• Ulster University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
University of Nottingham in China Featured Masters Courses
University College London Featured Masters Courses
Cass Business School Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
University of Bath Featured Masters Courses
0 miles
Physics×

Masters Degrees in Optical Physics

We have 37 Masters Degrees in Optical Physics

Masters degrees in Optical Physics involve advanced study of the creation and properties of electromagnetic radiation, and the means with which its interaction with matter can be manipulated and controlled.

Related subjects include Optical Technologies and Photonics Engineering. Entry requirements typically include an undergraduate degree such as Physics or Engineering Technology.

Why study a Masters in Optical Physics?

Read more...

  • Physics×
  • Optical Physics×
  • clear all
Showing 1 to 15 of 37
Order by 
The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Experimental Physics, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Experimental Physics

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Experimental Physics Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Experimental Physics degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Experimental Physics programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
Why this course?. The course explores the versatile field of optical technologies which supports many aspects of modern society. Optical technologies are expected to be a key enabling technology of the 21st century. Read more

Why this course?

The course explores the versatile field of optical technologies which supports many aspects of modern society. Optical technologies are expected to be a key enabling technology of the 21st century.

The course is based on the strong record of optical technologies across research divisions in the department of physics and the collaborating institutions:

You can choose classes relevant to your career interests from a wide range of topics including:

  • photonics and photonic materials
  • nanosciences
  • optics at the physics-life sciences interface
  • laser-based plasma physics
  • quantum optics and quantum information technology

You’ll put the knowledge gained in the taught components to use in a cutting-edge research project.

The course gives you the opportunity of exploring and mastering a large range of optical technologies. It enables you to put devices in the context of an optical system and/or application.

Who’s the course suitable for?

It’s suitable for those with a science or engineering background wanting to gain a vocational degree or to obtain a solid foundation for an optics-related PhD programme.

It’s also appropriate for those who’ve worked in industry and want to consolidate their future career by further academic studies.

You’ll study

The course consists of two semesters of taught classes followed by a three- month research project.

Facilities

This course is run by the Department of Physics. The department’s facilities include:

  • well-equipped optical labs for semiconductor photonics, semiconductor spectroscopy and fluorescence lifetime analysis.
  • the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
  • cutting edge high power laser research with SCAPA, the highest power laser in a UK university
  • a scanning electron microscopy suite for analysis of hard and soft matter
  • access to top-of-the-range high-performance computer facilities
  • industry standard cleanroom in the Institute of Photonics

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments, and research projects.

Assessment

The assessment includes written examinations, coursework, presentations and a talk, oral examination and report presenting and defending the research project.

Careers

The course gives you a thorough basis for a successful job in the photonics, optical and life sciences industries. It provides the basis to excel in more interesting and challenging posts.

The course can also be an entry route into an optics-related PhD programme.

Over the years, many of Strathclyde’s optics and photonics graduates have found successful employment at the large variety of local laser and optics companies as well as with national and international corporations.



Read less
This one year Masters degree in Optical Fibre Technologies will allow you to work in world class facilities, exploring specialised areas including fibre design and fabrication, passive fibre devices, and fibre lasers and their application in diverse areas such as optical sensing, manufacturing, medicine, defence and telecommunication. Read more

This one year Masters degree in Optical Fibre Technologies will allow you to work in world class facilities, exploring specialised areas including fibre design and fabrication, passive fibre devices, and fibre lasers and their application in diverse areas such as optical sensing, manufacturing, medicine, defence and telecommunication.

Introducing your degree

This MSc is the latest Masters programme within the renowned Optoelectronics Research Centre (ORC). It offers students access to an excellent range of photonics equipment and materials technologies within a vibrant community of researchers, led by some of the leading figures in the field of optical fibre technology and optical fibre related photonics.

Overview

The Optoelectronics Research Centre (ORC) has a leading international reputation for its research in optical fibre technologies. 

Our research in these areas range from specialised fibre design and fabrication, passive fibre devices, fibre lasers, and application of these fibre based technologies in areas as diverse as optical sensing, manufacturing, medicine, defence and telecommunication.

This MSc programme offers an advanced postgraduate education covering many of the fundamental concepts of these optical fibre technologies, and their application in real-world settings. You will gain experience of working in research facilities including the advanced optical fibre research laboratories and the Mountbatten Clean Room on a programme that includes:

  • Taught modules
  • Practical training in research techniques and modelling 4 month laboratory-based project relevant to optical fibre technology
  • 4 month laboratory-based project relevant to optical fibre technology

Working in our new, state-of-the-art cleanroom complex, and with access to our extensive range of optical laboratories, you will benefit from integrated transferable skills elements, and also from participation in the ORC's week long Industry Showcase event.

Whether you intend to gain skills and expertise that will enable you to take up a position in the industrial sector, or to embark on further postgraduate research, you will find that this new MSc course in Optical Fibre Technologies will give you the solid intellectual foundation and hands-on practical and technical skills that you need for a successful professional career in science, engineering and related optical fibre and photonics-based industry.

View the 2017/18 programme specification document for this course

View the 2018/19 programme specification document for this course

Career Opportunities

In completing an MSc degree at the ORC, you will work alongside some of the world’s leading optical fibre technology scientists, and spend time conducting novel research in our state-of-the-art facilities, keeping up to date with current research-trends in optical fibre technology and photonics.

Our students receive a solid grounding for their future careers in photonics related topics; over 600 ORC alumni work in strategic positions in the Photonics industry worldwide. MSc students are ideally suited to continuing in research PhD studies, or moving directly into the growing photonics industry, some of which you will experience directly during the Industry Showcase event and optional modules in the Southampton Business School as part of your MSc training.

Through an extensive blend of networks, mentors, societies and our on-campus startup incubator, we also support aspiring entrepreneurs looking to build their professional enterprise skills. Discover more about enterprise and entrepreneurship opportunities.



Read less
Why this course?. This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering. Read more

Why this course?

This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering.

You can choose classes relevant to your career interests from a wide range of topics including:

  • high-power microwave technology
  • laser-based particle acceleration and enabled applications
  • physics and the life sciences
  • materials and solid state physics
  • photonics
  • quantum optics and quantum information technology

On the programme you'll acquire:

  • in-depth knowledge of current and emerging theories, techniques and practices within the field of physics and the life sciences and the ability to apply these theories in a professional setting
  • problem-solving and high numeracy skills that are widely sought-after across the commercial sector skills required to use high-power microwave technology in an industrial environment
  • professional abilities in applying laser-based particle acceleration and enabled applications
  • in-depth knowledge of materials and solid state physics, photonics & quantum optics and quantum information technology

You‘ll put the knowledge gained in the taught classes to use on a research project. You can design the project to fit in with your interests and career plans.

The course gives you the opportunity to explore and master a wide range of applied physics skills. It teaches you transferable, problem-solving and numeracy skills that are widely sought after across the commercial sector.

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

Facilities

This course is run by our Department of Physics. The department’s facilities include:

  • cutting-edge high-power laser and particle acceleration research with SCAPA, enabling generation of radiation from the terahertz to the X-ray region, and biomedical applications
  • the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
  • a scanning electron microscopy suite for analysis of hard and soft matter
  • access to top-of-the-range high-performance and parallel computer facilities
  • state-of-the-art high-power microwave research facility in the Technology & Innovation Centre
  • advanced quantum optics and quantum information labs
  • several labs researching optical spectroscopy and sensing

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral exam.

Careers

What kind of jobs do Strathclyde Physics graduates get?

To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:

  • Medical Physicist
  • Senior Engineer
  • Professor
  • Systems Engineer
  • Treasury Analyst
  • Patent Attorney
  • Software Engineer
  • Teacher
  • Spacecraft Project Manager
  • Defence Scientist
  • Procurement Manager
  • Oscar winner

Success story: Iain Neil

Iain Neil graduated from Strathclyde in Applied Physics in 1977 and is an optical consultant, specialising in the design of zoom lenses for the film industry. He has received a record 12 Scientific and Technical Academy Awards, the most for any living person.



Read less
The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. Read more

Mission and goals

The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. The physical engineer can approach all sectors in which advanced technological systems are developed: lasers, photonics, materials technology, biomedical optics, etc.

The course has three possible finalizations:
- Nano-optics and Photonics
- Nano and Physical Technologies
- Semiconductor nanotechnologies

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Career opportunities

The graduate in Engineering Physics can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical optics.
The physical engineer can therefore find employment in companies working in the fields of materials engineering and optical technologies; companies which use innovative systems and technologies; public and private research centres; companies operating in the physical, optical and photonic technologies and diagnostics market.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Engineering_Physics.pdf
The objective of this programme is to prepare an engineer able to produce innovation both in the industrial environment as well as in basic research. The graduates will have a broad cultural and scientific foundation and will be provided with the latest knowledge of solid-state and modern physics, optics, lasers, physical technology and instrumentation, nanotechnologies and photonics. Thanks to the experimental laboratory modules, available within different courses, the students face realistic problems throughout their studies. Career opportunities in the Physics Engineering field are extremely wide and varied. In particular, graduates can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical technology.
Moreover, master graduates can work in strategic consultancy companies or can continue their Academic Education with a PhD Program toward a professional career in academic or industrial research. The programme is taught in English.

Subjects

Three tracks available: Photonics and Nanotechnologies; Nanophysics and nanotechnology; Semiconductor nanotechnologies

Subjects common to all the tracks:
Mathematical Methods for Engineering, Solid State Physics, Photonics I, Automatic Controls, Electronics, Computer Science, Management

Other subjects:
- TRACK: PHOTONICS AND NANO OPTICS
Micro and Nano Optics, Photonics II
- TRACK: NANOPHYSICS AND NANOTECHNOLOGY
Physics of Low Dimensional Systems, Electron Microscopy And Spintronics
- TRACK: SEMICONDUCTOR NANOTECHNOLOGIES
Physics of Low Dimensional Systems, Physics of Semiconductor Nanostructures, Graphene and Nanoelectronic Devices

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Why this course?. This course will train highly qualified physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry. Read more

Why this course?

This course will train highly qualified physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry.

You'll have the opportunity to undertake a three-month research or development project based with one of our industrial partners such as M Squared Lasers.

We have a long tradition of cutting-edge photonics research, which supports our courses. Much of this work has resulted in significant industrial impact through our spin-out companies and academic-industrial collaborations.

You'll also have the opportunity to develop your entrepreneurial skills by taking courses delivered by the Hunter Centre for Entrepreneurship.

You’ll study

The course is made up of two semesters of taught classes, followed by a three-month research project based with one of our industrial partners. The majority of your classes are delivered by the Department of Physics and cover the following:

  • research and grant writing skills, which are valuable in both academic and commercial settings
  • project training, including entrepreneurial and innovation skills training and a literature survey preparing for the project in the company
  • topics in photonics, covering laser physics, laser optics and non-linear optics
  • optical design, where you will learn about advanced geometrical optics and apply this knowledge to the design of optical systems, through the use of modern optical design software
  • photonic materials and devices, focusing on semiconductor materials physics and micro/nano-structures
  • advanced photonic devices and applications, covering quantum well structures, waveguides and photonic crystals

These classes are complemented by two classes delivered by the Department of Electronic & Electrical Engineering, which look at:

  • system engineering and electronic control which forms a key part of modern optical systems
  • photonic systems, where fibre optic communications systems and principles of photonic networks are discussed

Work placement

You'll be based with one of our industrial partners for a three-month project placement. This is your opportunity to experience how research and development operate within a commercial environment. It'll also give you a chance to form strong links with industry contacts.

The project is put forward by the company and supervised by both industrial and academic staff. Training on relevant skills and background will be received before and during the project.

Facilities

Scotland has a world-leading position in optics and photonics industry.Your project will be carried out mainly in the excellent facilities of our Scottish industry partners. Projects elsewhere in the UK and with international companies may also be possible.

Advanced research facilities are also available in:

Our research is strongly supported in equipment and infrastructure. This includes a newly opened 3-storey wing in the John Anderson Building as part of a £13M investment programme in Physics. Furthermore, the IoP and FCAP have recently relocated into the University's Technology & Innovation Centre (TIC) which at £90 million TIC is Strathclyde’s single-biggest investment in research and technology collaboration capacity. This new centre will accelerate the way in which researchers in academia and industry collaborate and innovate together in a new specifically designed state-of-the-art building in the heart of Glasgow.

Learning & teaching

In semesters one and two, the course involves:

  • lectures
  • tutorials
  • various assignments including a literature review
  • workshops where you'll gain presentation experience

The courses include compulsory and elective classes from the Department of Electronic & Electrical Engineering.

Over the summer, you'll undertake a three-month project based on practical laboratory work in a partner company. You'll be supervised by the industrial partner and supported by an academic supervisor.

Assessment

Assessment methods are different for each class and include:

  • written examinations
  • marked homework consisting of problems and/or essay assignments
  • presentations 

Your practical project is assessed on a combination of a written report, an oral presentation, and a viva in which you're questioned on the project.

Careers

A degree in industrial photonics can set you up to work in a range of jobs in physics and positions in other industries.

Typically, it can lead you to photonic technologies in industrial corporate research and development units, production engineering and applied academic laboratories.

Work experience is key

Employers want to know you can do the job so work experience is key.

This course has a strong focus on the relationship between academia and industry. It's a great opportunity to enhance your skills and provides a direct transition from university to the work place.

We have an excellent record of graduate employment in the Scottish, national and international optics and photonics industries.

Doctorate study

If you're interested in practical work with impact but are also interested in a further academic qualification, you can move on to study an EngD or a CASE PhD studentship. These can lead to a doctorate within industry or in close collaboration with industry.

Job roles

Our Physics graduates from photonics related courses have found employment in a number of different roles including:

  • Medical Physicist
  • Optical engineer
  • Laser engineer
  • Optical and laser production engineer
  • Research and production engineer
  • Senior Engineer
  • Systems Engineer
  • Software Engineer
  • Spacecraft Project Manager
  • Defence Scientist
  • Oscar winner


Read less
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy. Read more
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy.

We supervise MPhil students whose interests match the expertise we have in our four main research themes.

Condensed matter and nanoscale physics

We research electronic, optical, structural and magnetic properties of novel solid-state materials, particularly novel semi-conductor structures and nanostructured materials such as nanocrystals and nanowires. Theoretical studies use quantum mechanical approaches and involve massively parallel supercomputing.

Our development of new approaches to quantum modelling is changing the size and complexity of systems that can be modelled. Experimental work takes place at synchrotron facilities in Europe and America and related work takes place with colleagues in the Emerging Technology and Materials (ETM) Group in the School of Electrical, Electronic and Computer Engineering.

Biophysics

Our research in biophysics explores the structure and function of cells with the aim of creating artificial life and building machines based on biological parts. Projects include protocell development and the construction of a cyborg robot. An understanding of biological physics is needed that uses techniques including single molecule manipulation, atomic force microscopy and scanning tunnelling microscopy.

Astrophysics

Galaxies and the interstellar medium, the source of the galactic magnetic field and its influence on the structure of the galaxy form the focus of our research in astrophysics. There is also interest in cosmology, particularly the early universe and its origin in the big bang.

Ultrafast optics

Our research focuses on coherent optical control of atomic collisions in ultracold gases by femtosecond laser light for studies of problems in fundamental physics, such as the measurement of time dependence of the fundamental constants of nature. We also research metrological protocols for characterisation of broadband light, specifically those relating to foundational aspects of quantum mechanics and its application.

Read less
OUTLINE OF THE PROGRAM. The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. Read more

OUTLINE OF THE PROGRAM

The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, with thematic areas of growing demand for highly trained students, able to embark in a doctoral programme. This two-year master programme, fully taught in English for international students, is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC). It consists in both lessons and research project (3 month during the first year) / internship (5 months during the second year). This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon.

OUR MASTER PROGRAM

This two-year master programme, fully taught in English for international students, combines macroscopic with nano- and quantum-scale topics. The programme aims at developing and improving students’ skills in fundamental optical physics, optical fibre communications, optoelectronics, laser technologies, ultrafast femtosecond optics, quantum information science, nanophotonics, nano-microscopy and nano-biosciences. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, and with thematic areas of growing demand for highly trained students.

The master programme is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC), Engineering and Innovation through Physical Sciences and High-technologies (EIPHI), which also includes a doctoral programme in the same topics.

Almost half of the programme is devoted to research project (3 month during the first year) & internship (5 months during the second year) in an international research team, leading to a master thesis aiming at the standards of a research article. This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon, both having high international visibility in photonics, quantum technologies, nanotechnology and Engineering Sciences with researchers of high reputation.

TEACHING

Teaching consists of lectures, seminars by international researchers (both from the ICB & FEMTO-ST laboratories and from international partner universities), class tutorials, practical training & research work in laboratory, soft skills by professional coaches, technology and entrepreneurial courses by industrial partners, and French culture and language.

FUTURE CAREER PROSPECTS

Photonics is a very dynamic industrial sector in Europe and holds the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs. The master program offers intensive educational activities based on research activities of photonics, including nanophotonics and quantum technologies. It focuses on fundamental & applied research mainly targetting PhD programs, which will lead to recruitment in academia or in industry. A need of master degree students in the field of photonics & nanotechnologies, including specialties in quantum technologies boosted by the European flagship in Quantum Technologies (launched in 2018), able to embark on a PhD program both in academia & industry will strongly increase in a near future.

The master's Alumni Office helps alumni keep in touch with each other and organises alumni events.

LIFE IN DIJON, CAPITAL CITY OF BURGUNDY (FRANCE)

The two-year master program takes place at the University of Burgundy-Franche Comté, located in the scenic cities of Dijon & Besançon. The former capital city of the Duchy of Burgundy, Dijon is a medium-size French city, where you can enjoy a vibrant and active cultural life, as well as quick getaways to the countryside and the world famous neighbouring vineyards of the so-called “Golden coast” (city center, climates of the Burgundy vineyard, and gastronomy listed as world heritage sites in Dijon by Unesco). Life in Dijon is very affordable and accommodation easily accessible. The city is well-equipped with modern tramway and bus lines, making commuting between any place in Dijon and the University easy and convenient. Dijon is also host of several top-level professional sports teams (football, basketball, handball, rugby…), while also offering a large diversity of sports facilities.

STUDENT PROFILE

Students eligible to the master program PPN must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

GRANTS

Many scholarships will be awarded each year to high quality foreign students.

APPLICATIONS

During the first year, students have to pass the examinations associated with the Master 1 (60 ECTS credits) in order to proceed to the second year, Master 2 (60 ECTS), including research project and master thesis (33 ECTS).

For further information about how to apply, please directly contact the head of the master program, Professor Stéphane Guérin () and visit the webpage (http://www.ubfc.fr/formationen/).

Please also visit our dedicated webpage (http://blog.u-bourgogne.fr/master-ppn/).



Read less
This course is for you if you’re interested in exploring the fields of atomic, molecular and optical physics as well as experimental particle physics. Read more
This course is for you if you’re interested in exploring the fields of atomic, molecular and optical physics as well as experimental particle physics.

How will I study?

You’ll learn through lectures, workshops and personal supervision. Your time is split equally between the project and modules. Your project culminates in a dissertation (with a contribution from a research talk).

The modules are assessed by problem sets, with either open-notes tests or unseen examinations. You’ll attend research seminars and contribute to your group’s discussions of the latest journal papers.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

Our graduates go on to take research degrees, or take up employment in a range of industries in roles such as:
-Business/data analysis
-Computer programming
-Software development
-Teaching
-Research and teaching technical support

Read less
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more

The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

About this degree

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), three optional modules (45 credits) and a research project (90 credits).

Core modules

All students take the following core modules:

  • Atom and Photon Physics
  • Advanced Quantum Theory
  • Quantum Communication and Computation

Optional modules

Students choose one optional module from any of the Physics MSc degrees as well as two of the following optional modules:

  • Advanced Photonic Devices
  • Nanoelectronic Devices
  • Nanoscale Processing for Advanced Devices
  • Optical Transmission and Networks
  • Order and Excitations in Condensed Matter
  • Physics and Optics of Nano-Structures
  • Research Computing with C++
  • Research Software Engineering with Python

Research project and case studies

The MSc programme culminates in the quantum technologies project and attached case studies. All students undertake two case studies related to quantum technologies as well as an independent research project (experimental or theoretical), which will be the subject of a presentation and a dissertation of 10,000-15,000 words. Research-active supervisors will provide topics which will enable the students to make contributions to research in the field.

Teaching and learning

The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Further information on modules and degree structure is available on the department website: Quantum Technologies MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability

Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.



Read less
The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Read more

Overview

The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Major activities are based around optoelectronics, laser development, semiconductor physics, materials technology, ultra-fast phenomena, modern optics, and instrumentation. This expertise is brought to the teaching of our one-year taught MSc course (See http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/ ).

Previously called Optoelectronic and Laser Devices, this MSc course has been updated and enhanced, recognising the explosive growth of the UK and global photonics industry, fostered by the world-wide expansion in the exploitation of optical in telecommunications.

Students spend one semester at each university, and then undertake a three-month research project, normally in a UK company. Companies participating in recent years include Bookham Technologies, BAE Systems, Edinburgh Sensors, Cambridge Display Technology, Defence Science and Technology Laboratory, Indigo Photonics, Intense Photonics, Kamelian, Nortel, Renishaw, Rutherford Appleton Laboratory, Thales, Sharp and QinetiQ.

Find more information here http://www.phy.hw.ac.uk/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Photonics and Optoelectronic Devices. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

Students receive postgraduate training in modern optics and semiconductor physics tailored to the needs of the optoelectronics industries. Graduates gain an understanding of the fundamental properties of optoelectronic materials and optical fibres, and experience of the technology and operation of a wide range of laser semiconductor devices appropriate to the telecommunications, information technology, sensing, and manufacturing industries.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/

Read less
About the European MSc. Photonics. The European MSc. in Photonics is an English-taught multidisciplinary programme of two years (120 ECTS) which leads to a joint degree from Ghent University and Vrije Universiteit Brussel. Read more

About the European MSc. Photonics

The European MSc. in Photonics is an English-taught multidisciplinary programme of two years (120 ECTS) which leads to a joint degree from Ghent University and Vrije Universiteit Brussel.

Programme Highlights

  • Core and advanced photonics courses complemented with electronics, physics, optics and engineering
  • Strong focus on hands-on training in highly equipped research labs
  • International experience and exchange opportunities with 20 partners
  • Dynamic link with industry through lectures and internships

Structure

The first year you can develop your skills in laser engineering, optical communication, optical materials, microphotonics and optical sensors. The first semester is devoted to the fundamental basics of photonics, while the second focuses on engineering skills and photonics applications. As this master is organised by two leading universities in Belgium, you have the possibility to follow courses entirely at VUB or to choose specific courses at UGent. 

The second year opens the international gateway. Enrich your experience by choosing one of the international exchange tracks to follow courses, take up an internship or do a master thesis at an international partner. 

Approach

Core and advanced photonics courses:

The first year will be devoted mainly to a programme of core photonics courses with essentially the same content at all institutes, complemented by a number of advanced photonics courses as well as several courses in related disciplines and transferable skill courses.

Move to another location:

In the second year you will move to another location where you will continue to take advanced photonics, multidisciplinary and transferable skill courses and where you will carry out your master thesis (30 ECTS) in a photonics sub-field of their choice. In addition to the regular courses, all students will attend a two-week summer school at the end of the first and second year of the programme.

International opportunities

The second year contains a mandatory external mobility component. You can spend one semester or do your master thesis abroad. Alternatively, you can do both thesis and courses abroad during two semesters, or do a 12-week industrial internship in the photonics industry or a research institute. You choose one of the four mobility tracks, allowing you to define the extent of your stay abroad. It allows you to benefit from the enriching expertise of our partner universities.

Professional perspectives

The European MSc. in Photonics has all the right ingredints to prepare you for a bright future. The valuable internships with industry and research institutes abroad enhance your employability significantly. 

As consultant, engineer or researcher you might find yourself in the driver seat working domains as life sciences, biotechnology, telecommunications, sustainable energy, agrifood or Industry 4.0.



Read less
Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area. Read more

Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area.

This course is for you if you’re interested in the wonders of quantum physics and have a desire to exploit its full power.

We cover:

  • ion-trap quantum processors
  • ion-photon interfaces for the projected quantum internet
  • quantum simulators
  • superconducting quantum circuits
  • devices for quantum-enhanced metrology.

How will I study?

You’ll study in a Physics department ranked amongst the top 15 in the UK (Guardian University Guide 2018) where researchers are leading the way on the development of the world’s first quantum computer. We’re also a founder member of SEPnet, the South East Physics Network which supports vital research, teaching and development.

The course is split between taught modules and your individual project and you can choose to study full time or part time.

The taught part of the course comprises core modules plus a choice of options, allowing you to tailor the course towards your own particular interests. You’ll also attend research seminars and contribute to your group’s discussions of the latest journal papers.

Your project can take the form of a placement in industry, but is usually supervised by our faculty. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. Often the projects form the basis of research papers that are later published in journals.

Assessment is split equally between the project and modules. Modules are assessed with either open-notes tests or unseen examinations. Your project culminates in a dissertation (with a contribution from a research talk).

Careers

This course may be attractive to you if you aim to:

  • go on to doctoral study (theory or experiment)
  • work in a high-technology company exploiting cutting-edge technologies related to our research (this could involve development of quantum information technology, high-precision measurements and quantum metrology, and photonics/optical communications)
  • work in business/data analysis, research, computer programming, software development, or teaching


Read less
Our world class Masters degree in Photonic Technologies offers access to state-of-the-art facilities in our optical laboratories and clean room complex. Read more

Our world class Masters degree in Photonic Technologies offers access to state-of-the-art facilities in our optical laboratories and clean room complex. This one year course offers core and optional modules including lasers, microfabrication, silicon photonics, metamaterials, nanophonics and plasmonics.

Introducing your degree

This MSc is the first Masters programme within the renowned Optoelectronics Research Centre (ORC). It offers students access to an excellent range of photonics equipment and materials technologies within a vibrant community of researchers, led by some of the leading figures in the field of photonics.

Overview

The Optoelectronics Research Centre (ORC) has a leading international reputation for its research in Photonics, Metamaterials, and Optical Fibre Communications. This MSc programme offers an advanced postgraduate education covering these Photonic Technologies. You will gain experience of working in research facilities including the Advanced Laser Laboratories, and the

Mountbatten Clean Room on a programme that includes:

  • taught modules
  • practical training in research techniques and modelling
  • four-month project

Working in our state-of-the-art cleanroom complex with access to our extensive range of optical laboratories, you will benefit from integrated transferable skills elements and participation in the ORC's week long Industry Showcase event, where you will work with leading local and national photonics companies, share their views of the current photonics market and see first-hand their products and emerging photonics technologies.

Whether you intend to gain skills and expertise that will enable you to take up a position in a key industrial sector, or to embark on further postgraduate research, you will find that our MSc programme in Photonic Technologies will give you the solid intellectual foundation and hands-on practical and technical skills that you need for a successful professional career in science, engineering and related photonics-based industry.

View the programme specification document for this programme.

Career Opportunities

In completing an MSc at the ORC, you will work alongside some of the world’s leading photonics scientists, and spend time conducting novel research in our state-of-the-art facilities, keeping up to date with current research trends in photonics.

Our students receive a solid grounding for their future careers in photonics; over 600 ORC alumni work in strategic positions in the Photonics industry worldwide. MSc students are ideally suited to continuing in research PhD studies, or moving directly into the growing photonics industry, which you will experience during the Industrial Showcase as part of your MSc training.

Through an extensive blend of networks, mentors, societies and our on-campus startup incubator, we also support aspiring entrepreneurs looking to build their professional enterprise skills. Discover more about enterprise and entrepreneurship opportunities.



Read less
Optics is of key importance to many industrial sectors including medicine, ICT and high-tech manufacturing, and Imperial is one of the largest centres for optics-based research and application in the UK. Read more

Optics is of key importance to many industrial sectors including medicine, ICT and high-tech manufacturing, and Imperial is one of the largest centres for optics-based research and application in the UK.

Imperial has offered an advanced course in optics for over 80 years and the current MSc in Optics and Photonics draws on our experience as one of the largest centres for optics-based research and application in the UK.

The programme includes substantial laboratory and project work, often based within industry. There is also a chance to undertake a self-study project in an area of your choice. You finish with a four-month, full-time project, which may be in industry, an academic research group, or abroad.

Graduates of this course are well qualified to apply their knowledge in a wide range of industrial contexts, as well as in a research environment. They find employment with a variety of careers in industry and many move on to doctoral studies at leading universities in the UK and abroad.

The course lasts one year full-time and begins in October. A part-time course lasting two years is also available for students working for an appropriate organisation in the optics field.

We offer a wide range of core and optional modules, taught by experts in the field, allowing you to develop specialist knowledge across a wide range of optics.

The main coursework (i.e. lectures and laboratory work) takes place in the first two terms. The first term consists of foundation modules and laboratory work. In the second term, you choose further lectures from the optional modules available, and there is a laboratory project to design and build a working optical system.

Laboratory skills are recognised as an important element of the course and you will be required to undertake a total of approximately 160 hours of labwork.

Throughout the course, seminars will provide examples of both technical/scientific innovation and of entrepreneurship in research and industry.

A self-study activity in the second term is an introduction to project work (over approximately 50 hours) and is designed to encourage initiative and self-sufficiency in the learning process. It is assessed by a written report and oral presentation. This is one of several activities focused on developing your transferable skills.

You will spend the months of May to September on a major project, which is often carried out in industry.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/physics/optics-photonics/

If you have any enquiries you can contact our team at:



Read less

Show 10 15 30 per page



Cookie Policy    X