• University of Surrey Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cranfield University at Shrivenham Featured Masters Courses
Coventry University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Netherlands ×
0 miles
Geology×

Masters Degrees in Seismology & Tectonics, Netherlands

We have 2 Masters Degrees in Seismology & Tectonics, Netherlands

  • Geology×
  • Seismology & Tectonics×
  • Netherlands ×
  • clear all
Showing 1 to 2 of 2
Order by 
STUDY PROCESSES BELOW THE EARTH'S SURFACE. In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. Read more

STUDY PROCESSES BELOW THE EARTH'S SURFACE

In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. During this two-year programme, you will learn to link geological, geophysical, geochemical, and geodetic observations made at the Earth’s surface to physical processes operating within the planet.

Specialise in any aspect of Solid Earth Science

The programme combines geology, geophysics, mathematics, physics, chemistry and field studies to address how the solid Earth works. It allows you to specialise in virtually any aspect of solid Earth science, ranging from theoretical geophysics to pure geology or geochemistry. Many students choose a combined geology-geophysics focus.

Core areas of teaching and research

The main subject areas you will study consist of seismology, tectonophysics, mantle dynamics, structural geology, metamorphism, magmatic processes, basin evolution, hydrocarbon and mineral deposits, and the properties of Earth materials. You will examine processes ranging from slow geodynamic processes – such as mantle convection, plate tectonics, sedimentary basins formation and evolution, and mountain building – to those that can have an impact during a human lifetime. These include active crustal deformation, seismicity, and volcanism as well as subsidence, uplift induced seismicity and geo-resources.

In the programme, you will address questions such as:

  • How do mountain belts and sedimentary basins form? 
  • How can we image the internal structure of the crust and mantle? 
  • How does plate tectonics really work and how can we model it? 
  • What controls volcanic eruptions and earthquakes? 
  • Can CO2 be safely stored in reservoir rocks in the Earth’s crust? 

You can choose one of three specialisation tracks based on your interests in the field:

  • Earth Materials
  • Deformation and metamorphic and igneous processes operating in the crust and upper mantle
  • Physics of the Deep Earth and Planets
  • An in-depth geophysical approach to understand the deep interior of the Earth and other planets
  • Basins, Orogens, and the Crust-Lithosphere System
  • Understand the processes at the scale of the crust and lithosphere such as the formation and evolution of sedimentary basins or mountain chains. This is a combined track for a hybrid Geology-Geophysics (Solid Earth specialist) profile.  

PROGRAMME OBJECTIVE

  • The Earth Structure and Dynamics programme focuses on all aspects of the solid Earth as a key component of system Earth – and therefore of Earth system science. This encompasses the structure, dynamics, and evolution of the solid Earth over the full range of spatial and temporal scales as well as the role of solid Earth structure and processes in societally relevant issues such as energy, geo-resources, and geohazards. Examples include understanding the physics of tectonically – or human – induced earthquakes, volcanic hazards or petroleum, mineral, sustainable or unconventional resources. Knowledge of these aspects has direct relevance for professional profiles and future job opportunities.


Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X