• Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
Cranfield University Featured Masters Courses
University College Cork Featured Masters Courses
University of Leeds Featured Masters Courses
University of Bath Featured Masters Courses
Netherlands ×
0 miles

Masters Degrees in Quantum Mechanics, Netherlands

We have 2 Masters Degrees in Quantum Mechanics, Netherlands

  • Physics×
  • Quantum Mechanics×
  • Netherlands ×
  • clear all
Showing 1 to 2 of 2
Order by 
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more

Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.

- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).

- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.

- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.

- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.

- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.

Possible careers for mathematicians include:

- Researcher (at research centres or within corporations)

- Teacher (at all levels from middle school to university)

- Risk model validator

- Consultant

- ICT developer / software developer

- Policy maker

- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:

1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.

2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics

Read less
Master's specialisation in Physics of Molecules and Materials. Revealing the ‘terra incognita’ between quantum mechanics and the classical world and inspiring new technologies. Read more

Master's specialisation in Physics of Molecules and Materials

Revealing the ‘terra incognita’ between quantum mechanics and the classical world and inspiring new technologies.

As a scientist, you’re a problem solver. But how do you tackle a problem when there are no adequate theories and calculations become far too complicated? In the specialisation in Physics of Molecules and Materials you’ll be trained to take up this challenge in a field of physics that is still largely undiscovered: the interface between quantum and classical physics.

We focus on systems from two atoms to complete nanostructures, with time scales in the order of femtoseconds, picoseconds or nanoseconds. One of our challenges is to understand the origin of phenomena like superconductivity and magnetism. As theory and experiment reinforce each other, you’ll learn about both ‘research languages’. In this way, you’ll be able to understand complex problems by dividing them into manageable parts.

See the website http://www.ru.nl/masters/physicsandastronomy/physics

Why study Physics of Molecules and Materials at Radboud University?

- At Radboud University there’s a strong connection between theory and experiment. Theoretical and experimental physicists will teach you to become acquainted with both methods.

- In your internship(s), you’ll have the opportunity to work with unique research equipment, like free electron lasers and high magnetic fields, and with internationally known scientists.

- We collaborate with several industrial partners, such as Philips and NXP. This extensive network can help you find an internship or job that meets your interests.

If you’re successful in your internship, you have a good chance of obtaining a PhD position at the Institute for Molecules and Materials (IMM).

Admission requirements for international students

1. A completed Bachelor's degree in Physics

2. A proficiency in English

In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:

- A TOEFL score of ≥575 (paper based) or ≥90 (internet based

- An IELTS score of ≥6.5

- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university or at a company. However, many of our students end up in business as well. Whatever job you aspire, you can certainly make use of the fact that you have learned to:

- Solve complex problems

- Make accurate approximations

- Combine theory and experiments

- Work with numerical methods

Graduates have found jobs as for example:

- Consultant Billing at KPN

- Communications advisor at the Foundation for Fundamental Research on Matter (FOM)

- Systems analysis engineer at Thales

- Technical consultant at UL Transaction Security

- Business analyst at Capgemini

PhD positions

At Radboud University, we’re capable of offering many successful students in the field of Physics of Molecules and Materials a PhD position. Many of our students have already attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In this specialisation, you’ll discover the interface between quantum mechanics and the classical world, which is still a ‘terra incognita’. We focus on two-atom systems, multi-atom systems, molecules and nanostructures. This is pioneering work, because these systems are often too complex for quantum calculations and too small for the application of classical theories.

- Theory and experiment

At Radboud University, we believe that the combination of theory and experiments is the best way to push the frontiers of our knowledge. Experiments provide new knowledge and data and sometimes also suggest a model for theoretical studies. The theoretical work leads to new theories, and creative ideas for further experiments. That’s why our leading theoretical physicists collaborate intensively with experimental material physicists at the Institute for Molecules and Materials (IMM). Together, they form the teaching staff of the Master’s specialisation in Physics of Molecules and Materials.

- Themes

This specialisation is focused on two main topics:

- Advanced spectroscopy

Spectroscopy is a technique to look at matter in many different ways. Here you’ll learn the physics behind several spectroscopic techniques, and learn how to design spectroscopic experiments. At Radboud University, you also have access to large experimental infrastructure, such as the High Magnetic field Laboratory (HFML), the FELIX facility for free electron lasers and the NMR laboratory.

- Condensed matter and molecular physics

You’ll dive into material science at the molecular level as well as the macroscopic level, on length scales from a single atom up to nanostructure and crystal. In several courses, you’ll get a solid background in both quantum mechanical and classical theories.

- Revolution

We’re not aiming at mere evolution of current techniques, we want to revolutionize them by developing fundamentally new concepts. Take data storage. The current data elements are near the limits of speed and data capacity. That’s why in the IMM we’re exploring a completely new way to store and process data, using light instead of electrical current. And this is but one example of how our research inspires future technology. As a Master’s student you can participate in this research or make breakthroughs in a field your interested in.

See the website http://www.ru.nl/masters/physicsandastronomy/physics

Read less

  • 1
Show 10 15 30 per page

Cookie Policy    X