course is technology-rich, using online learning packages to supplement face-to-face teaching and innovative assessment methods.

Placement year

The second year of the course has been developed in conjunction with the pharmaceutical industry to ensure currency and relevance, and to increase the future employability of graduates. Our aim is to train future leaders in the pharmaceutical sector.

The placement year with one of our industrial partners is arranged and guaranteed upon completion of a successful application and interview process. You will pay reduced tuition fees for the second year of the course, as you focus on your industrial training.

Due to limited places available, students who are unable to join the two-year programme will automatically be considered for our Royal Society of Chemistry accredited one-year programme, which includes the same disciplines underpinning drug discovery and research-led environment in which to practise the theory. 

Develop your skills

The overall aim of the MSc is to develop knowledge and understanding, cognitive skills, key skills and practical and professional skills in the area of Drug Discovery and Pharmaceutical Science. The overall drug discovery process from ‘concept to clinic’ provides the reference point for the education and training delivered in the more specific scientific and regulatory aspects.

Students will, therefore, be able to develop an understanding of the scientific principles underlying the main topic areas housed within the arena of drug discovery. In addition, upon completing the degree students will be able to make effective use of electronic communication and information search and retrieval to facilitate development of key critical skills with which to assess and analyse a broad array of scientific literature.

When taken together, the ethos of the programme is therefore to:

  • instil, develop and encourage an independent approach to learning, through initiative and self-motivation
  • provide the education and training required to become a translational scientist; with pertinent knowledge of basic and clinical science that can be applied to drug discovery and development
  • instil a critical understanding of disease/disorder biology and how it impacts upon human health
  • provide the necessary knowledge of chosen areas of normal and abnormal pharmacology and bodily function to equip the student with an understanding of how and why drugs are either rejected or taken forward for future development
  • present physicochemical and pharmacological principles alongside the regulatory processes necessary for new medicine discovery and entry into the clinic
  • contextualise this knowledge and principles to the process of drug design and development and therefore equip the graduate to apply knowledge to practical problems in pharmacology, drug discovery and pharmaceutical science
  • provide students with the practical skills and experience via a year-long training placement to excel in future leadership roles

Please visit the online prospectus for detailed module information.

Application process

Applicants who meet the eligibility criteria will be shortlisted for interview based on their whole application, including the personal statement. Your personal statement should include:

  • Why you are applying for this course, and why to the University of Nottingham in particular
  • Why you wish to pursue a career in drug discovery
  • How this course will help you achieve your long-term career goals, and why the industrial placement is key to this
  • What makes you suitable for this course compared to other applicants

The interview will include a technical component, which will involve questions relating to theoretical organic chemistry, synthesis and retrosynthesis. The final offer of a place will depend on the availability of placements.

To secure your place, you will need to pay a £2000 deposit. This will form part of your conditional offer as there are a limited number of placements offered in advance by providers. Once the deposit is paid and any other offer conditions are met, your place on the course is guaranteed. The deposit will be used to offset your tuition fee for the first year.

If you are unable to secure a place on the two-year course, after meeting initial eligibility criteria, you will be guaranteed an offer for the one-year course (which is accredited by the Royal Society of Chemistry). This course incorporates the same high quality taught module component but replaces the industrial placement year with a three-month research project at the University. 

Careers

Graduates can expect to move into a range of scientific careers, particularly with global pharmaceutical companies and pharmaceutical SMEs. Strong industrial links to the course will further enhance students’ employability.

The MSc also provides a strong grounding for students wishing to subsequently study for a PhD in a related subject area.



Read less
The. Masters (MSc) in Pharmaceutical Analysis. at Queen's University Belfast is taught jointly between the School of Chemistry and Chemical Engineering and the School of Pharmacy by leading experts in the field. Read more

The Masters (MSc) in Pharmaceutical Analysis at Queen's University Belfast is taught jointly between the School of Chemistry and Chemical Engineering and the School of Pharmacy by leading experts in the field.

The overall aim of the Master of Science in Pharmaceutical Analysis programme is to provide advanced training in chemical analysis, with a focus on applications in the pharmaceutical sector. We provide students with an appropriate skill-set, knowledgebase and practical experience in preparation for a career either in industrial or academic chemical analysis research in a supportive learning environment.

You will also receive hands-on training on state-of-the-art separation techniques, such as HPLC/MS and GC/MS, in the purpose-built Pharmaceutical Analysis lab designed in partnership with Agilent, a world-leading instrument manufacturer.

COURSE OVERVIEW

The overall aim of the programme is to provide advanced training in chemical analysis, with a focus on applications in the pharmaceutical sector, providing students with an appropriate skill-set, knowledgebase and practical experience in preparation for a career either in industrial or academic chemical analysis research in a supportive learning environment. The aims and objectives are to:

• prepare the student to move directly into graduate level employment in the chemical / pharmaceutical industry, or in a non-chemistry related industry,

• enhance their employability skills including the ability to work in a team, written and oral presentation skills, numeracy and preparation for self-motivated lifelong learning, professional development and service to society,

• gain appropriate knowledge and subject specific practical skills to permit students to progress to either an academic research degree (PhD) or an industrial research position,

• provide a practical research training through successful completion of a substantial piece of research in pharmaceutical analysis, and

• undertake research at the forefront of the analytical sciences at an advanced level.

The programme is designed to train students in the appropriate skills for them to be able to pursue a career in chemical analysis, either in an academic or industrial context, with particular focus on pharmaceutical analysis. The course is structured in a way that will ensure hands-on experience with the majority of techniques and instrumentation used nowadays in modern analytical laboratories.The course comprises of four taught modules that cover the key aspects of Pharmaceutical Analysis, including Advanced Separation Science, Advanced Spectroscopic Techniques, Solid State Characterisation Techniques and Quality Assurance and Control in the Pharmaceutical Industry.

RESEARCH PROJECT

All students will undertake a research project supervised by an academic member of staff from either the School of Chemistry and Chemical Engineering or the School of Pharmacy, followed by a written dissertation and an oral presentation, while the option to carry out an industry based project will be available.

MODE OF STUDY

The course is offered on a full-time and part-time basis, in order to accommodate students already in employment. The full-time course will last one year and the part-time course two years.



Read less
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. Read more
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. You will gain hands-on experience of working within a medicinal chemistry team during your research project.

The course is suitable if you have a background in the chemical or pharmaceutical sciences. It includes 120 credits of taught modules and a 60 credit practical project.

Themes include drug design, metabolism and toxicology with an understanding of synthetic organic chemistry. Building on University research strengths, specialist topics include bio-imaging and modern approaches to chemotherapy. You will develop expertise in drug design as practised in the pharmaceutical industry and in academia.

You will also gain knowledge of modern and experimental therapies developing in the Northern Institute for Cancer Research.

Delivery

The course is delivered through the School of Chemistry in collaboration with the Northern Institute of Cancer Research and the Faculty of Medical Sciences. The School will provide personal study support throughout your course.

Your work is in chemistry and biology laboratories using modern analytical equipment with access to computer clusters, specialist computer software, online resources, an extensive library and dedicated study areas. All teaching takes place at the university's campus in the centre of Newcastle upon Tyne.

Facilities

The School of Chemistry has modern teaching and research facilities along with major research strengths in drug and medicinal chemistry. Our new teaching laboratories, costing £1.9 million, have recently opened.

Read less
Available Positions for MS in Pharmaceutical Sciences. The Graduate Program in Pharmaceutical Sciences at Texas Tech University Health Sciences Center (TTUHSC) School of Pharmacy in Amarillo, Texas, is accepting applications from highly competent college graduates for admission into the M.S. Read more

Available Positions for MS in Pharmaceutical Sciences

The Graduate Program in Pharmaceutical Sciences at Texas Tech University Health Sciences Center (TTUHSC) School of Pharmacy in Amarillo, Texas, is accepting applications from highly competent college graduates for admission into the M.S. program in Pharmaceutical Sciences (deadline for fall is January 31). Qualified candidates must have a four-year undergraduate degree and meet all additional requirements stated under the Admission Guidelines for Prospective Students at http://www.ttuhsc.edu/sop/graduateprogram/prospective/default.aspx.

The M.S. program in Pharmaceutical Sciences is a competitive 24- to 30-month program that involves 18 months of coursework plus 6 to 12 months of research work in the biomedical and pharmaceutical aspects of drug development and discovery. Students may choose to do master’s research in cancer biology and therapy, neuroscience, medicinal chemistry, or drug delivery. Students who successfully complete the master’s degree may either find jobs as junior scientists in pharmaceutical industries or apply for our doctoral program in pharmaceutical sciences. Although no research or teaching assistantships are available for master’s students, doctoral students are eligible for $25,000/year research assistantship and master’s students are eligible for competitive scholarships to waive tuition and fees. Many of our alumni with doctoral degrees are highly successful professionally, working in pharmaceutical industries, academia, government (FDA), and other research institutes. College graduates interested in the M.S. program in Pharmaceutical Sciences at TTUHSC School of Pharmacy may contact Ms. Teresa Carlisle () with their queries and obtain more information about the program at http://www.ttuhsc.edu/sop/graduateprogram/default.aspx.



Read less
Medicinal and Biological Chemistry requires a thorough understanding of molecules, their structures, properties and synthesis, but it also demands the chemical understanding of the nature of biological structures, from macromolecules to cells, the design of pharmaceutical materials in the laboratory and their function in clinical settings. Read more

Medicinal and Biological Chemistry requires a thorough understanding of molecules, their structures, properties and synthesis, but it also demands the chemical understanding of the nature of biological structures, from macromolecules to cells, the design of pharmaceutical materials in the laboratory and their function in clinical settings.

The knowledge and skills acquired in the course will leave graduates well equipped to compete for positions related to 'drug discovery' in chemical, pharmaceutical or biotechnological companies.

The degree consists of advanced lecture courses in:

  • Synthetic Organic Chemistry
  • Chemical Biology
  • Medicinal Chemistry
  • Biophysical Chemistry

These are studied concurrently with a predominantly practical based course offering an introduction to research methods.

Students then proceed to a period of full-time research project work, leading to the submission of their Masters dissertation.

Programme structure

Lectures are given by leading researchers in the area of medicinal and biological chemistry.

The lecture courses are supported by tutorial sessions and assessed by examination in May.

The Introduction to Research Methods course includes an exciting problem solving exercise where you learn important skills such as Communicating Science, Innovation, Dealing with Intellectual Property and Grant Application Writing, together with a literature survey and written report, defining the scope of the subsequent individual research project work.

Learning outcomes

On completion of the course, students should have developed a depth of comprehension and critique in the core elements of their subject area, including:

  • critical analysis and management of data;
  • judging the relationship between theory and methodology;
  • assessment of the appropriate methods of data collection/analysis to address the research question;
  • assessment of relevance of previous studies;
  • critical thinking.

Additionally they will have enhanced their professional/practical skills through:

  • experience of research design and management;
  • advanced instrumentation or techniques;
  • production of scientific reports.

Students will also have the opportunity to develop transferable skills such as:

  • written, visual and oral delivery and dissemination of research findings;
  • interpersonal and communication skills;
  • computing proficiency;
  • organisation skills.

Career opportunities

Graduates are well suited to take up roles in the chemical and pharmaceutical industries, either in research and development or sales and marketing. You will gain valuable work experience in a real-life research environment.

Alternatively, a Masters degree is a precursor to a PhD degree.

Our courses teach students the valuable skills they need to also move into other areas outside chemistry. Careers in IT, management or finance are possibilities after completing your degree.



Read less

Show 10 15 30 per page



Cookie Policy    X