• Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Reading Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Swansea University Featured Masters Courses
0 miles
Mathematics×

Masters Degrees in Numerical Analysis

We have 35 Masters Degrees in Numerical Analysis

  • Mathematics×
  • Numerical Analysis×
  • clear all
Showing 1 to 15 of 35
Order by 
The Applied Mathematics group in the School of Mathematics at the University of Manchester has a long-standing international reputation for its research. Read more
The Applied Mathematics group in the School of Mathematics at the University of Manchester has a long-standing international reputation for its research. Expertise in the group encompasses a broad range of topics, including Continuum Mechanics, Analysis & Dynamical Systems, Industrial & Applied Mathematics, Inverse Problems, Mathematical Finance, and Numerical Analysis & Scientific Computing. The group has a strongly interdisciplinary research ethos, which it pursues in areas such as Mathematics in the Life Sciences, Uncertainty Quantification & Data Science, and within the Manchester Centre for Nonlinear Dynamics.

The Applied Mathematics group offers the MSc in Applied Mathematics as an entry point to graduate study. The MSc has two pathways, reflecting the existing strengths within the group in numerical analysis and in industrial mathematics. The MSc consists of five core modules (total 75 credits) covering the main areas of mathematical techniques, modelling and computing skills necessary to become a modern applied mathematician. Students then choose three options, chosen from specific pathways in numerical analysis and industrial modelling (total 45 credits). Finally, a dissertation (60 credits) is undertaken with supervision from a member of staff in the applied mathematics group with the possibility of co-supervision with an industrial sponsor.

Aims

The course aims to develop core skills in applied mathematics and allows students to specialise in industrial modelling or numerical analysis, in preparation for study towards a PhD or a career using mathematics within industry. An important element is the course regarding transferable skills which will link with academics and employers to deliver important skills for a successful transition to a research career or the industrial workplace.

Special features

The course features a transferable skills module, with guest lectures from industrial partners. Some dissertation projects and short internships will also be available with industry.

Teaching and learning

Students take eight taught modules and write a dissertation. The taught modules feature a variety of teaching methods, including lectures, coursework, and computing and modelling projects (both individually and in groups). The modules on Scientific Computing and Transferable Skills particularly involve significant project work. Modules are examined through both coursework and examinations.

Coursework and assessment

Assessment comprises course work, exams in January and May, followed by a dissertation carried out and written up between June and September. The dissertation counts for 60 credits of the 180 credits and is chosen from a range of available projects, including projects suggested by industrial partners.

Course unit details

CORE (75 credits)
1. Mathematical methods
2. Partial Differential Equations
3. Scientific Computing
4. Dynamical Systems
5. Transferrable skills for mathematicians

Industrial modelling pathway
1 Continuum mechanics
2. Stability theory
3. Conservation and transport laws

Numerical analysis pathway
1. Numerical linear algebra
2. Finite Elements
3. Optimization and variational calculus

Career opportunities

The programme will prepare students for a career in research (via entry into a PhD programme) or direct entry into industry. Possible subsequent PhD programmes would be those in mathematics, computer science, or one of the many science and engineering disciplines where applied mathematics is crucial. The programme develops many computational, analytical, and modelling skills, which are valued by a wide range of employers. Specialist skills in scientific computing are valued in the science, engineering, and financial sector.

Read less
Master’s Degree in Quantitative Finance and Risk Management draws on the recognized excellence of our engineering school in quantitative finance, and makes great use of the collaborations with the Universities of Paris-Dauphine and Cergy-Pontoise. Read more
Master’s Degree in Quantitative Finance and Risk Management draws on the recognized excellence of our engineering school in quantitative finance, and makes great use of the collaborations with the Universities of Paris-Dauphine and Cergy-Pontoise. The Master is primarily going to appeal to international students, "free movers" or those from our partner universities or for high-potential foreign engineers who are looking for an international career in the domain of finance. This program leads to a Master degree and a Diplôma accredited by the French Ministry of Higher Education and Research.

Objective

This Master’s degree covers the whole chain of quantitative finance, from theoretical aspects to the application in a professional setting. The chain can be described as follows:
o Description of the market and financial products
o Mathematical models of finance
o Mathematical models of risk
o Numerical resolution: computer-aided simulation
o Calibration and asset evaluation

Specific details of the Master:
o The Master came from the Financial Engineering option (IFI) taught at the ESITI for the last 13 years (all students from the option have found work as soon as their compulsory internships finished, and have an average salary 20% higher than the norm in this sector).
o In and of itself, the Master is intrinsically international.
o The theoretical teaching of this Master is very thorough, covering everything needed to know in the associated professions. As a consequence, the students are very adaptable within the work market.
o The Master offers a 3-skilled approach, in Computer Science, Mathematics and Finance.

Practical information
The Master’s degree counts for 120 ECTS (European Credit Transfer System) in total and lasts two years. The training lasts 1316 hours (646 hours in M1 and 670 hours in M2). The semesters are divided as follows:
o M1 courses take place from September until June and count for a total of 60 ECTS
o M2 courses take place from September until mid-April and count for a total of 44 ECTS
o A five-month internship (in France) from mid- April until mid- September for 16 ECTS. Usual indemnities are around 1000 € per month.

Non-French speakers will be asked to participate to a one week intensive French course that precedes the start of the program and allows students to gain the linguistic knowledge necessary for daily interactions.

Organization

M1 modules are taught from September to June (60 ECTS, 646 h):
• Mathematics
• Measure and Integration (2 ECTS, 20 h)
• Functional Analysis (3 ECTS, 30 h)
• Stochastic Processes-Discrete/Continuous Time (5,5 ECTS, 55 h)
• Optimization (2,5 ECTS, 30 h)
• Jump Processes and Application (3 ECTS, 30h)
• Partial Differential Equations (3 ECTS, 30 h)
 Calibration, Simulation and Numerical Analysis
• Monte Carlo Simulations (3 ECTS, 30 h)
• Finite Difference Methods (2,5 ECTS, 25 h)
• Calibration of Financial Models (2 ECTS, 20 h)
• Bloomberg trading room (3ECTS, 30h)
• C++ and Object Oriented Design (2 ECTS, 20 h)
• VBA Programming (3 ECTS, 30 h)
• Interdisciplinary Project (5 ECTS, 5 h)
 Finance and Insurance
• Introduction to Quantitative Finance (3 ECTS, 25 h)
• Risk Management in a mono-period Financial Market & Derivatives (4 ECTS, 40 h)
• Contingent Claims Valuation (3 ECTS, 30 h)
• Portfolio Management and Financial Risks (3 ECTS, 30 h)
• Mathematics Applied to Insurance (3 ECTS, 30 h)
• French as Foreign Language
• French as Foreign Language (4,5 ECTS, 96 h)

M1 modules are taught from September to June (60 ECTS, 646 h):
• Mathematics
• Measure and Integration (2 ECTS, 20 h)
• Functional Analysis (3 ECTS, 30 h)
• Stochastic Processes-Discrete/Continuous Time (5,5 ECTS, 55 h)
• Optimization (2,5 ECTS, 30 h)
• Jump Processes and Application (3 ECTS, 30h)
• Partial Differential Equations (3 ECTS, 30 h)
• Calibration, Simulation and Numerical Analysis
• Monte Carlo Simulations (3 ECTS, 30 h)
• Finite Difference Methods (2,5 ECTS, 25 h)
• Calibration of Financial Models (2 ECTS, 20 h)
• Bloomberg trading room (3ECTS, 30h)
• C++ and Object Oriented Design (2 ECTS, 20 h)
• VBA Programming (3 ECTS, 30 h)
• Interdisciplinary Project (5 ECTS, 5 h)
• Finance and Insurance
• Introduction to Quantitative Finance (3 ECTS, 25 h)
• Risk Management in a mono-period Financial Market & Derivatives (4 ECTS, 40 h)
• Contingent Claims Valuation (3 ECTS, 30 h)
• Portfolio Management and Financial Risks (3 ECTS, 30 h)
• Mathematics Applied to Insurance (3 ECTS, 30 h)
• French as Foreign Language
• French as Foreign Language (4,5 ECTS, 96 h)

M2 modules take place from September to Mid-April (60 ECTS, 670h)
• Mathematics
• Mathematical Statistics (2 ECTS, 21 h)
• Mathematical Tools in Finance (4,5 ECTS, 54h)
• Calibration, Simulation and Numerical Analysis
• Advanced Numerical Methods for PDEs in Finance(2,5 ECTS, 30 h)
• Advanced Spreadsheet Programming (2 ECTS, 24h)
• Simulations (2 ECTS, 24 h)
• Calibration (3 ECTS, 30 h)
• Theoretical and Practical Finance
• Theory of Contingent Claims (4,5 ECTS, 54 h)
• Interest Rate, Exchange and Inflation Markets (2,5 ECTS, 30 h)
• Portfolio Managment (2,5 ECTS, 30 h)
• Imperfect Markets (2 ECTS, 20 h)
• Dynamic Hedging and Risk Measures (2 ECTS, 21 h)
• Business Evaluation (2,5 ECTS, 35 h)
• Jump Processes and Applications (2 ECTS, 21 h)
• Careers and financial products (2 ECTS, 30 h)
• Practical Fixed Income Management (2 ECTS, 24 h)
• French as Foreign Language
• French as Foreign Language (4 ECTS, 72 h)
• Master's Thesis (9 ECTS, 150 h)
• Internship (22 weeks from mid-April to)

Teaching

Fourteen external teachers (lecturers from universities, teacher-researchers, professors etc.), supported by a piloting committee, will bring together the training given in Cergy.

All the classes will be taught in English, with the exception of:
• The class of FLE (French as a foreign language), where the objective is to teach the students how to understand and express themselves in French.
• Cultural Openness, where the objective is to enrich the students’ knowledge of French culture.
The EISTI offers an e-learning site to all its students, which complements everything the students will learn through their presence and participation in class:
• class documents, practical work and tutorials online
• questions and discussions between teachers and students, and among students
• a possibility of handing work in online

All Master’s students are equipped with a laptop for the duration of the program that remains the property of the EISTI.

Read less
This one-year master's course provides training in the application of mathematics to a wide range of problems in science and technology. Read more

This one-year master's course provides training in the application of mathematics to a wide range of problems in science and technology. Emphasis is placed on the formulation of problems, on the analytical and numerical techniques for a solution and the computation of useful results.

By the end of the course students should be able to formulate a well posed problem in mathematical terms from a possibly sketchy verbal description, carry out appropriate mathematical analysis, select or develop an appropriate numerical method, write a computer program which gives sensible answers to the problem, and present and interpret these results for a possible client. Particular emphasis is placed on the need for all these parts in the problem solving process, and on the fact that they frequently interact and cannot be carried out sequentially.

The course consists of both taught courses and a dissertation. To complete the course you must complete 13 units.

There are four core courses which you must complete (one unit each), which each usually consist of 24 lectures, classes and an examination. There is one course on mathematical methods and one on numerical analysis in both Michaelmas term and Hilary term. Each course is assessed by written examination in Week 0 of the following term.

Additionally, you must choose at least least one special topic in the area of modelling and one in computation (one unit each). There are around twenty special topics to choose from, spread over all three academic terms, each usually consisting for 12 to 16 lectures and a mini project, which culminates in a written report of around 20 pages. Topics covered include mathematical biology, fluid mechanics, perturbation methods, numerical solution of differential equations and scientific programming. 

You must also undertake at least one case study in modelling and one in scientific computing (one unit each), normally consisting of four weeks of group work, an oral presentation and a report delivered in Hilary term.

There is also a dissertation (four units) of around 50 pages, which does not necessarily need to represent original ideas. Since there is another MSc focussed on mathematical finance specifically, the MSc in Mathematical and Computational Finance, you are not permitted to undertake a dissertation in this field.

You will normally accumulate four units in core courses, three units in special topics, two units in case studies and four units in the dissertation. In addition, you will usually attend classes in mathematical modelling, practical numerical analysis and additional skills during Michaelmas term.

In the first term, students should expect their weekly schedule to consist of around seven hours of core course lectures and seven hours of modelling, practical numerical analysis and additional skills classes, then a further two hours of lectures for each special topic course followed. In addition there are about three hours of problem solving classes to go through core course exercises and students should expect to spend time working through the exercises then submitting them for marking prior to the class. There are slightly fewer contact hours in the second term, but students will spend more time working in groups on the case studies.

In the third term there are some special topic courses, including one week intensive computing courses, but the expectation is that students will spend most of the third term and long vacation working on their dissertations. During this time, students should expect to work hours that are equivalent to full-time working hours, although extra hours may occasionally be needed. Students are expected to write special topic and case study reports during the Christmas and Easter vacations, as well as revising for the core course written examinations.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mathematics and Computing for Finance at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mathematics and Computing for Finance at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc Mathematics and Computing for Finance course has been designed to meet the growing demand for specially trained mathematicians to work in the world’s financial markets and insurance.

Despite the current volatile nature of the banking industry, many banks still have a pressing need for employees with advanced mathematical skills who can further their understanding of turbulence in financial markets.

On the Mathematics and Computing for Finance course you will study different elements of both mathematics and computing in addition to developing your communication and presentational skills through a project you will undertake. As a student of the MSc in Mathematics and Computing for Finance programme you will be fully supported to ensure that your project is best suited to support your future career plans.

Aims of MSc in Mathematics and Computing for Finance

Have in depth knowledge in stochastic analysis and parts of advanced real analysis. (Fourier analysis and Partial Differential Equations) as well as parts of numerical analysis which are central for applications to finance.

Have developed advanced computing skills being essential for handling problems relevant for a job on the finance markets.

Have, as a mathematician, a good understanding of finance markets.

Have developed skills needed to work in a highly inter-disciplinary profession, including advanced programming techniques and communication skills across the borders.

Modules

Please visit our website for a full description of modules for the MSc Mathematics and Computing for Finance.

Careers

The ability to think rationally and to process data clearly and accurately are highly valued by employers. Mathematics graduates earn on average 50% more than most other graduates. The most popular areas are the actuarial profession, the financial sector, IT, computer programming and systems administration, and opportunities within business and industry where employers need mathematicians for research and development, statistically analysis, marketing and sales.

Some of our students have been employed by AXA, BA, Deutsche Bank, Shell Research, Health Authorities and Local Government. Teaching is another area where maths graduates will find plenty of career opportunities.

Research

The results of the Research Excellence Framework (REF) 2014 show that our research environment (how the Department supports research staff and students) and the impact of our research (its value to society) were both judged to be 100% world leading or internationally excellent.

All academic staff in Mathematics are active researchers and the department has a thriving research culture.

Student profiles

"Further to my studies at Swansea University as a Master of Science graduate in Financial Mathematics, I am currently working at Deutsche Bank in London as part of the Structured Financial Services team providing client services for corporate lending and debt portfolios. The complex nature of the course has helped me become a logical decision maker and a highly skilled problem solver. These transferable skills are very useful in the world of Finance since the role is highly challenging working towards deadlines and structured transaction targets. My studies at Swansea University have also enriched me with leadership, motivational skills and have enhanced my communication skills. I work in a close team of 10 people within a large department which encourages a culture that strives towards learning and effective teamwork. I thoroughly enjoyed my time at Swansea University and cherish the many fond memories. I am so pleased to be expanding my horizon within a major financial centre."

Rhian Ivey, BSc Mathematics, MSc Mathematics and Computing for Finance



Read less
Our MPhil/PhD degree in Mathematics and Statistics aims to train you to conduct research of a high academic standard and to make original contributions to the subject. Read more
Our MPhil/PhD degree in Mathematics and Statistics aims to train you to conduct research of a high academic standard and to make original contributions to the subject.

The programme involves coursework (where suitable) and research training, but its major component is the preparation of a substantial research thesis. The thesis should demonstrate a sound understanding of the main issues in the area and add to existing knowledge.

Research interests in mathematics and statistics include: mathematical finance, in particular the analysis of risk and numerical computation; mathematical physics and partial differential equations; approximation theory and numerical analysis; probability and stochastic processes, pure and applied; applied statistics and multivariate analysis; covariance modelling for repeated measures and longitudinal data; medical statistics; combinatorics, algebra and designs.

Our research

Birkbeck is one of the world’s leading research-intensive institutions. Our cutting-edge scholarship informs public policy, achieves scientific advances, supports the economy, promotes culture and the arts, and makes a positive difference to society.

Birkbeck’s research excellence was confirmed in the 2014 Research Excellence Framework, which placed Birkbeck 30th in the UK for research, with 73% of our research rated world-leading or internationally excellent.

Read less
Why does one car have more air resistance than another? How can a satellite be kept in an orbit around the earth? Applied mathematicians provide the necessary theoretical background to such questions. Read more
Why does one car have more air resistance than another? How can a satellite be kept in an orbit around the earth? Applied mathematicians provide the necessary theoretical background to such questions.

Applied Mathematics is concerned with the development and exploitation of mathematical tools for the analysis and control of technological problems. Mathematical modelling of the problem at hand plays a basic role, followed by (numerical) analysis and (computer) simulation. Interaction with other disciplines and with specialists in the fields of application is essential.

Two specialisations

- Systems and control
This specialisation deals with the mathematics behind designing stable controllers for satellites, purification plants or more general technical processes. Questions that arise include: is it possible to suppress perturbations in a system? Or, how can one stabilize and control a system without causing shocks?

- Computational science and numerical mathematics
This specialisation emphasizes modelling, analysis and the simulation of fluid flow problems. Although the applications can be quite diverse, the basic mathematical methods are much the same. If you are capable of computing the flow of air, you are able to predict the weather, and to design cars and aeroplanes. People who can simulate the flow of water can compute the optimal shape of ships, harbours and dikes.

Why in Groningen?

- Typical for Applied Mathematic in Groningen: the connection between mathematical theory and real-life problems
- You can combine courses from both Mathematics and Applied Mathematics
- Courses include related fields, e.g. Econometrics and Physics
- Internship and research opportunities

Job perspectives

A Master's degree in Applied Mathematics opens up many job opportunities. During the Master's programme you will learn to think in a logical, systematic, and problem-oriented way in a multidisciplinary environment. After having finished the programme you will be able to apply mathematics to a technical problem, and hence to work at the interface between theory and practice. These qualities are highly appreciated by employers.

Job opportunities are available in industrial companies, research institutes, as well as in universities. Examples of companies looking for applied mathematicians include Gasunie, Philips, Stork, Shell, Corus, KPN and small engineering bureaus. Examples of research institutes are the National Aerospace Laboratory (NLR, the picture on these pages comes from the NLR), WL/Delft Hydraulics, KNMI and TNO.You can start a university career by working as a PhD student, which means working for four years on a research project and writing a thesis. After having successfully defended this thesis, you will be awarded a PhD degree. Afterwards you can continue an academic career or start a career in industry.

Job examples

- Research institutes
- Engineering bureaus
- Industrial companies
- Universities

Read less
Gain an understanding of advanced mathematics, concentrating on pure, applied and numerical mathematics. This grounding allows you to choose the mathematical orientation that best fits your tastes and aspirations. Read more
Gain an understanding of advanced mathematics, concentrating on pure, applied and numerical mathematics. This grounding allows you to choose the mathematical orientation that best fits your tastes and aspirations.

Mathematics at Sussex plays an important role in the current development of areas as diverse as:
-Analysis and partial differential equations
-Geometry and topology
-Mathematical physics
-Mathematics applied to biology
-Numerical analysis and scientific computing
-Probability and statistics

This course is for you if you’re a mathematician in industry or a mathematical educator looking for training, or if you’re preparing to do research.

How will I study?

In the autumn and spring terms, you choose from a range of core modules and options.

In the summer term, you work on your MSc dissertation. You can choose from a wide range of dissertation topics. You’ll be supervised by research-active faculty members.

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course
-Application deadline: 3 April 2017

Careers

Our graduates go on to careers in:
-Academia
-Scientific research
-Teaching
-Management
-Actuarial roles
-Financial management and analysis
-Programming
-Scientific journalism

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mathematics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mathematics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc Mathematics course has been designed for students who wish to build on their BSc, extending their range of mathematics expertise across a broader spread of topics, and demonstrating their literature research skills through an extended dissertation.

Such a qualification will mark graduates out as having a broader and deeper understanding of mathematics, and the skills required to pursue a significant project with a high level of independence, presenting their results in a written report. This will give MSc Mathematics graduates an edge in the ever more competitive jobs market.

On the Mathematics course you will study different elements of mathematics in a broad sense - including mathematical elements of computing if desired - in addition to developing your research, project management, and written communication skills through a project you will undertake. As a student of MSc in Mathematics, you will be fully supported to ensure that your project further develops an excellent foundation for your future career plans.

Modules

Modules on the MSc Mathematics include:

• Algebraic coding theory

• Biomathematics

• Black-Scholes theory

• Data science

• Differential geometry

• Fourier analysis

• Ito calculus

• Lie theory

• Numerical analysis

• Partial differential equations

• Stochastic processes

• Statistical mechanics

• Topology

Please visit our website for a full description of modules for the MSc Mathematics.

On top of the Mathematics modules you study, you will also complete a dissertation as part of your studies.

Facilities

The Aubrey Truman Reading Room, located in the centre of the Department of Mathematics, houses the departmental library and computers for student use. It is a popular venue for students to work independently on the regular example sheets set by their lecturers, and to discuss Mathematics together.

Our main university library, Information Services and Systems (ISS), contains a notably extensive collection of Mathematics books.

Mathematics students will benefit from the £31m Computational Foundry for computer and mathematical sciences which will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

Careers

The ability to think rationally and to process data clearly and accurately are highly valued by employers. Mathematics graduates earn on average 50% more than most other graduates. The most popular areas are the actuarial profession, the financial sector, IT, computer programming and systems administration, and opportunities within business and industry where employers need mathematicians for research and development, statistically analysis, marketing and sales.

Some of our Mathematics students have been employed by AXA, BA, Deutsche Bank, Shell Research, Health Authorities and Local Government. Teaching is another area where Mathematics graduates will find plenty of career opportunities.

Research

The results of the Research Excellence Framework (REF) 2014 show that our research environment (how the Department supports research staff and students) and the impact of our research (its value to society) were both judged to be 100% world leading or internationally excellent.

All academic staff in Mathematics are active researchers and the department has a thriving research culture.

http://www.swansea.ac.uk/postgraduate/taught/science/mscmathematics/

Student Profile

"Further to my studies at Swansea University as a Master of Science graduate in Financial Mathematics, I am currently working at Deutsche Bank in London as part of the Structured Financial Services team providing client services for corporate lending and debt portfolios. The complex nature of the Mathematics course has helped me become a logical decision maker and a highly skilled problem solver. These transferable skills are very useful in the world of Finance since the role is highly challenging working towards deadlines and structured transaction targets. My studies at Swansea University have also enriched me with leadership, motivational skills and have enhanced my communication skills. I work in a close team of 10 people within a large department which encourages a culture that strives towards learning and effective teamwork. I thoroughly enjoyed my time at Swansea University and cherish the many fond memories. I am so pleased to be expanding my horizon within a major financial centre."

Rhian Ivey, BSc Mathematics, MSc Mathematics and Computing for Finance



Read less
Mathematical sciences are at the heart of science and technology. Mathematicians and statisticians are valuabe to industry and the solving of long-term challenges. Read more

Why this course?

Mathematical sciences are at the heart of science and technology. Mathematicians and statisticians are valuabe to industry and the solving of long-term challenges.

The MSc in Applied Mathematical Sciences - aimed at graduates with a good undergraduate degree in mathematics or statistics - offers a gateway to a wide variety of career opportunities.

The course will provide students with a sound theoretical understanding of important areas of applied mathematical sciences, including:
- applied analysis
- mathematical biology
- numerical analysis
- network theory
- probability
- mathematical & statistical modelling

See the website https://www.strath.ac.uk/courses/postgraduatetaught/appliedmathematicalsciences/

Facilities

The Department of Mathematics & Statistics has teaching rooms which provide students with access to modern teaching equipment and access to University computing laboratories that are state-of-the-art with all necessary software available.

Students on the course will also have a common room facility which allows them a modern and flexible area. This is used for individual and group study work and also as a relaxing social space.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Classes are delivered by a number of teaching methods, including:
- lectures (using a variety of media including electronic presentations)
- tutorials
- computer laboratories
- coursework
- projects

Teaching is student-focused, with students encouraged to take responsibility for their own learning and development. Classes are supported by web-based materials.

Assessment

The form of assessment varies from class to class. For most classes, assessment involves coursework and exams.

Careers

We work closely with the Strathclyde Careers Service, which offers advice and guidance on career planning and looking for and applying for jobs. In addition they administer and publicise graduate and work experience opportunities.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This programme allows students to 'Upgrade to Success'. In other words, you can upgrade a non-standard qualification, or a third class honours degree, to a level equivalent to that of a first or second class honours degree. Read more
This programme allows students to 'Upgrade to Success'. In other words, you can upgrade a non-standard qualification, or a third class honours degree, to a level equivalent to that of a first or second class honours degree.

Why study Mathematics at Dundee?

The qualification that you gain from this course is a marketable addition to your CV. The skills gained through this course are highly transferable; maths is the backbone of many disciplines along a broad range of categories such as sciences and economics.

The material that is currently in the Mathematics programme covers a wide range of topics including mathematical biology, fluid dynamics, magneto hydrodynamics and numerical analysis and scientific computing as well as core subjects such as analysis and mathematical methods.

Please note that this course does not provide a direct entry route to Masters or PhD programmes at Dundee: applications for these programmes are considered separately.

The Graduate Diploma in Mathematics is made up by selecting eight Level 3 or Level 4 modules available in the Division of Mathematics. Each of these consists of 22 lectures and 11 tutorials. The standard of presentation is equivalent to that of an honours degree, and if you have a degree without honours or similar attainment, you may find a Graduate Diploma is a useful way of upgrading your qualifications.

Candidates may take any modules from the pool available, subject to timetable constraints. A total SCOTCAT credit count of 120 credits must be achieved, and since most of the relevant modules are 15 credits each, the normal program of study would consist of eight modules, four taken in each semester.

What's so good about Mathematics at Dundee?

The Mathematics division at the University of Dundee boasts an enviable staff to student ratio. Teachers are able to get to know students on a personal level, enhancing the support they can provide and improving our students' learning experience.

We also provide 24/7 access to computers dedicated to students studying mathematics to further support you throughout your studies.

How you will be taught

You will learn by a combination of lectures, tutorials, workshops and computer practical classes.

What you will study

The Graduate Diploma in Mathematics is made up by selecting eight Level 3 or Level 4 modules available in the Division of Mathematics. Each of these consists of 22 lectures and 11 tutorials. The standard of presentation is equivalent to that of an honours degree, and if you have a degree without honours or similar attainment, you may find a Graduate Diploma is a useful way of upgrading your qualifications.

Candidates may take any modules from the pool available, subject to timetable constraints. A total SCOTCAT credit count of 120 credits must be achieved, and since most of the relevant modules are 15 credits each, the normal program of study would consist of eight modules, four taken in each semester.

How you will be assessed

Coursework (20%) and a written examination (80%).

Careers

Mathematics is central to the sciences, and to the development of a prosperous, modern society. The demand for people with mathematical qualifications is considerable, and a degree in mathematics is a highly marketable asset.

Mathematics graduates are consistently amongst those attracting the highest graduate salaries and can choose from an ever-widening range of careers in research, industry, science, engineering, commerce, finance and education.

Many of our graduates enter the financial sector following career paths in accountancy, banking, the stock market and insurance.

Even if you do not take your mathematics any further than university, employers know that mathematics graduates are intelligent, logical problem solvers. With this training behind you, the career options become almost limitless.

Find out more from our Careers Service website.

Read less
This programme reflects and benefits from the strong research activities of the Department of Mathematics. The taught modules and dissertation topics are closely aligned with the interests of the Department’s four research groups. Read more

This programme reflects and benefits from the strong research activities of the Department of Mathematics.

The taught modules and dissertation topics are closely aligned with the interests of the Department’s four research groups:

  • Mathematics of Life and Social Sciences
  • Dynamical Systems and Partial Differential Equations
  • Fields, Strings and Geometry
  • Fluids, Meteorology and Symmetry

During the first two semesters you will take a range of taught modules from an extensive list of options, followed by an extended research project conducted over the summer under the supervision of a member of the department, culminating in the writing of a dissertation.

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Careers

Mathematics is not only central to science, technology and finance-related fields, but the logical insight, analytical skills and intellectual discipline gained from a mathematical education are highly sought after in a broad range of other areas such as law, business and management.

There is also a strong demand for new mathematics teachers to meet the ongoing shortage in schools. 

As well as being designed to meet the needs of future employers, our MSc programme also provides a solid foundation from which to pursue further research in mathematics or one of the many areas to which mathematical ideas and techniques are applied.

Educational aims of the programme

  • To provide graduates with a strong background in advanced mathematical theory and its applications to the solution of real problems
  • To develop students understanding of core areas in advanced mathematics including standard tools for the solution of real life applied mathematical problems
  • To develop the skill of formulating a mathematical problem from a purely verbal description
  • To develop the skill of writing a sophisticated mathematical report and, additionally, in presenting the results in the form of an oral presentation
  • To lay a foundation for carrying out mathematical research leading to a research degree and/or a career as a professional mathematician in an academic or non-academic setting

Programme learning outcomes

Knowledge and understanding

  • Knowledge of the core theory and methods of advanced pure and applied mathematics and how to apply that theory to real life problems
  • An in-depth study of a specific problem arising in a research context

Intellectual / cognitive skills

  • Ability to demonstrate knowledge of key techniques in advanced mathematics and to apply those techniques in problem solving
  • Ability to formulate a mathematical description of a problem that may be described only verbally
  • An understanding of possible shortcomings of mathematical descriptions of reality
  • An ability to use software such as MATLAB and IT facilities more generally including research databases such as MathSciNet and Web of Knowledge

Professional practical skills

  • Fluency in advanced mathematical theory
  • The ability to interpret the results of the application of that theory
  • An awareness of any weaknesses in the assumptions being made and of possible shortcomings with model predictions
  • The skill of writing an extended and sophisticated mathematical report and of verbally summarising its content to specialist and/or non-specialist audiences

Key / transferable skills

  • Ability to reason logically and creatively
  • Effective oral presentation skills
  • Written report writing skills
  • Skills in independent learning
  • Time management
  • Use of information and technology

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Understand the main aspects of quantitative finance – including general finance theory, finance models and programming for graduates with a science, engineering and mathematics background. Read more
Understand the main aspects of quantitative finance – including general finance theory, finance models and programming for graduates with a science, engineering and mathematics background.

Our course has been developed drawing on expertise from industry professionals. You cover topics such as:
-Interest-rate theory
-Arbitrage theory
-GARCH models
-Corporate finance
-The Black-Scholes model and numerical analysis
-Programming in C and Java
-The use of mathematical computing software

How will I study?

You’ll study core modules and options in the autumn and spring terms. In the summer term, you undertake work on your MSc dissertation.

You’ll be assessed by a combination of unseen examinations and dissertation/projects.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

ESRC 1+3 and +3 Scholarships (2017)
-A number of ESRC-funded standalone PhD and PhD with Masters scholarships across the social sciences.
-Application deadline: 30 January 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Faculty

You’ll be taught by faculty from both the Department of Mathematics and the Department of Business and Management.

Careers

Our graduates have found jobs in banking (investment funds and hedge funds) and financial software companies.

Read less
This programme is designed to train aspiring research scientists and budding IT professionals who wish to rely on numerical proficiency to further their career goals. Read more
This programme is designed to train aspiring research scientists and budding IT professionals who wish to rely on numerical proficiency to further their career goals. The programme consists of a training aspect of taught components (3 modules approximately during the first 3 months) and a significant interdisciplinary research project centered towards computational mathematics (9 months)

Research topics are chosen by students from a list of topics mirroring the computational expertise of the Mathematics group and the newly founded Systems Analytics Research Institute at Aston, with Computationally oriented projects in for example, biology, optimization, pattern analysis and physics as well as finance. The projects are supervised by academics from the Mathematics group and the Systems Analytics Research Institute at Aston.

The MSc integrates a taught component of three modules over approximately three months (30 credits) with a substantial individual research project lasting nine months (150 credits)

Core modules:
-Computational Mathematics (10 Credits)
-Research skills and Professional Development (10 Credits)
-Specialist/Technical Research Skills (10 Credits)

Exemption from these modules may be arranged through APL or APEL, provided this is done prior to enrolment.

Personal Development

Students will have the opportunity to carry out a research project in collaboration with industry and through this learn about the application context of technology and the interaction between research and business.

Read less
Understand the main aspects of quantitative finance – including general finance theory, finance models and programming for graduates with a science, engineering and mathematics background. Read more
Understand the main aspects of quantitative finance – including general finance theory, finance models and programming for graduates with a science, engineering and mathematics background.

Our course has been developed drawing on expertise from industry professionals. You cover topics such as:
-Interest-rate theory
-Arbitrage theory
-GARCH models
-Corporate finance
-The Black-Scholes model and numerical analysis
-Programming in C and Java
-The use of mathematical computing software

How will I study?

You’ll study core modules and options in the autumn and spring terms. In the summer term, you undertake work on your MSc dissertation.

You’ll be assessed by a combination of unseen examinations and dissertation/projects.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

ESRC 1+3 and +3 Scholarships (2017)
-A number of ESRC-funded standalone PhD and PhD with Masters scholarships across the social sciences.
-Application deadline: 30 January 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

Our graduates have found jobs in banking (investment funds and hedge funds) and financial software companies.

Read less
Do you want to develop your expertise in a range of both qualitative and quantitative research and apply this to real-world issues? If so, then the PgCert in Research Methods could be the course for you. Read more
Do you want to develop your expertise in a range of both qualitative and quantitative research and apply this to real-world issues? If so, then the PgCert in Research Methods could be the course for you.

This fully online programme is designed for students who wish to develop their research skills and will equip successful students with excellent skills to carry out research of a professional standard. The choices offered in the programme enable students to examine quantitative and qualitative methods in depth and also become competent practitioners in mixed methods and action research.

Research methods training is a cornerstone for success at doctoral study and successful completion of this programme will enable you to take the necessary steps towards this. You will be encouraged to think critically about the selection of appropriate approach to your research and select the most appropriate strategy for collecting and analysing data.

Special Features

• Loans for tuition fees are available from the Students Award Agency for Scotland (SAAS) for eligible Scotland domiciled and EU students, and loans for living costs for eligible Scottish students.
• You can study fully online through the university’s virtual learning environment (VLE), which means you can fit your studies around your personal and professional commitments
• You will develop an in-depth and reflective understanding of the research process.
• This course will help research students to understand the professional, regulatory and related contexts of research, and to do so in such a way as to facilitate the development of career planning skills.
• There is a face-to-face induction, (though not compulsory, is strongly recommended) which is designed to introduce you to the use of learning technologies and to help individuals to network with others on the course and to think about their own development needs in relation to it.

Modules

PgCert

The core module is: Research Methods and Techniques

You will also choose two of the following option modules: Qualitative Inquiry; Quantitative Research and Data Analysis; Mixed methods and action research

Locations

This course is available online with support from Lews Castle College UHI, Stornoway, Isle of Lewis, HS2 0XR

Study Options

You will study through supported online learning using the University's Virtual Learning Environment (VLE)

The programme is flexibly delivered (wholly online), beginning with a face-to-face induction. While the face-to-face induction is not compulsory, it is highly recommended.

Funding

From 2017, eligible Scotland domiciled students studying full time can access loans up to 10,000 from the Student Awards Agency for Scotland (SAAS).This comprises a tuition fee loan up to £5,500 and a non-income assessed living cost loan of £4,500. EU students studying full time can apply for a tuition fee loan up to £5500.

Part-time students undertaking any taught postgraduate course over two years up to Masters level who meet the residency eligibility can apply for a for a tuition fee loan up to £2,750 per year.

See Scholarships tab below for full details

Top five reasons to study at UHI

1. Do something different: our reputation is built on our innovative approach to learning and our distinctive research and curriculum which often reflects the unique environment and culture of our region and closely links to vocational skills required by a range of sectors.
2. Flexible learning options mean that you can usually study part time or full time. Some courses can be studied fully online from home or work, others are campus-based.
3. Choice of campuses – we have campuses across the Highlands and Islands of Scotland. Each campus is different from rich cultural life of the islands; the spectacular coasts and mountains; to the bright lights of our city locations.
4. Small class sizes mean that you have a more personal experience of university and receive all the support you need from our expert staff
5. The affordable option - if you already live in the Highlands and Islands of Scotland you don't have to leave home and incur huge debts to go to university; we're right here on your doorstep

How to apply

If you want to apply for this postgraduate programme click on the ‘visit website’ button below which will take you to the relevant course page on our website, from there select the Apply tab to complete our online application.
If you still have any questions please get in touch with our information line by email using the links beow or call on 0845 272 3600.

International Students

This course is not available to International Students

English Language Requirements

Our programmes are taught and examined in English. To make the most of your studies, you must be able to communicate fluently and accurately in spoken and written English and provide certified proof of your competence before starting your course. Please note that English language tests need to have been taken no more than two years prior to the start date of the course. The standard English Language criteria to study at the University of the Highlands and Islands are detailed on our English language requirements page http://www.uhi.ac.uk/en/studying-at-uhi/international/how-to-apply-to-uhi/english-language-requirements

Read less

Show 10 15 30 per page



Cookie Policy    X