• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
Staffordshire University Featured Masters Courses
EURECOM Featured Masters Courses
Cranfield University Featured Masters Courses
University of Glasgow Featured Masters Courses
0 miles
Chemistry×

Masters Degrees in Petrochemical Chemistry

We have 15 Masters Degrees in Petrochemical Chemistry

Masters degrees in Petrochemical Chemistry provide advanced training in the chemical engineering of petroleum and petroleum compounds.

Courses range from taught MSc degrees, to research oriented MRes and MPhil programmes. Entry requirements normally include an appropriate undergraduate degree such as Chemistry or Chemical Engineering.

Why study a Masters in Petrochemical Chemistry?

Read more...

  • Chemistry×
  • Petrochemical Chemistry×
  • clear all
Showing 1 to 15 of 15
Order by 
What is the Master in Chemical Engineering Technology all about?. This master's programme includes a variety of disciplines. Read more

What is the Master in Chemical Engineering Technology all about?

This master's programme includes a variety of disciplines. In addition to fundamental chemical-scientific course units, the curriculum includes the fields of socio-economics (company management, economics) and chemical technology (engineering, separation techniques, chemical process technology, industrial process technology, surface chemistry, environmental technology, etc.). A flexible cross-campus elective package and a master's thesis conducted in either a research-specific or industrial context enable you to focus your studies according to your specific interests and career goals.

In the Sustainable Process and Materials Engineering option emphasis is placed on reliable technology that meets today's needs without jeopardising the welfare of future generations. This implies that materials and energy must be used efficiently, taking into account their impact on the environment. Thus, on the one hand this option is aimed at sustainable designing, development, and manufacturing of products and systems, and on the other it is aimed at development, properties, characterisation, production and processing of (new) materials.

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.

Objectives

 This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to chemistry. This programme offers a broad academic training in chemistry and chemical (processing) technology, in which a clear emphasis is placed on chemical analysis in production, quality management and research.

Degree holders are able to apply the acquired scientific knowledge independently in a broad social context. Furthermore, they have the necessary organisational skills to hold executive positions.

Career paths

The chemical sector (petrochemical, synthetic, pharmaceutical, etc.) offers a broad and fascinating field of work. On completion of this master's programme, you are equipped with the skills to lead and coordinate industrial production units and research, analysis and screening laboratories in technical-commercial, administrative and educational environments. You can also set up applied research and design activities on a self-employed basis.



Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
Your programme of study. Read more

Your programme of study

If you are considering a career or enterprise in oil and gas management or its associated supply chain this degree draws from the strengths of both academics at University of Aberdeen and industry professionals in the city who have helped to shape the programmes and modules from their learning and experiences. The university offers knowledge spanning fifty years in oil and gas production and commercialisation. The university has worked closely with the industry since its inception in Aberdeen city and in the 1970s to provide advanced level learning in the sector.

The programme uniquely offers a great range of knowledge across Geology and Engineering, Business and Law specific to the oil and gas industry but applicable to other similar industries with similar features. The degree offers great value in terms of the range of disciplines it covers and it will open up a range of careers internationally. It also gives you the confidence and knowledge to start up an enterprise yourself or work in mid to senior management within an already established company. Business and Law modules will be very useful to a great many commercial situations and sectors if you choose to apply your knowledge in the future. This also applies to Geology and Engineering which are also subjects in themselves when it comes to employment options.

This programme is ideal for small specialist companies working with National Oil Companies and energy ministries to commercialise innovation in science and technology and improve hydrocarbon exploration. It combines science with law politics and economics. Alumni work internationally across the supply chain and some of them have started their own businesses.

Courses listed for the programme

Semester 1

  • Geoscience in Oil Exploration
  • Introduction to Energy Economics
  • Drilling and Well Engineering
  • Management in Engineering Production, Risk Management and Psychology

Semester 2

  • Porfolio Optimisation - Decision Making and Investment Appraisal
  • Commercial Law and Regulatory Frameworks
  • Remediation Technology for Geosciences
  • Research Skills, Professional Development and Field Study

Semester 3

  • Project Oil and Gas Enterprise Management
  • Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You develop skills and knowledge to confidently talk to specialists across science, engineering, and commercialisation
  • Research informed subject areas include earth science, petroleum geology, sedimentology, geochemistry, tectonics, and more
  • We work with Apache, Statoil, BP, Chevron, Conoco Phillips, Shell, Pemex, to name but a few located in Aberdeen itself
  • You learn directly from industry professionals and academics with a high level of expertise

Where you study

  • University of Aberdeen
  • Full Time
  • September and January

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
Your programme of study. This course is ideally situated to take advantage of the oil and gas industry in Aberdeen city and its industry experts who also have a strong input into the programme content and structure. Read more

Your programme of study

This course is ideally situated to take advantage of the oil and gas industry in Aberdeen city and its industry experts who also have a strong input into the programme content and structure. This combination of academic overview and industry expertise ensures that you have a good range of skills and knowledge which is applicable to the global oil and gas and energy market so ideal if you are international or work or want to work internationally. Your skills are ideally placed to scope out maximising oil field recovery from declining field areas on top of upstream geoscience knowledge from initial exploration to mature and declining field recovery.

Aberdeen has been running this programme since 1973 to the current day, learning with the energy industry which is located in Aberdeen itself. This means that the programme is not only robust drawing on historical learning relevant to the current day, but highly regarded internationally. This strength of knowledge feeds down directly to you as a student and afterwards as a highly trained professional within the energy market.

Regarded as the best of its kind in the world the programme gives you vocational training in geoscience skills for minerals exploration and production, including: seismic interpretation, petrophysical analysis, geochemical evaluation, sedimentology, structural analysis, and reservoir modelling.

Courses listed for the programme

Semester 1

  • Geophysics and Petrophysics
  • Applied Sedimentology

Semester 2

  • Production Geology
  • Regional Exploration
  • Professional Skills Incorporating Field Trip

Semester 3

  • Project in Integrated Petroleum Geosciences

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • One of the best in the world in the heart of the European oil industry in Aberdeen
  • The programme focuses on upstream geoscience from initial exploration to recovering declining fields
  • You learn how to work in multidisciplinary teams involved in hydrocarbon exploration
  • You join 98% of graduates in the past decade employed immediately in the oil and gas industry

Where you study

  • University of Aberdeen
  • Full time
  • 12 Months
  • September start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
Your programme of study. If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. Read more

Your programme of study

If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. This qualification takes you across the full life cycle of production and it contains quite a few employable elements and modules in themselves giving you a wide variety of skills and knowledge to take with you into employment. You will often work with other specialists on offshore drilling platforms and facilities recording information on drilling, researching the most productive areas, ensuring maintenance and health and safety and a constant flow from a well. You also oversee some of the decommissioning aspects to redundant equipment on site.

This is a highly skilled job with a lot of responsibility associated to it, and you receive excellent input from University of Aberdeen which has been teaching oil and gas related subjects since the inception of the oil and gas industry in Aberdeen since the 1970s. Aberdeen is known the world over for energy production out of Aberdeen city and academics have worked with industry to ensure that knowledge is relevant now and in the future. You study use of technology and management of energy innovation projects.

Courses listed for the programme

Semester 1

  • Reservoir Engineering
  • Fundamental Safety Engineering and Risk Management Concepts
  • Fundamentals of Petroleum Geoscience

Semester 2

  • Oil and Gas Chemistry
  • Facilities Engineering
  • Project Management
  • Flow Assurance

Semester 3

  • Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The programme allows you to explore a wide range of career options due to its breadth and depth
  • You learn technological skills, health and safety plus risk management, planning and communication
  • The programme is fully accredited by IMechE and Energy Institute both industry recognised
  • You are uniquely situated in Aberdeen city, Scotland, home of the European energy industry

Where you study

  • University of Aberdeen
  • Full Time
  • 12 Months
  • September or January start

International Student Fees 2017/2018

Find out about fees

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less
Your programme of study. Read more

Your programme of study

Do you have an undergraduate degree in Chemistry or a substantive element within the subject and are you wondering what to study next to get into a specialised field? An oil and gas chemist is a highly skilled, highly paid professional with a vital impact on the world's energy industry production both now and in the future. You would not only look at the production side of energy exploration but you are looking at bioremediation, analysis, flow risk, natural gas and in depth analysis to ensure that energy producers supply the correct quality constantly.

You also get involved in corrosion prevention in terms of facilities and development of a new supply of chemical products to ensure improved production and remediation techniques are applied. This is a highly skilled profession with international applications across global facilities often working within interdisciplinary teams. The programme draws on expertise at Aberdeen which has been known for its energy production since the 1970s. This has allowed for both strong academic rigour and industry input to develop a consistently high standard of industry relevant vocational advanced degrees specifically for the oil and gas industry. Programmes are run from the university or online from Aberdeen where it is possible to do this. Aberdeen, Scotland is located at the heart of the European oil and gas industry and on a par with Houston, Texas in terms of knowledge and skills in the city.

The programme addresses a growing need for environmental responsibility looking at production and refining materials, energetics and environmental impact remediation in a constantly evolving oil and gas environment and within a constantly changing regulatory environment internationally.

Courses listed for the programme

Semester 1

  • Materials for the Oil and Gas Industry
  • Processes, Materials and Bioremediation for the Energy Industry
  • Chemistry at Interfaces and Enhanced Oil Recovery
  • Analytical and Instrumentation Methods

Semester 2

  • Flow Assurance and Oil Field Chemicals
  • Chemistry of Refinery and Natural Gas
  • Applied Analytical and Instrumental Methods
  • Industrial Engagement and Applications

Semester 3

  • Extended Research Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The programme is accredited by the Royal Society of Chemistry and high commended as an exceptional programme
  • You are taught by a research intensive university with close interaction with the oil and gas industry
  • The department was ranked 1st IN Scotland for Chemistry research impact (REF 2014)
  • Your skills will enable you to perform a wide variety of industrial processes

Where you study

  • University of Aberdeen
  • 12 Months
  • Full time
  • September to January start

International Student Fees 2017/2018

Find out about fees:

Find out more from the programme page

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

You may be interested in:



Read less
The Oil and Gas industry is a fast-growing sector which is going through a period of unprecedented change, and thousands of new jobs are likely to be created over the next few years. Read more

The Oil and Gas industry is a fast-growing sector which is going through a period of unprecedented change, and thousands of new jobs are likely to be created over the next few years. Our MSc degree is designed for those interested or already engaged in a career in the industry.

The MSc will help you develop a comprehensive understanding of the Oil and Gas industry, making you aware of recent developments as well as limitations and problems with the techniques in current practice.

The extractive industries are a complex business environment, and the degree aims to help you develop your understanding to improve business and management practice.

What happens on the course?

The course will provide you with both research and practice-based comprehension of the major areas of Oil and Gas Management. Particular subjects studied include such areas as:

  • International Commercial Awareness
  • The Future of the Oil and Gas Industry
  • Petroleum Chemistry and Refining
  • Strategic and Project Managment

Lectures are underpinned by tutorial groups, seminars, workshops and research projects to help you focus and develop practical skills, as well as research skills and problem-solving abilities.

Why Wolverhampton?

This degree is a multidisciplinary award, drawing resources from across the University and bringing in expertise from the sciences, engineering, technology and law.

You will receive tuition from both academics and a range of experienced industrial practitioners.

We are currently developing the Springfield Campus which will be Europe’s largest construction centre of excellence. Join us as the exciting development takes shape and from 2019/20 students in the School of Architecture and the Built environment will be taught from the new campus.

Career path

This MSc will qualify you to apply for a variety of management careers in oil refineries or the selling and distribution of natural gas and crude oil products. You could also look at postgraduate research at academic institutions worldwide.

What skills will you gain?

You will gain understanding of both your specialist subject area, as well as the wider organisational and industry framework. The specialist skills gained will help you operate in the Oil and Gas industry, solving complex problems and making decisions. You will be able to conduct research, either individually or collaboratively, being able to recognise and address ethical dilemmas and corporate social responsibility issues.



Read less
This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry. Read more

This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry.

You’ll study modules covering core topics related to the downstream activities of the industry including drilling and production technology, oilfield chemistry and corrosion, and chemical reaction processes. You’ll also have the option to take modules in topics such as separation processes, process optimisation and control, and multi-scale modelling and simulation.

Practical work supports your lectures and seminars, as you split your time between the lab and the classroom. You’ll also undertake a major research project investigating a specific topic in petroleum production engineering, which could relate to your own interests or career intentions. Taught by experts in our world-class facilities, you’ll gain the knowledge and skills to thrive in a challenging and exciting industry.You’ll benefit from the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of chemical and process engineering. We have facilities for characterising particulate systems for a wide range of technological materials, as well as facilities for fuel characterisation, environmental monitoring and pollution control. In our Energy Building, you’ll find an engine testing fuel evaluation and transport emissions suite and other characterisation equipment.




Read less
The MSc in Geochemistry is a comprehensive and rigorous course that combines compulsory and optional taught modules, field work, short courses, and a research dissertation. Read more

The MSc in Geochemistry is a comprehensive and rigorous course that combines compulsory and optional taught modules, field work, short courses, and a research dissertation. Hands-on experience developing a diverse set of laboratory skills is embedded into the course.

Highlights

  • A wide range of expertise in the field of geochemistry, underpinned by new state-of-the-art laboratory facilities.
  • A dynamic and research-intensive atmosphere is encouraged and is supportive of all students.
  • A focus on hands-on laboratory and field training throughout the course.

Teaching format

The MSc degree requires two semesters of full-time (or four semesters part-time) coursework, normally equivalent to a total of nine taught modules, and a 15,000-word dissertation, usually completed over the summer semester. The assessment for the taught modules is based on coursework and written examinations.

Modules

The modules in this programme have varying methods of delivery and assessment. For more details of each module, including weekly contact hours, teaching methods and assessment, please see the latest module catalogue which is for the 2017–2018 academic year; some elements may be subject to change for 2018 entry.



Read less
The hydrocarbon industry is one of our most important sectors, helping to cater for needs as diverse as domestic energy, transportation and plastics manufacturing. Read more

The hydrocarbon industry is one of our most important sectors, helping to cater for needs as diverse as domestic energy, transportation and plastics manufacturing. Our flexible MSc in Petroleum Geoscience provides you with the ideal training for a career in the hydrocarbon industry and related sectors. 

Our teaching on Petroleum Geoscience at Royal Holloway, University of London is informed by leading research and links to the international oil industry, meaning that you’ll benefit from the most relevant, up-to-date learning. The programme lets you select from a range of course modules to tailor your learning to your own preferences and ambitions.  

You’ll study in the renowned Department of Earth Sciences, which is consistently ranked among the UK’s top 10 (The Complete University Guide and The Guardian 2016) – contributing towards our leading research culture with your own Independent Research Project. You’ll become a part of a vibrant international graduate community, and make use of our extensive range of modern facilities as you work towards a rewarding future career. 

Our Petroleum Geoscience MSc has run since 1985, and has become recognised as one of the world’s premier training centres for the hydrocarbon industry. We’ve established excellent industry links, and have helped over 600 graduates from 32 countries progress into rewarding careers. Study Petroleum Geoscience at Royal Holloway and you’ll graduate with excellent employment prospects in a well-paid sector with job opportunities across the globe.

  • Benefit from a pioneering research culture, with 94% of Department of Earth Sciences research ranked world-leading or internationally excellent – no.2 in the UK. (REF 2014)
  • Graduate with a Masters degree from a department consistently ranked among the UK’s top 10 (The Complete University Guide and The Guardian 2016).
  • Study a programme internationally recognised as one of the industry’s best.
  • Graduate with excellent employability prospects in the UK and overseas.

Course structure

Core modules

  • Tectonics and Lithosphere Dynamics
  • Geophysical Analysis
  • Structural Analysis
  • Petroleum Systems
  • Independent Project

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

You will take either Sedimentology and Regional Tectonic Analysis or Reservoir Geoscienceand Advanced Structural Analysis.

  • Sedimentology
  • Regional Tectonic Analysis
  • Reservoir Geoscience
  • Advanced Structural Analysis

Teaching & assessment

The taught course units are assessed by a combination of written exams and coursework. Each of the six units comprises 10% of the total assessment for the MSc course. The remaining 40% of the assessment comes from the Independent Research Project.

Your future career

Petroleum Geoscience at Royal Holloway, University of London was first established in 1985, giving us ample time to build valuable links with the international oil industry. We’re now recognised worldwide as one of the hydrocarbon industry’s premier training facilities, having helped more than 600 graduates from 32 countries progress into rewarding careers in the Earth Sciences. 

This flexible Masters programme will equip you with a range of skills and knowledge necessary to achieve a fulfilling career in a sector with many well-paid career opportunities in the UK and abroad. There is huge demand for well qualified petroleum geoscientists, and as we’re considered world leaders in the field, you’ll graduate as a highly desirable candidate for employers in a variety of sectors. 

  • Jobs fairs, skills workshops and visits from industry representatives provide students with excellent career opportunities.
  • 90% of graduates in work or further education within six months of graduating.
  • Graduate with a desirable Masters degree from a recognised world-leader in the hydrocarbon industry.


Read less
Study petroleum and subsurface geoscience in Ireland and benefit from a modern interdisciplinary training delivered by leading researchers and industry specialists at University College Dublin. Read more

Study petroleum and subsurface geoscience in Ireland and benefit from a modern interdisciplinary training delivered by leading researchers and industry specialists at University College Dublin.

UCD School of Earth Sciences provides a one-year full-time Petroleum Geoscience MSc. The course offers bright and motivated geoscience graduates a vocational training in the range of technical fields associated with hydrocarbon exploration and production, as a prelude to a career in the petroleum industry or to further studies at PhD level.

 

The UCD training experience:

·        Covers all aspects of exploration, appraisal and development geoscience from pore to basin scale.

·        Involves substantial field-based instruction (23 days) in classic outcrop locations including the Clare Basin, Ireland; Bristol Channel, UK; Pyrenees, Spain.

·        Provides first-hand experience of typical industry workflows, experience with key industry software and a dedicated workstation for each student during the course.

·        Involves problem-based learning drawing on a wide range of geophysical, subsurface, outcrop and ‘behind-outcrop’ datasets.

·        Includes a three-month applied research project and possible industry placement.

 Scholarships Available

Students accepted on to the course can apply for the Woodside Energy Masters Scholarship in Petroleum Geoscience (€15,000) and MSc Scholarship Opportunities in Petroleum-Related Courses from the Department of Communications, Climate Action and Environment (up to €12,000). Please see here for further details.

Career opportunities

Graduates from the course will be equipped with all the necessary technical and transferable skills for a career in the petroleum industry or further studies at PhD level. Past students have found employment with exploration and production companies (including Shell, Petronas and Providence). Ireland is an EU country, and has a 24-month stay-back option allowing non-EU MSc graduates to remain in Ireland, working or seeking employment, for two years following graduation.

Course Content

Semester 1 covers modules in Petroleum Systems, Basin Analysis and Modelling, Seismic Techniques, Petrophysics, Depositional Systems and Structural Geology.

Semester 2 then focusses on Exploration Geology and Production Geoscience with team-based exercises mimicking industry asset-team projects. Geological field excursions are a key component of the course with three trips to see classic outcrops of the Clare Basin (western Ireland), Bristol Channel and Wessex Basins (southern England) and the Ebro Basin (Pyrenees, Spain).

During the final semester students undertake a three-month independent research project on an exploration or development related theme with opportunities for summer internships working on company data. 

 

Staff

The course builds on significant in-house research expertise in frontier exploration, rift and hyper-extended basin evolution, reservoir sedimentology, geophysical imaging techniques, fault analysis and reservoir and fluid flow modelling. Teaching is delivered by highly experienced academic staff, many of who have previously worked within industry and are recognised international leaders in a variety of petroleum geoscience disciplines.

 

UCD School of Earth Sciences

The UCD School of Earth Sciences has an internationally recognised reputation for excellence in teaching and research. It is the lead participant and host for the Irish Centre for Research in Applied Geosciences (iCRAG) which conducts research in hydrocarbons, geophysics, 3D modelling and marine geoscience, as well as in geochemistry, geophysics, groundwater and raw materials.

Founded in 1854, University College Dublin is Ireland’s Global University with 235,000 alumni across 165 countries. The university is ranked number 1 in Ireland for Earth & Marine Sciences (QS World University Subject Rankings 2017‌). 

 

How to Apply?

Application can be made via the UCD webpage here. There is a rolling deadline for this course until such time as all places have been filled; therefore early application is advised. Course entry will generally require a minimum 2.1 Honours degree or equivalent in Geology, Geoscience, Earth Science, Geophysics or a cognate discipline but relevant industrial experience will also be taken into account.

Click here to visit the MSc Petroleum Geoscience page on the University College Dublin website to find out more and apply!



Read less
This course will extend your existing knowledge of chemical engineering to provide you with advanced chemical engineering and process technology skills for exciting and challenging careers in the chemical and related process industries. Read more

This course will extend your existing knowledge of chemical engineering to provide you with advanced chemical engineering and process technology skills for exciting and challenging careers in the chemical and related process industries.

You’ll develop advanced knowledge in key areas such as reaction engineering, product development, process modelling and simulation, and pharmaceutical formulation or energy technology.

The course has been designed to provide a greater depth of knowledge in aspects of advanced chemical engineering and a range of up-to-date process technologies. These will enable you to design, operate and manage processes and associated manufacturing plants, and to provide leadership in innovation, research and development and technology transfer.



Read less
This course will build upon your existing scientific/engineering knowledge and skills to convert to a specialisation in chemical engineering. Read more

This course will build upon your existing scientific/engineering knowledge and skills to convert to a specialisation in chemical engineering. This MSc course will provide you with chemical engineering and process technology skills for exciting and challenging careers in the chemical and related process industries.

The course has been designed to provide a depth of knowledge in core and aspects of advanced chemical engineering and a range of up-to-date process technologies. These will enable you to design, operate and manage processes, and associated manufacturing plants, and to provide leadership in innovation, research and development, and technology transfer.

You’ll undertake a large research project and study a series of compulsory taught modules covering: chemical engineering principles; chemical process technology; chemical reaction processes, separation processes; plant design; batch process engineering; and chemical products design and development.



Read less
Chemistry research at Swansea University is vibrant and covers a wide range of research areas and interests, and will be growing at a fast pace over the next 2-3 years. Read more

Chemistry research at Swansea University is vibrant and covers a wide range of research areas and interests, and will be growing at a fast pace over the next 2-3 years. It is focused on 4 themes: Energy, Health, New and Advanced Molecules and Materials, and Water and the Environment. These research initiatives transcend the traditional discipline boundaries, integrate the core areas of inorganic, organic, physical and analytical chemistries and intersect with other scientific disciplines, engineering and medicine.

Key Features of MSc by Research in Chemistry

The new Department of Chemistry has excellent, purpose-built modern laboratories and has access to a diverse type of laboratories research infrastructures to develop its research. For example, high-quality, high-impact chemistry research is already taking place in World Class Centres based in Swansea such as The Centre for NanoHealthThe Institute of Mass SpectrometryThe Institute of Life SciencesThe Energy Safety Research InstituteMultidisciplinary Nanotechnology CentreThe Centre for Water Advanced Technologies and Environmental Research and The Materials Research Centre. The integration of the new Chemistry Department with Engineering, the Medical School and other departments in the College of Science provides an environment of research excellence and allows our chemistry students and research staff to invent, innovate and develop products in a way that is best suited to research in the 21st century and the need to generate disruptive, step-change advances with impact on current global challenges.

Department of Chemistry Research Group:

Energy: One of the key areas where advances in chemistry will be needed is in providing solutions to the global energy challenge. Chemistry research in Swansea University is participating in fundamental and applied research initiatives focused on: 

  • Conversion and storage of electrochemical and solar energy 
  • Capture, storage, and chemical conversion of carbon dioxide 
  • Development of new molecules, materials and nanotechnologies related to energy production, conversion, transport, and storage and their incorporation into devices.
  • Electron transfer reactions
  • Development and implementation of advanced characterisation techniques for acquiring in-depth understanding of photovoltaics, batteries and processes, which enable improvement in performance.
  • Routes for rapid processing and manufacturing at scale.
  • Optimized utilization of fossil energy 
  • Hydrogen as an energy vector

Health: Chemistry research provides new routes to more effective, cheaper and less toxic therapies and to non-invasive disease detection and diagnosis tools – a requirement to transform the entire landscape of drug discovery, development and healthcare, which is unaffordable and needs to benefit more patients. The chemistry research laboratories for this theme are adjacent to Swansea Medical School – which ranked 1st in the UK for research environment, and 2nd for overall research quality in the REF 2014.

Current chemistry research includes: 

  • Nanoparticle-based drug delivery
  • Antibody-drug conjugates
  • Nanoparticle-enabled chemoimmunotherapy and immunoengineering
  • Chemical systems for cell and tissue imaging
  • Stimuli-responsive and adaptive systems for drug activation and release
  • Construction of biofunctional artificial motor systems
  • Bioelectronic medicines and sensors
  • Mass spectrometric analysis of clinical samples, lipids, proteins and natural products
  • Pharmaceutical analysis and analytical technologies for medical/chemical analysis
  • Magnetic nanoparticles for magnetic resonance and multimodal imaging
  • Silicon processing, microfabrication and microelectronic fabrication
  • Self-assembly of colloids at interfaces and the use of colloids and nanoparticles dispersed in complex biological fluids
  • Microneedles for transdermal blood sampling and drug delivery
  • Biosensors – surface functionalization, fluorescence detection, electrochemistry, chemical sensing and lab-on-a-chip
  • Microfluidics and MEMS 
  • Studying structure, dynamics and function of enzymes as a route to understanding and controlling nature's chemistry
  • Natural products biosynthesis (particularly involving compounds with antibiotic, antifungal, or other medically relevant activity).

New and Advanced Molecules and Materials: There is major interest in synthesing, designing and controllling molecular and macromolecular assemblies at multiple length scales. In Swansea this research involves use of: 

  • Soft condensed matter including surfactants, colloids and polymers
  • Synthesis and characterization of transition metal-based and organic dye molecules for application in dye sensitized solar cells
  • Materials for efficient multiphoton absorption and upconversion 
  • Natural products
  • Molecular recognition and self-assembly to generate novel materials
  • Continuous flow synthesis
  • Molecular scale and nanoscale characterisation of ordered and amorphous assemblies
  • Development of nanocomposites comprising metallic nanoparticles and hydrogels
  • Autonomous and remotely guided micro- and nanoscale objects
  • Studying and tuning the characteristics of nanomaterials and biomaterials 

Water and the Environment: Chemistry at Swansea university has a strong profile in the development of analytical tools for measuring environmental impact, environmental impact assessment of polymer-based materials through their lifetime (including the effects of recycling and biopolymers), technologies for the efficient removal of environmentally harmful materials (and thus reduced emissions per output of discharge), membrane technologies and new methodologies for desalination, and for dewatering and killing pathogens for sanitation applications and the use of new molecules and materials for photocatalytic water splitting and development of self-propelled micro and nanomotor systems for environmental remediation. In collaboration with the Biocontrol and Natural Products (BANP) group in the Department of Biosciences, there is also growing research interest around the characterisation and application of natural products, in particular those derived from fungi and microalgae, to provide therapeutics and nutraceuticals and to act as agents for biocontrol and bioremediation.

Facilities in the Department of Chemistry

Our new state-of-the-art teaching laboratories are being built as part of a multi-million pound investment to create a chemistry hub for the high quality Chemical Sciences research being carried out across the Colleges of Science, Engineering and Medicine.

Careers for Chemistry Graduates

A chemistry qualification opens the door to a wide range of careers options, both in and out of the lab. There are endless interesting and rewarding science-based jobs available – these can be in research, outdoors or in other industries you might not have thought of. Please visit the Royal Society of Chemistry website for details. 

Find out more about the huge range of jobs in chemistry by exploring the job profiles on the Royal Society of Chemistry website (eg Cancer Researcher, Flavourist & Innovation Director, Chief Chemist, Sustainability Manager, Fragrance Chemist, Household Goods Senior Scientist, Analytical Scientist, and many more).



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X