• Birmingham City University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Cranfield University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
0 miles
Computer Science×

Masters Degrees in Networks & Communications

We have 199 Masters Degrees in Networks & Communications

Masters degrees in Networks and Communications equip postgraduates with the skills to develop and manage computer network systems, communication techniques and protocols.

Taught MSc courses are typical for this field, though research oriented MRes and MPhil programmes may be available at some institutions. Entry requirements normally include an undergraduate degree in a relevant subject such as Computer Science

Why study a Masters in Networks and Communications?

Read more...

  • Computer Science×
  • Networks & Communications×
  • clear all
Showing 1 to 15 of 199
Order by 
This is a challenging one-year taught Master’s degree programme that provides students with a range of advanced topics drawn from communication networks (fixed and wireless) and related signal-processing, including associated enabling technologies. Read more
This is a challenging one-year taught Master’s degree programme that provides students with a range of advanced topics drawn from communication networks (fixed and wireless) and related signal-processing, including associated enabling technologies. It provides an excellent opportunity to develop the skills needed for careers in some of the most dynamic fields in communication networks.

This programme builds on the internationally recognised research strengths of the Communications Systems and Networks, High Performance Networks and Photonics research groups within the Smart Internet Lab. The groups conduct pioneering research in a number of key areas, including network architectures, cross-layer interaction, high-speed optical communications and advanced wireless access.

There are two taught units related to optical communications: Optical Networks and Data Centre Networks. Optical Networks will focus on Wavelength Division Multiplexed (WDM) networks, Time Division Multiplexed (TDM) networks including SDH/SONET and OTN, optical frequency division multiplexed networks, and optical sub-wavelength switched networks. Data Centre Networks will focus on networks for cloud computing, cloud-based networking, grid-computing and e-science. There is a further networking unit: Networked Systems and Applications, which provides a top-down study of networking system support for distributed applications, from classical web and email to telemetry for the Internet of Things.

The programme is accredited by the Institution of Engineering and Technology until 2018, one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:

Semester One (40 credits)
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (80 credits)
-Data centre networking
-Advanced networks
-Broadband wireless communications
-Networked systems and applications
-Engineering research skills
-Optical communications systems and data networks
-Optical networks

Project (60 credits)
You will carry out a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme gives you a world-class education in all aspects of current and future communication networks and signal processing. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path, with a number of students going on to study for PhDs at leading universities.

Read less
This programme provides students with a challenging range of advanced topics drawn from optical communications systems and devices, and optics-related signal processing, including associated enabling technologies. Read more
This programme provides students with a challenging range of advanced topics drawn from optical communications systems and devices, and optics-related signal processing, including associated enabling technologies. It provides an excellent opportunity to acquire the skills needed for a career in the most dynamic fields in optical communications.

This programme builds on the internationally-recognised research strengths of the Photonics and High Performance Networks research groups within the Smart Internet Lab. Optical fibre communications form the backbone of all land-based communications and is the only viable means to support today's global information systems. Research at Bristol is contributing to the ever-increasing requirement for bandwidth and flexibility through research into optical switching technology, wavelength conversion, high-speed modulation, data regeneration and novel semiconductor lasers.

There are two taught units related to optical communications: Optical Networks and Data Centre Networks. Optical Networks focuses on Wavelength Division Multiplexed (WDM) networks, Time Division Multiplexed (TDM) networks including SDH/SONET and OTN, optical frequency division multiplexed networks, and optical sub-wavelength switched networks. Data Centre Networks focuses on networks for cloud computing, cloud-based networking, grid computing and e-science.

The group at Bristol is a world leader in the new field of quantum photonics, with key successes in developing photonic crystal fibre light sources, quantum secured optical communications and novel quantum gate technologies.

The programme is accredited by Institute of Engineering and Technology until 2018, one of only a handful of accredited programmes in the UK.

Programme structure

Your programme will cover the following core subjects:

Semester one (50 credits)
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles
-Optoelectronic devices and systems

Semester two (70 credits)
-Advanced optoelectronic devices
-Data centre networking
-Advanced networks
-Engineering research skills
-Optical communications systems and data networks
-Optical networks

Research project (60 credits)
A substantial research project is initiated during the second teaching block and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme gives you a world-class education in all aspects of current and future optical communication systems, along with associated signal processing technologies. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
With the proliferation of mobile and pervasive devices with network capability, along with widespread popularity of the Internet, more and more users and application providers expect services to be available anytime and anywhere. Read more
With the proliferation of mobile and pervasive devices with network capability, along with widespread popularity of the Internet, more and more users and application providers expect services to be available anytime and anywhere.

The Master of Networks and Security (MNS) gives you the skills to manage and administer computer networks and security, and prepares you for a career in network administration or network management, or as a systems analyst, systems designer, data communications specialist, or network security engineer or administrator.

As a network and security professional, your specialised skills will always be in high demand, as well as highly rewarded.

The MNS expands your knowledge of how to design, deploy and maintain networks and application services, by combining theory with practice. You explore issues faced both by users and application providers, and devise possible solutions.

The MNS caters to students from a variety of backgrounds by including preparatory IT units. However, if you already have a degree in IT or engineering, you may accelerate your study with an exemption from these preparatory units, or perhaps choose to take further networks and security electives.

The advanced studies of an MNS include a range of topics, from network structure, design, quality of service and protocols, to information, software and network security.

The course emphasises the principles and management of computer networks and the security technologies upon which organisations rely. You will learn how to evaluate the security needs of an organisation's infrastructure and create plans to protect it against potential attacks and security breaches.

In your final semester, you may take part in an Industry Experience program, working in a small team with industry mentors to develop entrepreneurial IT solutions. Or you may undertake a minor-thesis research project, investigating cutting-edge problems in networks and security under the supervision of internationally recognised researchers.

High-achieving students who complete the research component may progress to further research study.Graduates may be eligible for Australian Computer Society (ACS) professional membership.

Visit the website http://www.study.monash/courses/find-a-course/2016/networks-and-security-c6002?domestic=true

Overview

With the proliferation of mobile and pervasive devices with network capability and the popularity and the availability of Internet, more and more users and application providers are seeking and providing services with the access and delivery paradigm of anytime and anywhere. In order to harness such rapidly changing technology, one needs to have clear understanding, knowledge and experience that transcends these technologies in order to able to design, deploy and maintain networks and application services. This course not only provides an in-depth knowledge on the principles of these technologies, but also explores issues that are faced both by the users and the application providers, and provides possible solutions. The theory is interrelated with the practice which makes this course unique.

Course Structure

The course is structured in three parts, A, B and C. All students complete Part B (core studies). Depending upon prior qualifications, you may receive credit for Part A Foundations for advanced networks and security studies or Part C Advanced practice or a combination of the two.

Note that if you are eligible for credit for prior studies you may elect not to receive the credit.

PART A. Foundations for advanced networks and security studies
These studies will provide an orientation to the field of networks and security at graduate level. They are intended for students whose previous qualification is not in a cognate field.

PART B. Core Master's study
These studies draw on best practices within the broad realm of IT networks and security theory and practice. You will gain an understanding of information and computer security and IT project management principles. Your study will focus on your choice of units within Networks and Security.

PART C. Advanced practice
The focus of these studies is professional or scholarly work that can contribute to a portfolio of professional development. You have two options.

The first option is a research pathway including a thesis. Students wishing to use this Masters course as a pathway to a higher degree by research should take this first option.

The second option is a program of coursework involving advanced study and an Industry experience studio project.

Students admitted to the course, who have a recognised honours degree in a discipline cognate to networks and security, will receive credit for Part C, however, should they wish to complete a 24 point research project as part of the course they should consult with the course coordinator.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/information-technology

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/networks-and-security-c6002?domestic=true#making-the-application

Read less
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. Read more
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. This one-year programme offers six-month taught modules covering a wide range of subjects from fundamental information and communications technology (ICT) to contemporary developments in wireless and mobile industry. It also includes a six-month individual project with opportunities of participating in the project provided by industry. This programme is suitable for those who want to develop the knowledge and skills needed for a successful career in these specific and related areas.

The delivery of the programme is fully supported by the dedicated facilities in the Electronic Engineering Department and across the University, such as teaching and computing laboratories, and the involvement of experienced member of staff. Our research facilities in the Adaptive Communications and Networks Research Group and Wireless Network Laboratory are also available for use on MSc projects. To ensure its continuing relevance the programme is monitored by an industrial steering committee which includes representatives from major employers.

About the MSc in Wireless Communications and Networking:
-Prepares students for an intellectually challenging career as a qualified engineer.
-Provides students with a thorough grounding in the principles and the requisite specialist knowledge and skills to develop, manage and adapt current systems.
-An industrial advisory group (Steering Committee) reviews the programme on a continual basis.
-Guest lecturers presented by acknowledged experts from industry and academic institutions.
-An active alumni group on LinkedIn.
-Free student membership of the IET.

Modules

This MSc integrates a taught component of nine modules plus a major project and a project preparation module, constituting in total 180 credits. Taught modules and examinations/assessments are completed during six months, October to March. After successful completion students may then progress to the six month individual research project during April to October. The project is either undertaken in an industrial laboratory or at the University, often with guidance and direction from industrial partners. The module titles are:
-Mobile Data Networks (EE4016)
-Realtime Communication Networks (EE4017)
-Information Theory and Coding and Traffic Theory (EE401A)
-Digital Transmission (EE401B)
-Broadband Wireless Networks (EE4027)
-Pervasive and Mobile communication networks (EE4028)
-Radio Systems and Personal Communications Networks (EE402B)
-Internetworking (EE403B)
-Introductory Programming (EE404B)

Dissertation Stage
-MSc Project (EE4006)
-Project Preperation (EE4019)

Read less
Application period/deadline. March 14 - 28, 2018. Cutting-edge knowledge in wireless communications both at physical and network layers. Read more

Application period/deadline: March 14 - 28, 2018

• Cutting-edge knowledge in wireless communications both at physical and network layers

• Capability to design and implement wireless solutions, e.g., for future 5G networks, Internet-of-Things (IoT) devices and smart energy-efficient wireless sensor applications

• Relevant skills of the latest radio engineering methods, tools, and technologies, and ability to design RF electronics for smart phones and base stations of mobile systems

The International Master’s Degree Programme in Wireless Communications Engineering (WCE) is a two-year programme concentrating on wireless communications network technology. The programme will give you relevant skills and core knowledge of the latest methods, tools and technologies combined with time-tested issues such as:

• Antennas

• Advanced wireless communication systems

• Communication networks

• Computer engineering

• Electronics

• Information theory

• Stochastical and digital signal processing

• Radio channels

• Radio engineering

The two-year programme has two specialisation options:

• Radio Access and Networks

• RF Engineering

Radio Access and Networks concentrates on designing and applying radio access technologies both at physical layer and at network layer for 5G, IoT, and future mobile system generations.

RF Engineering focuses on essential radio system parts and gives the knowledge to design integrated RF and DSP circuits for mobile handsets, base stations, future 5G devices, IoT applications, and smart & energy efficient sensors.

Optional module makes it possible to widen your expertise into:

• Machine vision

• Mobile and social computing

• Signal processors, and

• Video and biomedical signal processing.

The education is organized by the Centre for Wireless Communications which consists of 150 academics from over 20 countries. CWC performs world-class research for the future of 5G and IoT applications, which will give you the possibility to move forward already during your studies. CWC provides a number of jobs as a trainee or a master’s thesis student, with the possibility to continue as a doctoral student, and even as a post-doctoral researcher.

The skills gained in the programme offer you a solid academic training and essential knowledge on the design of wireless communications networks at the system level. After graduation you are capable of designing, implementing and employing 5G and IoT applications and developing future wireless communications technologies.

Possible titles include:

• Chief engineer

• Design engineer

• Development engineer

• Maintenance engineer

• Patent engineer

• Program manager

• Project manager

• Radio network designer

• Research engineer

• RF engineer

• Sales engineer

• System engineer

• Test engineer, and

• University teacher

Students applying for the programme must possess an applicable B.Sc. degree in one of the following fields of study: communications engineering, electronics & electrical engineering, or computer engineering.

Email Now



Read less
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Read more
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Video accounts for around 80 per cent of all internet traffic and some mobile network operators have predicted that wireless traffic will double every year for the next 10 years - driven primarily by video. Visual information processing also plays a major role underpinning other industries such as healthcare, security, robotics and autonomous systems.

This challenging, one-year taught Master’s degree covers a range of advanced topics drawn from the field of multimedia signal processing and communications. The programme covers the properties and limitations of modern communication channels and networks, alongside the coding and compression methods required for efficient and reliable wired and wireless audio-visual transmission. It provides students with an excellent opportunity to acquire the necessary skills to enter careers in one of the most dynamic and exciting fields in ICT.

The programme builds on the research strengths of the Visual Information Laboratory and the Communication Systems and Networks Group within the Faculty of Engineering at Bristol. Both groups are highly regarded for combining fundamental research with strong industrial collaboration and their innovative research has resulted in ground-breaking technology in the areas of image and video analysis, coding and communications. Both groups also offer extensive, state-of-the-art research facilities.

This MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the communication networks industry. The programme is accredited by the Institution of Engineering and Technology until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (50 credits)
-Coding theory
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (70 credits)
-Digital signal processing systems
-Speech and audio processing
-Optimum signal processing
-Biomedical imaging
-Image and video coding
-Engineering research skills

Research project
You will complete a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme covers all aspects of current and future image and video communications and associated signal processing technologies. It will prepare you for a diverse range of exciting careers, not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
Increasingly, computer networks cannot be considered without the important issue of security; without secure networks, businesses, commerce and communications would all fail. Read more
Increasingly, computer networks cannot be considered without the important issue of security; without secure networks, businesses, commerce and communications would all fail. This course addresses the need for modern computer network professionals.

You cover topics such as current and future internet protocols, programming networked services and securing these systems. We offer a strong practical element through laboratory programmes in software engineering and in computer networking; laboratory work in security includes unique environments where the techniques of the attackers can be observed and stopped using specialist security tools.

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Specialist staff researching computer networks include Professor Mohammed Ghanbari, Dr Nigel Newton, Professor Stuart Walker, and Professor Klaus McDonald-Maier.

More broadly, our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Graduates of our degree in this area have found work in a variety of networking roles and companies including, network management for companies, Internet service providers and developers for security products both in the UK and overseas.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Computer Security
-IP Networking and Applications
-Networking Principles
-Networks Laboratory
-Professional Practice and Research Methodology
-Programming in Python
-Cloud Technologies and Systems (optional)
-Data Science and Decision Making (optional)
-Converged Networks and Services (optional)
-Creating and Growing a New Business Venture (optional)
-Mobile Communications (optional)
-Advanced Transport Networks (optional)
-Network Security and Cryptographic Principles (optional)

Read less
Our graduates work in major telecommunications companies around the world. We have run this course for over 25 years and, in that time, educated over a thousand communications specialists. Read more
Our graduates work in major telecommunications companies around the world. We have run this course for over 25 years and, in that time, educated over a thousand communications specialists.

Starting from the concept of a signal, we cover the fundamentals of how signals are acquired, processed and transmitted over a wide range of media — electronic, optical and radio. Our laboratory work shows how these principles are put into practice and your software development skills are improved through a series of lectures, exercises and assignments.

Building on this, we explore a number of state-of-the-art topics in detail, including:
-Modern digital transmission systems
-Wireless communication systems
-Computer security and cryptography
-Complex electronic circuits
-Networked systems

Our School is a community of scholars leading the way in technological research and development. Today’s telecommunications engineers are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top engineers, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

We have been one of the leading electronics departments in the country throughout our history, and in recent years, our prolific research staff have contributed to some major breakthroughs.

We invented the world's first telephone-based system for deaf people to communicate with each other in 1981, with cameras and display devices that were able to work within the limited telephone bandwidth. Our academics have also invented a streamlined protocol system for worldwide high speed optical communications.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Elitecore Technologies Ltd
-Juniper Networks
-Cisco Systems
-Incendio Technologies

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

MSc Advanced Communications Systems
-Theory of Signals and Systems
-Digital Communications
-Networking Principles
-Mobile Communications
-Communications Laboratory
-Mathematical Research Techniques Using Matlab
-MSc Project and Dissertation
-Professional Practice and Research Methodology
-Converged Networks and Services (optional)
-Creating and Growing a New Business Venture (optional)
-Data Science and Decision Making (optional)
-Electronic System Design & Integration
-Network Security and Cryptographic Principles
-Computer Security

Read less
This master’s course is great if you want to become an expert in computer security and networks. Whether you want to continue in your computer science studies or turn your industry experience into qualifications, this is the ideal course for you. Read more

This master’s course is great if you want to become an expert in computer security and networks. Whether you want to continue in your computer science studies or turn your industry experience into qualifications, this is the ideal course for you.

Course details

Computer security and networks experts are in high demand around the world. You study a combination of modules, from Systems Administration and Security through to Mobile Systems and Communications, making sure you have the right skills for business. You gain a good understanding of planning and managing large development projects when studying our E-Commerce Management and Master’s Project modules – both will enhance your employability and career prospects even further.

There are three routes you can choose from to gain an MSc Computer Security and Networks:

  • full-time - 2 years with advanced practice (September start)
  • full-time - 1 year (September start) or 16 months (January start)
  • part-time - 2 years.

What you study

You study the concepts, principles and theories of computer networks and security, informed by current research and professional practice. For example, building and managing a secure and effective commercial web presence requires much more than coding expertise – it requires a sound combination of commercial acumen, technical understanding and effective operations management. Our lecturers have significant research and industry experience and are well placed to develop your skills and knowledge in this field. 

Course structure

Core modules

  • Computer and Network Security
  • e-Commerce Management
  • Master’s Project: Computer Security and Networks
  • Mobile Systems and Communications
  • Network Service Management
  • Research Methods for Computing
  • Systems Administration and Security

Modules offered may vary.

Teaching

How you learn

You learn about concepts and methods primarily through keynote lectures and tutorials using case studies and examples. Lectures include presentations from guest speakers from industry. Critical reflection is key to successful problem solving and essential to the creative process. You develop your own reflective practice at an advanced level, then test and assess your solutions against criteria that you develop in the light of your research. For example, in Mobile Systems and Communications and Network Service Management you research an agreed area, based on the topics introduced during lectures, and prepare a report on this.

How you are assessed

Assessment takes a variety of forms including:

  • designing and developing business solutions
  • presentations
  • peer reviews
  • reports.

We typically give on-going feedback during lectures and tutorials and assessment feedback using online methods.

Employability

Career opportunities

From the beginning of your programme, we prepare you for a career in industry. In addition to your taught classes, we create opportunities for you to meet and network with our industry partners through events such as our ExpoSeries, which showcases student work to industry. ExpoTees is the pinnacle of the ExpoSeries with over 100 businesses from across the UK coming to the campus to meet our exceptional students, with a view to recruitment.

Advanced practice

There are a number of internship options, including:

  • Vocational internship – spend one semester working full-time in industry or on placement in the University. We have close links with a range of national and international companies who will offer you the chance to develop your knowledge and professional skills in the workplace through an internship. Although we cannot guarantee internships, we will provide you with practical support and advice on how to find and secure your own internship position. A vocational internship is a great way to gain work experience and give your CV a competitive edge.
  • Research internship – develop your research and academic skills by undertaking a research internship within the University. Experience working as part of a research team in an academic setting. Ideal for those who are interested in a career in research or academia.


Read less
IN BRIEF. Great employment prospects in a large and growing industry for  good graduates. Your will be based at MediaCityUK. Read more

IN BRIEF:

  • Great employment prospects in a large and growing industry for  good graduates
  • Your will be based at MediaCityUK
  • The teaching and topics of this course are closely aligned to a top research centre at the University
  • Part-time study option
  • International students can apply

COURSE SUMMARY

This course is for students who want to become professionals in computer networks and modern telecommunications fields.

You will gain a comprehensive understanding of techniques used to transmit digital information, modern computer network design and operation, communication protocols and the importance of standards and regulatory issues

These subjects are supplemented by modules in technical and administration management techniques and by an industry-sponsored seminar course.

MSc students also undertake an individual project.

COURSE DETAILS

This course covers a comprehensive range of topics split in to four large modules worth 30 credits each plus the MSc Project.

External speakers from blue-chip and local companies will give seminars to complement your learning, that will be real-world case studies related to the subjects you are studying in your modules.  These are designed to improve the breadth of your learning and often lead to ideas that you can develop for your MSc Project.

DURATION

September intake

MSc (one year full-time or two years part-time)

PgDip (nine months full-time or one year and six months part-time)

January intake

MSc (one year and four months full-time)

PgDip (one year full-time)

TEACHING

Teaching will be in the form of lectures, individual and group class work, plus topical and relevant participative class discussions and critical evaluation using case studies

Laboratories will be used to provide you with hand-on experience of using and setting up network systems. Tutorials will be used to give you practice in solving theoretical and design problems associated with network technologies and network systems.

ASSESSMENT

Over the programme, the assessment of the taught modules is as follows:

  • Examinations - 50%
  • Coursework and Assignments - 50%

CAREER PROSPECTS

Graduates with experience of computer network systems and digital communications are in demand in all industrial and commercial sectors. 

The employment record for the MSc is good, with students obtaining jobs in traditional telecommunication companies, software development companies and companies in the service and commercial sectors.

Typical jobs range from network design engineers, network maintenance, software development, systems design and integration, marketing, after-sales support and technical support.

LINKS WITH INDUSTRY

We have links with companies such as large companies such as BT, Talk Talk, Motorolla, BBC, CICSO and local companies like i-wimax.

These companies engage with the University by giving guest seminars and often our students will work with them on their MSc Project.

FURTHER STUDY

Many of our graduates will go on to further study in our Computer Networks and Telecommunications Research Centre (CNTR)

The CNTR undertakes both pure and applied research in the general field of telecommunications and computer networking including computer networking technologies, wireless systems, networked multimedia applications, quality of service, mobile networking, intelligent buildings, context driven information systems, smart environments and communication protocols. Much of this work is funded through research grants and supported by industry. In addition, members of the group are actively involved in a range of public engagement programmes which aim to raise the awareness of these subjects for the general public and in schools.

Research themes in this Centre include:

  • Wireless technologies and sensor networks
  • Context and location based information systems
  • Intelligent buildings and energy monitoring
  • Communication protocols, traffic routing and quality of service
  • Network planning, traffic modelling and optimisation
  • Ubiquitous and ambient technology
  • Information security and computer forensics
  • Distributed Systems
  • Green ICT Public Awareness

FACILITIES

You will have access to a dedicated computer networks lab which is equipped with industry standard equipment. In addition to PC equipment, the lab contains a set of switches, routers, servers, wireless equipment, testing tools and analysers which help you in building various data networks.  

Various software tools and simulation packages are also available in the school's labs for you to use in your assignment and final projects. Such tools enable you to design and test data networks in simulated environments allowing you to experiment with your design before implementing the real network. The course is also supported by other facilities including PC suites, library, programming and office packages and a virtual learning environment.



Read less
We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure. Read more

We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure.

We also have a wide range of software tools for assignments and project work, including OPNET, NS2/3, Matlab, C, C++ and various system simulators. Some projects can offer the opportunity to work with industry.

Read about the experience of a previous student on this course, Paulo Valente Klaine.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a standard project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Mobile Communication Systems reflects the importance and ubiquity of mobile telephony and mobile data communications throughout the world.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology together with the principles, algorithms and protocols that underpin Internet-based mobile backbone networks.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, the Internet of Things, network management, and satellite communications.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Research.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field. Read more

The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field.

About this degree

Students develop an understanding of the evolving networks and applications using the internet protocol. Particular attention is given to the convergence of telecommunications and data networks into 'all IP'-carrier grade networks. The programme offers specialisms including fundamental network design, applications and services, and security and network management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a dissertation (60 credits).

Core modules

  • Introduction to Telecommunications Networks
  • Mobile Communications Systems
  • Software for Network and Services Design
  • Internet of Things
  • Introduction to IP Networks
  • Professional Development Module: Transferable Skills (not credit bearing)

Optional modules

  • Communications System Modelling
  • Network and Services Management
  • Telecommunications Business Environment
  • Optical Transmission and Networks
  • Wireless Communications Principles
  • Internet Multimedia Systems

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning

The programme is delivered through a combination of formal lectures, guest lectures, tutorials, seminars, laboratory and workshop sessions and project work. Assessment is through unseen written examination, coursework, design exercises and the research project.

Further information on modules and degree structure is available on the department website: Internet Engineering MSc

Careers

In the next 15 years, all of the facets of our life will be "online". Our health (bio-sensors, health records), entertainment (games, 3D TV, Virtual Reality), security (children GPS tracking, CCTV) and other social interactions will use fascinating internet applications that are only now being envisaged. Our graduates will be in a prime position at the forefront of this revolution by having in-depth knowledge of all of its components.

Recent graduates have gone on to become graduate engineers, R&D engineers and network services engineers at companies including France Telecom, BT, Huawei, Cisco, Motorola and PwC.

Recent career destinations for this degree

  • Graduate Software Engineer, Accenture
  • Java Developer, Loxbit PA and studying Communication Engineering, University College London (UCL)
  • IT Development Officer, China Unicoms
  • IT Network Development Engineer, BSkyB
  • Software Engineer, Air Watch

Employability

The Internet Engineering MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards). Students study both the theoretical foundations of all related technologies and also carry out extensive practical assignments in several related areas.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

This MSc offers a wide variety of modules that include the physical layer (optical, wireless), the Internet layer (routing, congestion control, traffic engineering), the application layer (codecs, security) and the "business layer" (regulation, business opportunities).

Lectures are delivered by world-class researchers in all these fields with regular lectures from the main industrial leaders in the telecommunications industry.

Accreditation

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Electronic & Electrical Engineering

97% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The goal of the . Post Master's degree . is to provide advanced skills and a cutting-edge experience in a wide range of Digital Security applications. Read more

The goal of the Post Master's degree is to provide advanced skills and a cutting-edge experience in a wide range of Digital Security applications. The strenght of the program relies on a multi-faceted approach dealing with key fields of security applications: Security of Software, Embedded Systems, Cloud computing, Data, IoT, Networks and Communications.

CONTEXT

With the fast development of computer and communication systems in our private and professional life, today have come fraud and malevolence in various forms. Attacks are routinely ranging from simple computer nuisances to cybercrime and threats to critical infrastructure. In the past decades technical means to counter these attacks have experienced a tremendous growth and the birth of entirely new fields :

  • The large scale use of cryptography by the general public,
  • Software, operating system and network security,
  • Secure Internet transactions,
  • Security of mobile and wireless communications,
  • Rights management and protection of multimedia content.

OBJECTIVES

The Post Master's degree offers the necessary technical knowledge for engineers responsible for designing secure systems and system administrators responsible for ensuring computer and network security within a company or a public authority.

The following security topics will be covered:

  • cryptography and its applications
  • malware detection and analysis
  • specific mechanisms for the protection of communications, networks and distributed computer applications
  • image protection and biometric techniques


Read less
Our MSc Data Networks and Security course will provide opportunities for you to engage in the design and implementation of secured and optimized communication network solutions, including SDN (Software Defined Networks and wireless technologies. Read more
Our MSc Data Networks and Security course will provide opportunities for you to engage in the design and implementation of secured and optimized communication network solutions, including SDN (Software Defined Networks and wireless technologies.

This will be achieved by industry-led, research-informed, practice-based teaching and learning. Using industry-standard resources, you will apply the skills and knowledge gained to real-life project scenarios across industry, commerce and public sector.

The programme of study will include areas such as requirements capture, network design, evaluation, securing and optimisation, ranging from hardware configuration to protocol analysis and software definition. The programme will include research and scholarly activity in order to incorporate the latest thinking into the proposed solution.

What's covered in the course?

On this course, you will learn to:
-Critically evaluate and apply knowledge of advanced routing principles.
-Evaluate and apply advanced routing protocols for specific networking solutions.
-Evaluate a variety of routing techniques for a given network environment.
-Critically evaluate routing policy requirements for a network.
-Design and implement ethernet-based LANs. Ensuring security within the given environment.
-Apply mathematical analysis to use VLSM efficiently.
-Apply security considerations to the design and management of networks.
-Design/plan and implement LAN/WAN solutions which require switched hybrid.
-Critically assess SDN solutions in both the industry and research domains.
-Design an SDN-based network for a given system, identifying appropriate components and network structure.
-Implement an appropriate SDN controller to manage device configuration, and any other relevant network policies within an SDN network.
-Select, plan and implement an appropriate testing strategy to validate security requirements against a threat model.
-Critically evaluate the requirements for penetration testing, ethical hacking and effectively communicate security audit results to a variety of audiences.
-Design and conduct security assessment experiments to expose security vulnerabilities and to interpret, analyse and critically evaluate the resulting data to recommend remedial actions.
-Critically appraise the role of security testing within the wider context of continuous security improvements to the information assurance processes within the organisation.

Why choose us?

-The Centre for Cloud Computing houses the Cisco Networking Academy, which has an international reputation for delivering high-quality teaching, training and support acrossEurope, the Middle East and Africa.
-In six purpose-built rooms, the Centre also houses £500,000 of computer networking and communications equipment, together with more than £200,000 of web-based equipment and bookable resources.
-The course provides opportunities for you to engage in advanced studies using problem-based learning and flipped curricula strategies. You will work in groups and on your own to deliver solutions to industry-related problems and scenarios.
-The unique combination of employer-led, research-informed technical knowledge and practical experience on industry-standard resources makes our graduates more employable and sought after.
-The course encourages critical thinking and problem solving, giving you the opportunities for research.

Course in depth

All the modules are practice-based and learning is carried out in the labs. Each 20-credit module will have two hours contact, and you are expected to undertake approximately six additional hours of learning, research and assessment preparation for each module.

Assessment is carried out through presentations (both group and individual), timed tests and exams, written reports, research activity and publication of findings, and practical-based time assessments.

At the start of the course, there will be a three-week, full-time induction tool kit, comprising of a review of CCNA and associated technologies.

The course also provides the base knowledge for students to undertake the CCNA certification, and with an additional boot camp to undertake the individual CCNP certification exams.

Modules
-Information Security 20 credits
-Software Defined Network Engineering 20 credits
-Advanced Networking Systems 20 credits
-Network Management 20 credits
-Advanced Ethical Hacking 20 credits
-Research Methods 20 credits
-Project and placement 60 credits

Enhancing your employability skills

The University is eager to recognise students have made the effort to gain industry experience and stand out from the typical graduate. Thus, we offer a range of options for you to get extra awards and recognition for your work in industry.

We also have our Graduate+ programme, an extracurricular awards framework that is designed to augment the subject-based skills that you’ve developed throughout the programme with broader employability attributes, which will enhance your employability options upon graduating.

Read less
The programme is to educate our students in the design, implementation and troubleshooting of Computer Networks and high performance cluster computing scenarios. Read more
The programme is to educate our students in the design, implementation and troubleshooting of Computer Networks and high performance cluster computing scenarios. The programme includes material required for the Cisco Certified Network Professional (CCNP) qualification, and students can work towards this internationally recognised qualification alongside their MSc degree.

Course Overview

This programme aims to provide in-depth knowledge and skills in the specialist area of networking. It has been developed in response to the need for personnel equipped with the skills needed to design, implement and troubleshoot an enterprise computer network infrastructure

The course is designed primarily for science and technology graduates who have some prior knowledge of computing and/or networking and who wish to specialise in computer networking.

The School is a Cisco Academy, an Academy Support Centre and an Instructor Training Centre. The School has been delivering Cisco Networking Academy programme since 1999. The Master’s programme is blended with Cisco Certified Network Professional (CCNP) curriculum. Cisco is the world’s leading network device manufacturer and the CCNP is a prominent professional qualification in the networking industry.

Modules

Part 1:
-Emerging Network Technologies(20 credits)
-Implementing IP Routing (20 credits)
-IP Switched Networks (20 credits)
-Leadership and Management (20 credits)
-Network Security (20 credits)
-Research Methods and Data Analysis (20 credits)

Part 2:
-Major Project (60 credits)

Key Features

The Internet has now become part of our day-to-day life and is growing rapidly even during recessions. An expanding mobile communications backbone (as evinced by the number of smartphones being projected to rise from 500 million in 2011 to 2 billion by 2015) has led to greatly increased mobile internet traffic.

To take advantage of this opportunity, companies will require staff who are skilled in network design, implementation, administration, management and analysis. Students on this programme will also be given an opportunity to study towards industrial qualifications such as Cisco Certified Network Associate (CCNA) and Cisco Certified Network Professionals (CCNP).

Assessment

Student works are assessed through combination of coursework, lab-based practical exams and written examinations. The final mark for some modules may include one or more pieces of course work set and completed during the module. Project work is assessed by a written report and oral presentation. Part 2 requires the student to research and prepare an individual project/dissertation of a substantial nature.

University students who are unable to successfully complete all aspects of the Part 1 may be eligible for a Postgraduate Diploman (120 credits) or Postgraduate Certificate (60 credits).

Career Opportunities

The programme emphasises four key themes within Computer Networking: routing and switching, emerging network technologies, network design, and security. Graduates will undertake a range of tasks associated with networking in organisations, and will be capable developing sophisticated solutions to networking problems. It is anticipated that graduates in the field of computer networks would be able to find employment in a number of different areas, including routing and switching, network design, VoIP, and security.

It is expected that graduates would seek positions such as:
-Network Administrators
-Network Associates
-Network Engineers
-Senior Network Engineers
-Network Support Engineers
-Security Engineers
-Systems Engineers
-Network Specialists
-Network Analysts

Read less

Show 10 15 30 per page



Cookie Policy    X