• University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
King’s College London Featured Masters Courses
University of Strathclyde Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Leeds Featured Masters Courses
USA ×
0 miles
Biological Sciences×

Full Time MSc Degrees in Biological Sciences, USA

  • Biological Sciences×
  • USA ×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 15 of 53
Order by 
With programs leading to a research Master of Science (MS) and a non-thesis Master of Arts (MA), graduate studies in the Department of Biological Sciences provide students the knowledge and skills necessary to pursue successful careers in the life sciences. Read more
With programs leading to a research Master of Science (MS) and a non-thesis Master of Arts (MA), graduate studies in the Department of Biological Sciences provide students the knowledge and skills necessary to pursue successful careers in the life sciences. Offering a competitive breadth of knowledge while remaining sensitive to the needs of individual students, the department delivers a diverse academic experience that includes extensive faculty-student interactions and freedom to undertake interdisciplinary studies. Students will find themselves surrounded by a variety of opportunities that enrich their studies such as weekly seminars, research symposia and individual and team research options.

The graduate program in biological sciences has two tracks: biochemical, cell and molecular biology (BCMB) or ecology, evolution and behavior (EEB). These tracks can be combined or pursued concurrently with other academic interests. Students are encouraged to explore faculty profile and research areas before applying and to read the department FAQ for more information about the program:

Students studying the BCMB track are trained in fundamental research approaches and techniques and are exposed to a diverse range of research topics. Research programs are problem-oriented, rather than driven by a single, specialized laboratory technology. Students may work in two or three laboratories simultaneously to pursue a research question. Many students conduct research on-site at biotechnology companies across the nation on a contract basis.

Students studying EEB receive a well-rounded and vibrant academic experience without the dangers of overspecialization. Students often begin conducting research during their first year of study. In addition to opportunities for cross-departmental research, students can also take advantage of the University’s unique interdisciplinary Evolutionary Studies (EvoS) program and take courses on evolutionary studies or even earn a certificate in conjunction with their master’s or doctoral degree.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores
◾Biological sciences minimum TOEFL score: 100 on the iBT
◾Biological sciences minimum IELTS score: 7.0
◾Biological sciences minimum PTE Academic score: 68

Read less
Penn’s Master of Chemical Sciences is designed for your success. Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. Read more
Penn’s Master of Chemical Sciences is designed for your success
Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. As new discoveries are made, so are new industries — and new opportunities. Whether you’re currently a chemistry professional or seeking to enter the field, Penn’s rigorous Master of Chemical Sciences (MCS) builds on your level of expertise to prepare you to take advantage of the myriad career possibilities available in the chemical sciences. With a faculty of leading academic researchers and experienced industry consultants, we provide the academic and professional opportunities you need to achieve your unique goals.

The Penn Master of Chemical Sciences connects you with the resources of an Ivy League institution and provides you with theoretical and technical expertise in biological chemistry, inorganic chemistry, organic chemistry, physical chemistry, environmental chemistry and materials. In our various seminar series, you will also regularly hear from chemistry professionals who work in a variety of research and applied settings, allowing you to consider new paths and how best to take advantage of the program itself to prepare for your ideal career.

Preparation for professional success
If you’ve recently graduated from college and have a strong background in chemistry, the Master of Chemical Sciences offers you a exceptional preparation to enter a chemistry profession. In our program, you will gain the skills and confidence to become a competitive candidate for potential employers as you discover and pursue your individual interests within the field of chemistry. Our faculty members bring a wealth of research expertise and industry knowledge to help you define your career direction.

For working professionals in the chemical or pharmaceutical industries, the Master of Chemical Sciences accelerates your career by expanding and refreshing your expertise and enhancing your research experiences. We provide full- and part-time options so you can pursue your education without interrupting your career. You can complete the 10-course program in one and a half to four years, depending on course load.

The culminating element of our curriculum, the capstone project, both tests and defines your program mastery. During the capstone exercise, you will propose and defend a complex project of your choice, that allows you to stake out a new professional niche and demonstrate your abilities to current or prospective employers.

Graduates will pursue fulfilling careers in a variety of cutting-edge jobs across government, education and corporate sectors. As part of the Penn Alumni network, you’ll join a group of professionals that spans the globe and expands your professional horizons.

Courses and Curriculum

The Master of Chemical Sciences degree is designed to give you a well-rounded, mechanistic foundation in a blend of chemistry topics. To that end, the curriculum is structured with a combination of core concentration courses and electives, which allow you to focus on topics best suited to your interests and goals.

As a new student in the Master of Chemical Sciences program, you will meet with your academic advisor to review your previous experiences and your future goals. Based on this discussion, you will create an individualized academic schedule.

The Master of Chemical Sciences requires the minimum completion of 10 course units (c.u.)* as follows:

Pro-Seminar (1 c.u.)
Core concentration courses (4-6 c.u., depending on concentration and advisor recommendations)
Elective courses in Chemistry, such as computational chemistry, environmental chemistry, medicinal chemistry, catalysis and energy (2-4 c.u., depending on concentration and advisor recommendations)
Optional Independent Studies (1 c.u.)
Capstone project (1 c.u.)
Pro-Seminar course (CHEM 599: 1 c.u.)
The Pro-Seminar will review fundamental concepts regarding research design, the scientific method and professional scientific communication. The course will also familiarize students with techniques for searching scientific databases and with the basis of ethical conduct in science.

Concentration courses
The concentration courses allow you to develop specific expertise and also signify your mastery of a field to potential employers.

The number of elective courses you take will depend upon the requirements for your area of concentration, and upon the curriculum that you plan with your academic advisor. These concentration courses allow you to acquire the skills and the critical perspective necessary to master a chemical sciences subdiscipline, and will help prepare you to pursue the final capstone project (below).

You may choose from the following six chemical sciences concentrations:

Biological Chemistry
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Environmental Chemistry
Materials
Independent Studies
The optional Independent Studies course will be offered each fall and spring semester, giving you an opportunity to participate in one of the research projects being conducted in one of our chemistry laboratories. During the study, you will also learn analytical skills relevant to your capstone research project and career goals. You can participate in the Independent Studies course during your first year in the program as a one-course unit elective course option. (CHEM 910: 1 c.u. maximum)

Capstone project (1 c.u.)

The capstone project is a distinguishing feature of the Master of Chemical Sciences program, blending academic and professional experiences and serving as the culmination of your work in the program. You will develop a project drawing from your learning in and outside of the classroom to demonstrate mastery of an area in the chemical sciences.

The subject of this project is related to your professional concentration and may be selected to complement or further develop a work-related interest. It's an opportunity to showcase your specialization and your unique perspective within the field.

Your capstone component may be a Penn laboratory research project, an off-campus laboratory research project or a literature-based review project. All components will require a completed scientific report. It is expected that the capstone project will take an average of six months to complete. Most students are expected to start at the end of the first academic year in the summer and conclude at the end of fall semester of the second year. Depending on the capstone option selected, students may begin to work on the capstone as early as the spring semester of their first year in the program.

All capstone project proposals must be pre-approved by your concentration advisor, Master of Chemical Sciences Program Director and if applicable, your off-campus project supervisor. If necessary, nondisclosure agreements will be signed by students securing projects with private companies. Additionally, students from private industry may be able to complete a defined capstone project at their current place of employment. All capstone projects culminate in a final written report, to be graded by the student's concentration advisor who is a member of the standing faculty or staff instructor in the Chemistry Department.

*Academic credit is defined by the University of Pennsylvania as a course unit (c.u.). Generally, a 1 c.u. course at Penn is equivalent to a three or four semester hour course elsewhere. In general, the average course offered at Penn is listed as being worth 1 c.u.; courses that include a lecture and a lab are often worth 1.5 c.u.

Read less
Biotechnology studies help prepare students for careers in the management of bioscience firms and organizations. Biotechnology is among six concentrations leading to the Master of Science (M.S.) in Professional Sciences at MTSU. Read more
Biotechnology studies help prepare students for careers in the management of bioscience firms and organizations. Biotechnology is among six concentrations leading to the Master of Science (M.S.) in Professional Sciences at MTSU. The program is a combination of business and science to offer training to work in leadership roles in scientific companies and agencies. Opportunities with the Biotechnology master’s degree include research science positions in laboratories applying biotechnology to problems in medicine, industry, and agriculture, as well as management positions in the biotechnology and pharmaceutical industries. The program features industry experience in a 250-hour internship that is completed prior to graduation instead of a thesis or comprehensive exams. Coursework includes classes in the specific scientific concentration, along with a business management core. A limited number of graduate assistantships are available.

The Master of Science (M.S.) with a major in Professional Science includes a business core with specific concentrations in Actuarial Sciences, Biostatistics, Biotechnology, Engineering Management, Geosciences, and Health Care Informatics.

The M.S. in Professional Sciences is a new type of two-year degree in the sciences and mathematics to equip people for work in public and private business enterprises and in academia. The goal for this degree, started initially with support from the Alfred P. Sloan Foundation, is to enhance the interface between science and business by emphasizing expertise in both areas.

Career

With the growth of positions in the biotechnology industry in Tennessee and nationwide, the demand for persons with training in both biological science and management is expected to grow significantly. Jobs may be found in agricultural, chemical, environmental and pharmaceutical research and industries. Examples of some occupations with this degree include:

Biochemist
Bioinformatician
Biomedical engineer
Biophysicist
Biotechnology/pharmaceutical sales rep
Biotechnology lab technician
Clinical trials manager
Consultant
Corporate manager
Crime lab technician
Environmental scientist
Epidemiologist
Food scientist
Forensic scientist
Marketing executive
Microbiologist
Pharmaceutical analyst
Process development specialist
Quality control analyst
Quality control engineer
Regulatory biomanufacturing specialist
Research and development scientist
Research associate
Research facility director
Senior scientist
Technical manager
University/research professor

Employers of MTSU alumni include

Aegis Sciences Corporation
Biogen Idec
Calhoun Community College
Columbia State Community College
East Tennessee State University
Emory University
Encapsula Nanosciences
ESC Lab Sciences
Genetics Associates, Inc.
McGraw-Hill Education
Microbial Discovery Group
Middle Tennessee State University
Novus International
Tennessee Valley Authority
Unilever
S. Department of Agriculture, Iowa
Vanderbilt University Medical Center

Read less
The Master of Science in Exercise and Nutrition Science prepares students to work in government, business, the sports industry and in education as practitioners on professional interdisciplinary teams. Read more
The Master of Science in Exercise and Nutrition Science prepares students to work in government, business, the sports industry and in education as practitioners on professional interdisciplinary teams. The program is for students seeking a terminal degree as well as for those seeking a strong foundation for further study and research. The program offers three entry points throughout the academic year, and courses are scheduled to allow an efficient timeline to degree completion for full-time students. Students are provided experiential learning opportunities both inside and outside of the classroom, and are prepared for both the Certified Sports Nutritionist (CISSN) and Certified Strength and Conditioning Specialist (CSCS) examinations, the premier certifications in strength and conditioning and sports nutrition, upon graduation if they choose to pursue certification.

Visit the website http://www.ut.edu/msexercisenutrition/

High-Tech Facilities

Having published more than 100 papers and abstracts, and secured several hundred thousand dollars in funding over the last three years, the students and staff working in the UT Human Performance Research Lab have become nationally and internationally recognized. The lab is one of the most sophisticated and advanced human performance and sport nutrition laboratories in the world, allowing students the opportunity to advance their skills in human performance testing. Equipment contained in the lab includes:

- AMTI force plate for power and velocity

- Dynavision for vision training, reaction time and cognitive function

- Tendo units for movement, specifically power and velocity

- Ultrasonography to measure skeletal muscle size, locate soft tissue injuries and quantify blood flow and blood vessel diameter

- Wingate peak power bikes for anaerobic power testing

- Electromyography for neural function and skeletal muscle activation

- Metabolic carts for VO2 max and resting metabolism measures

- Dual X-ray absorbtiometry for bone mineral density, lean mass and fat mass

- Minus 80°C freezer to maintain the integrity of biological samples

- High tech motion analysis and heavy duty motorized treadmills with 40-degree incline ability

- BTR Primus isokinetic, isotonic and isometric dynomometers for measurement of force, power and velocity in virtually any plane

- Blood lactate analyzers to examine metabolic stress and lactate threshold

- A fully equiped strength and conditioning laboratory

Converging Exercise and Nutrition Sciences Like Never Before

Most university programs segregate the study of exercise and nutrition sciences. The goal of UT’s M.S. in Exercise and Nutrition Science is to examine the relationship between the two fields in regard to optimizing athletic performance. The program combines advanced concepts from exercise physiology and strength and conditioning to teach students how nutrition can impact each area. Through numerous hands-on experiences and rigorous classroom study, students gain an unparalleled awareness of the intersection of these sciences.

Learning by Doing

M.S.-ENS students “learn by doing” through performance-based programming, which prepares practitioners to work with a wide variety of athletes. The department’s advanced labs and technology help students prepare for the real world. UT’s relationships with numerous local athletic teams such as the Tampa Bay Buccaneers and Tampa Bay Lightning allow students put their theories to test. UT faculty and students have also conducted extensive research with more than a dozen high-impact companies that are involved in exercise and nutrition/supplementation. These collaborations give students an insider’s view of the industry and provide a strong network for post-graduation jobs.

Internationally Recognized

Based on the rigor and innovation of the M.S.-ENS program, the International Society of Sports Nutrition recognized it as the first graduate program in Florida to offer approved coursework for preparation for the CISSN examination.

Outstanding Faculty

The program’s highly respected faculty has achieved national and international reputations for academic and applied success in their respective fields.

- J.C. Andersen, Ph.D. – pain and sports medicine

- Mary Martinasek, Ph.D. – mixed-method research inquiry and health program evaluation

- Jay O’Sullivan, Ph.D. – internships in exercise and nutrition science

- Ronda Sturgill, Ph.D. – kinesiology and program evaluation

- Eric Vlahov, Ph.D. – exercise physiology, nutrition and sports psychology

Flexible Program

Our highly flexible program allows students to complete the program within one year. With three entry points into the program, students are able to take classes throughout the year and take time off as needed.

Find out how to apply here - http://www.ut.edu/apply

Read less
The Physics Department at Binghamton University offers a two-year master's (MS) degree and a PhD in physics. The MS program is for students seeking careers in applied physics or in research and development in industrial laboratories. Read more
The Physics Department at Binghamton University offers a two-year master's (MS) degree and a PhD in physics. The MS program is for students seeking careers in applied physics or in research and development in industrial laboratories. It is also intended for technical personnel in industry who wish to attain a higher level of understanding of the physical principles on which modern technology is based.

Upon completion of the PhD program, graduates will be able to lead efforts in acedeme and industry in the areas of condensed matter physics, applied physics and materials science. Graduates receive their degree having made significant contributions to advance knowledge in their particular area of research. Courses and seminars provide necessary background in the basic principles, methods and theories of physics.

As as young and vibrant program, faculty are currently engaged in various collaborative research projects, such as Physics of Metal Oxides through Piper Laboratory, Levy Studies of DNA, and Nanoelectronic Physics and Materials Science for Energy Generation and Information Processing. Research activities emphasize energy sciences, biophysics, and information sciences, with the intent to leverage significant research infrastructure investment under the Small Scale Systems Integration and Packaging Center at Binghamton University.

The Physics Department also has a major focus on materials physics and condensed matter physics with strong interactions with Materials Engineering and industry. The Nanofabrication Laboratory at Binghamton University provides state-of-the-art resources pivotal to conducting cutting-edge nano-scale research.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended. Undergraduate degree in physics or related field desirable for admission.
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE general test scores
- Official GRE subject test in physics scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores
----Physics applicant minimum TOEFL scores:
*80 on the Internet-based exam
*550 on the paper exam
----Physics applicant minimum IELTS score:
*6.5, with no band below 5.0
----Physics applicant minimum PTE Academic score:
*53

Read less
The Biomedical Engineering (BME) program seeks to prepare graduate engineers to face 21st-century challenges by advancing student understanding of prevention, diagnosis and treatment of human injury, disease and the health complications associated with aging as they work to improve human health through advances in healthcare and medicine. Read more
The Biomedical Engineering (BME) program seeks to prepare graduate engineers to face 21st-century challenges by advancing student understanding of prevention, diagnosis and treatment of human injury, disease and the health complications associated with aging as they work to improve human health through advances in healthcare and medicine.

The master's degree program prepares students for careers in the biotechnology industry and medical/healthcare centers or providers of medical/healthcare technology.

Doctoral students will also develop a detailed understanding of the operation of the health care industry, preparing them for academic or industry careers related to medical technology, as well as the background necessary to pursue an entrepreneurial role in medical/healthcare technology. To assist students in pursuing new ventures, incubator space and technology transfer mechanisms are available.

In 2014, the first two doctoral graduates of this program went on to postdoctoral work at Pennsylvania State University, and a permanent position at American Systems in Washington D.C.

Educational Objectives

The goal of biomedical engineers is to improve human health through advances in healthcare and medicine. This includes advancing our understanding of prevention, diagnosis and treatment of human injury, disease and the health complications associated with physiologic and sociologic factors such as aging, environment and diet. In this regard, we are living in an exciting time. In the last two decades or so we have witnessed, among numerous achievements, the decoding of the entire human genome, the birth of proteomic methods, the maturation of computerized tomography, dramatic advances in imaging and sensing technologies, the culture of stem cells, and advances in biomaterials that may eventually enable us to engineer tissues and even organs. Altogether, these achievements have dramatically augmented our potential for improving health care. However, addressing how to use these basic science research advances for improved health care represents a major challenge for biomedical engineers of the coming generation.
Chronic illness is now a dominant issue in health care, consuming vast sums of healthcare dollars, personnel and facilities usage. This situation will only be exacerbated over the coming decades with the aging of the population. As a result, improvements in our ability to prevent, diagnose, and treat chronic illness, and to do so at reasonable cost, has become a focus of the national healthcare agenda. Accordingly, the goal of the biomedical engineering program at Binghamton University is to prepare graduate engineers to face not only these new 21st century challenges, but also to advance new technologies for better healthcare.

MS and PhD applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Two letters of recommendation
- Personal statement of no longer than one page describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
Thank you for your interest in the University of Alabama’s marine science program Tuscaloosa is located inland, about a 4 hour drive to the coast. Read more
Thank you for your interest in the University of Alabama’s marine science program Tuscaloosa is located inland, about a 4 hour drive to the coast.

We offer a dual degree program, in biology (or geology or chemistry) and marine science, that requires our students to spend several summers at the Dauphin Island Sea Lab, located just south of Mobile (please check out the website at http://www.disl.org/).

This program allows our students to work on a biology degree here on main campus during the academic year, where the bulk of our courses are geared toward freshwater and terrestrial ecosystems, and then spend time in highly intensive, hands-on marine science courses during the summers.

This schedule permits the students to complete their general requirements (e.g., general chemistry, math, geology) as well as the university’s required core courses for graduation at main campus with the maximum of options.

In order to fulfill the requirements of our marine science program, students take 2 semesters of general chemistry, geology, and physics, and a single semester of statistics on main campus.

Required marine science classes at the sea lab include:

Marine Biology,
Marine Geology,
Oceanography,
Marine Technical Methods, and
an Elective.


These courses are in addition to the liberal arts core curriculum designated by the university and the requirements of the chosen co-major. With two summers of marine science courses at Dauphin Island Sea Lab and a realistic load of classes each semester, graduation in four years is very possible.

Please feel free to contact us for additional information or to arrange a tour of the UA biology facilities.

The program is highly regarded and our graduates are very conversant in the sciences, making them well suited for a number of career options after graduation.

Hopefully we’ll see you at UA next year!

Read less
The master of science degree in bioinformatics provides students with a strong foundation in biotechnology, computer programming, computational mathematics, statistics, and database management. Read more

Program overview

The master of science degree in bioinformatics provides students with a strong foundation in biotechnology, computer programming, computational mathematics, statistics, and database management. Graduates of the program are well-prepared for careers in the biotechnology, bioinformatics, pharmaceutical, and vaccine industries. Based on consultation with individuals within the industry nationwide, the job market is rich with opportunities for those who obtain a graduate degree in bioinformatics, particularly when coupled with industry-sponsored research as thesis work. This research provides exposure to real-world problems—and their solutions—not otherwise attainable in an academic setting.

The program provides students with the capability to enter the bioinformatics workforce and become leaders in the field. The curriculum is designed to fulfill the needs of students with diverse educational and professional backgrounds. Individuals entering the program typically have degrees in biology, biotechnology, chemistry, statistics, computer science, information technology, or a related field. The program accommodates this diversity in two ways. First, a comprehensive bridge program exists for students who need to supplement their education before entering the program. Second, the program itself consists of two tracks, one for students with backgrounds in the life sciences and one for those with backgrounds in the computational sciences. Regardless of the track pursued, students are prepared to become professional bioinformaticists upon graduation. The program is offered on a full- or part-time basis to fulfill the needs of traditional students and those currently employed in the field.

Plan of study

A minimum of 30 semester credit hours is required for completion of the program. A number of graduate electives are offered for students to pursue areas of personal or professional interest. In addition, every student is required to complete a research project that addresses a relevant and timely topic in bioinformatics, culminating in a thesis. Graduate electives may be chosen from relevant RIT graduate courses.

Curriculum

Bioinformatics, MS degree, typical course sequence:
First Year
-Bioinformatics Seminar
-Graduate Bioinformatics Algorithms
-Graduate Ethics in Bioinformatics
Choose one of the following
-Database Management for the Sciences
-Cell and Molecular Genetics
-Graduate Elective*
-Graduate Statistical Analysis for Bioinformatics
-Graduate Molecular Modeling and Proteomics
-Graduate Elective*
Second Year
-Thesis

* Any graduate level course deemed related to the field of bioinformatics by the program director. See website for details.

Other admission requirements

-Have an undergraduate GPA of 3.2 or higher (on a 4.0 scale).
-Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
-Submit scores from the Graduate Record Examination (GRE), and complete a graduate application.
-International applicants whose primary language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). A minimum score of 79 (Internet-based) is required. International English Language Testing System (IELTS) scores are accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 6.0. For additional information about the IELTS, please visit http://www.ielts.org.

Read less
The College of Liberal Arts and Sciences is a thriving center of intellectual excellence that encompasses 14 academic departments and 80 degree programs. Read more
The College of Liberal Arts and Sciences is a thriving center of intellectual excellence that encompasses 14 academic departments and 80 degree programs. Its more than 2,500 students are engaged in a wide variety of challenging courses and hands-on learning experiences that extend across all areas of the humanities and sciences – from the great philosophers and classic literature to the world economy and environmental sustainability.

At the core of each department are faculty members who have garnered national acclaim for their best-selling books, ground-breaking research and creative endeavors. Together, students and their professors explore globally significant subjects and work towards the goal of improving every aspect of the way in which human beings live. To learn more about a specific area of study, click on the left-hand navigation bar for a full listing of academic departments.

The department

The Department of Biology is renowned for its work in behavioral ecology, animal behavior, and marine biology. Here, you can study fish, turtles, and crustaceans in the Aquatic Research Laboratory, an advanced center that is equipped with high capacity fresh and saltwater tanks. Our Miracle-Gro Greenhouse offers the ideal environment to study plant anatomy, ecology and photosynthesis.

The first of its kind on Long Island and only the third in New York State, our Master of Science in Genetic Counseling program is accredited by the Accreditation Council for Genetic Counseling and is one of just 32 genetic counseling master’s degree programs nationwide.

Our campus is located close to outstanding natural resources, where students and faculty members conduct field research. Internships are available at well-known institutions such as North Shore-Long Island Jewish Health System, Cold Spring Harbor Laboratory, and the New York Hall of Science.

M.S. in Biology

The master’s degree program in biology affords students the opportunity to engage in world-class research alongside acclaimed professors, with state-of-the-art facilities and challenging, dynamic curricula. The M.S. in Biology is designed to prepare you for research, teaching and other disciplines within biology, which may lead you toward entry into a medical, dental or veterinary school, as well as for a wide variety of rewarding careers.

Read less
The College of Liberal Arts and Sciences is a thriving center of intellectual excellence that encompasses 14 academic departments and 80 degree programs. Read more
The College of Liberal Arts and Sciences is a thriving center of intellectual excellence that encompasses 14 academic departments and 80 degree programs. Its more than 2,500 students are engaged in a wide variety of challenging courses and hands-on learning experiences that extend across all areas of the humanities and sciences – from the great philosophers and classic literature to the world economy and environmental sustainability.

At the core of each department are faculty members who have garnered national acclaim for their best-selling books, ground-breaking research and creative endeavors. Together, students and their professors explore globally significant subjects and work towards the goal of improving every aspect of the way in which human beings live. To learn more about a specific area of study, click on the left-hand navigation bar for a full listing of academic departments.

Genetic Counseling

As genetic testing becomes more available and patients gain unprecedented access to information about birth defects and the likelihood of diseases and medical conditions, the need for professionals who can help them understand and act on genetic test results is increasing rapidly.

The LIU Post master's program in Genetic Counseling is the first of its kind on Long Island and only the third in New York State. It is one of just 32 genetic counseling master’s degree programs nationwide accredited by the Accreditation Council for Genetic Counseling.

The program is committed to developing a new generation of genetic counselors with the knowledge and skill to help patients make the best decisions. With a diverse, interdisciplinary academic and clinical faculty, the two-year program is geared toward students who desire a rigorous and comprehensive training in the field of clinical genetics. The program emphasizes the scientific, clinical and psychosocial aspects of genetic counseling. Skills learned through classroom-based didactics pave the way for students to enter their clinical rotations for “real-world” training. Additionally, a number of supplementary activities ensure that students will be exposed to non-traditional careers in genetic counseling along with traditional, clinic-based careers.

M.S. Genetic Counseling

The LIU Post M.S. in Genetic Counseling is the first of its kind on Long Island and only the third in New York State. It is one of just 31 genetic counseling master’s degree programs nationwide accredited by the Accreditation Council for Genetic Counseling.

The mission of the Genetic Counseling program is to develop genetic counselors that have the knowledge, skill and experience to succeed in all areas of the field by providing comprehensive training emphasizing scientific, clinical and psychosocial aspects of genetic counseling.

As genetic testing becomes more available and patients gain unprecedented access to information about birth defects and the likelihood of diseases and medical conditions, the need for professionals who can help them understand and act on genetic test results is increasing rapidly.

The 46-credit Master of Science program in Genetic Counseling at LIU Post is committed to developing a new generation of genetic counselors with the knowledge and skill to help patients make the best decisions. With a diverse, interdisciplinary academic and clinical faculty, the two-year program is geared toward students who desire a rigorous and comprehensive training in the field of clinical genetics. The program emphasizes the scientific, clinical and psychosocial aspects of genetic counseling. Skills learned through classroom-based didactics pave the way for students to enter their clinical rotations for “real-world” training. Additionally, both classroom work and numerous supplementary activities ensure that students will be exposed to expanded roles in genetic counseling in addition to traditional, clinic-based careers.

The M.S. in Genetic Counseling at LIU Post is dedicated to training a diverse group of students to become leaders in the field of clinical genetics. We believe in embracing a supportive and collaborative atmosphere between our students and faculty. We encourage you to learn more about this program, and look forward to reading your application.

Students conduct important, life saving research in the Joseph, Tita, and Don Monti Genetics Lab.

Read less
The Biology Department’s Master of Science program emphasizes research and preparation for further graduate study as well as employment with public agencies and private businesses. Read more
The Biology Department’s Master of Science program emphasizes research and preparation for further graduate study as well as employment with public agencies and private businesses. A major strength of the program is the option to custom-tailor the overall curriculum to meet the needs and objectives of individual students. Students may pursue a general biology curriculum or may choose to focus their studies in one or more of the following specialization areas: botany, cell and molecular biology, ecology, genetics, microbiology, physiology, or zoology. Students also have the opportunity to study in a state-of-the-art facility with the Fall 2014 opening of the innovative $147 million science building comprising more than 250,000 square feet for teaching, research, and collaborative learning. The Biology master’s requires a minimum of 30 semester hours of graduate credit and six hours of research tools or foreign language. The degree also includes written oral comprehensive exams and a research thesis. Program completion typically requires two to three years.

Career

Recent M.S. graduates have followed a variety of career paths, including pursuit of advanced research degrees (Ph.D.) and professional degrees (M.D. for medicine, D.D.S. for dentistry, M.T. for medical technology); employment with a variety of private, university, state, or federal laboratories and agencies; and teaching in high schools and junior colleges. Possible professional positions with this degree:

Bioinformatician
Biologist
Biology teacher
Biotechnology operations manager
College laboratory coordinator
Community college faculty
Commercial farm operations manager
Ecologist
Ecological/environmental consultant
Environmental scientist
Food technologist/safety specialist
Information technologist
Laboratory scientist
Molecular biology analyst
Museum curator
Research assistant/associate
Senior biochemist
Senior chemist
Surveyor
Technician
Water quality specialist
Wildlife biologist
Zoological park curator

Employers of MTSU alumni include:

Aegis Science Corp.
Barrett Firearms Mfg.
Boston Medical Center
California University of Pennsylvania
Central Medical Lab, Sulaimani, Iraq
City of Franklin Water Resources Dept.
Environmental Science Corp.
Genetic Assays
Grundy Greens Farm
Harpeth High School
ICON Clinical Research
Illinois Natural History Survey
Motlow State Community College
Nashville State Community College
Pope John Paul II High School
Premiere Orthopedics
Rockvale Middle School
Siegel High School
Site Engineering Consultants
Stones River National Battlefield
Tennessee Wildlife Resource Agency
U.S. Air Force
U.S. Geological Survey
University of Connecticut Health Center
Vanderbilt University

Doctoral/professional programs where graduates have been accepted include:

Arizona State University
Indiana State University
James Cook University, Australia
Middle Tennessee State University
Northern Illinois University
Oklahoma State University
Sao Paulo State University, Brazil
University of Alabama-Birmingham
University of Kentucky Medical School
University of Louisville
University of Memphis
University of Mississippi
University of Tennessee
Uppsala University, Sweden
Utah State University
UT-Memphis Medical School
Vanderbilt University

Read less
The master’s program in Exercise Science offers preparation for career opportunities in corporate, community, and private fitness sectors, as well as clinical exercise physiology, strength and conditioning, and doctoral programs. Read more
The master’s program in Exercise Science offers preparation for career opportunities in corporate, community, and private fitness sectors, as well as clinical exercise physiology, strength and conditioning, and doctoral programs. Thesis and non-thesis tracks are available for students. The Exercise Science Lab contains state-of-the-art equipment to facilitate both student and faculty research, including a DEXA, metabolic carts, an EKG system, land and underwater treadmills, leg and arm ergometers, a hydrostatic weighing tank, bioelectrical impedance, a lactate and cholesterol analyzer, and a telemetry EMG system.

Career

Graduates gain expertise to advance in positions in fitness and wellness, cardiac rehabilitation, strength and conditioning, corporate fitness, and research. The degree also helps prepare candidates to gain certifications through the American College of Sports Medicine and the National Strength and Conditioning Association and to enter a doctoral degree program in Exercise Science. Graduates can also continue their education in other health care professions. Potential occupations include, but are not limited to:

Bariatric exercise specialist
Cardiac rehabilitation specialist
Diabetes educator
Educator/professor
Employee fitness director
Exercise physiologist
Fitness center/gym owner or manager
Health coach
Occupational therapist
Oncology exercise rehabilitation specialist
Personal trainer
Physical therapist
Pulmonary rehabilitation specialist
Researcher
Strength and conditioning specialist
Wellness coach

Employers of MTSU Exercise Science M.S. alumni include:

Acuff & Associates, Inc.
Bowling Green University
Brooklyn Nets
Cross-fit Rampage
Cumberland University
DaVita Renal Dialysis
Journeys In Community Living
Middle Tennessee State University
National Federation of the Blind
North Carolina State University
OnLife Health
Orthotics Manufacturing Co., Chicago, Ill.
Physiotherapy Associates
Southern Tennessee Medical Center
Steadman Orthopedic Group
Tennessee State Governor’s Foundation for Health and Wellness
Tri-Fit Athletics
University of California-Santa Clara
University of Tennessee-Martin
U.S. Army
Vanderbilt Heart and Vascular Institute
Vanderbilt Orthopedic Institute Fitness Center
Well Fit Medicine and Nutrition
Williamson Medical Center/Cardiac Rehabilitation
YMCA

Read less
The master’s in Health and Human Performance has two strands. Health or Physical Education. Read more
The master’s in Health and Human Performance has two strands: Health or Physical Education. Both options offer students invaluable training, guidance, and knowledge in key health and physical education related areas which help prepare them for exciting career opportunities in community and public health, school health, lifetime wellness education, physical education professor positions, and much more. Not only do candidates indulge in thought-provoking courses such as Bioethical Issues in Health Education, Advanced Sport and Exercise Psychology, and The Nation’s Health, but they also are pushed to network with experts in the field outside the classroom. MTSU students participate in professional activities with both state and national organizations which allow opportunities for beneficial professional development and interaction aiding in post-graduate career opportunities. Students enter the department from a variety of backgrounds for a comprehensive curriculum. Candidates may choose the thesis option or complete a six-credit internship as part of the non-thesis option.​

A Master of Science (M.S.) in Health and Human Performance, with concentrations in Health and in Physical Education, is one of three master’s degrees available from MTSU’s Department of Health and Human Performance.

Career

A master’s degree in Health and Human Performance helps graduates advance in career opportunities at elementary and high schools, health care facilities, businesses and industries, and colleges and universities. Alumni also work in health-related professions with government agencies at federal, state, county, and local levels. Some occupational avenues are:

Athletic coach/program director
Health education specialist
Health promotion specialist
Lifestyle coach
Policy advisor
Program analyst
Program evaluator
Program planner
Project coordinator
Teacher
Wellness coordinator
Elementary physical education teacher
Middle school physical education teacher
High school physical education teacher

Employers of MTSU alumni include:

Health Sphere Wellness Center
Healthways
Institute of Community Wellness & Athletics
LaVergne High School
LIFT Wellness Center
Onlife Health
St Dominic's High School
Tennessee Orthopaedic Alliance
Trinity Elementary School
Vanderbilt University Medical Center

Read less
Biostatistics, a concentration within the Professional Science major, leading to a Master of Science, provides training in statistical methods that can be applied to biomedical and health-related fields. Read more
Biostatistics, a concentration within the Professional Science major, leading to a Master of Science, provides training in statistical methods that can be applied to biomedical and health-related fields. These methods involve using mathematics to solve real-world problems that influence health. Statistical areas of study include clinical trials, experimental design, categorical and longitudinal data analysis, and survival analysis. The M.S. in Professional Science combines the business management skills commonly found in the traditional M.B.A.-type program with advanced learning in specific science fields. The program consists of 21 hours of concentration-specific courses and 15 core hours in pre-defined business courses. Students complete a 250-hour internship, typically just before or during their final semester, instead of a thesis and comprehensive exams.

The Master of Science (M.S.) with a major in Professional Science includes a business core with specific concentrations in Actuarial Sciences, Biostatistics, Biotechnology, Engineering Management, Geosciences, and Health Care Informatics.

The two-year master’s degree in the sciences, technology, engineering, and mathematics (STEM) was initially started with support by the Alfred P. Sloan Foundation. The interdisciplinary program is a partnership of the College of Basic and Applied Sciences, College of Behavioral and Health Sciences, College of Liberal Arts, and the Jennings A. Jones College of Business.

Career

Reports from the Department of Labor indicate an increasing demand for individuals with master's level training with a specialty in science. MTSU is home to the only Master of Science in Professional Science program in Tennessee and prepares "business savvy scientists" for the 21st century job market. Biostatistics master’s graduates will ideally work as biostatisticians in professional settings including health care agencies; governmental agencies such as the National Institutes of Health, the Centers for Disease Control and Prevention, and the Environmental Protection Agency; and the pharmaceutical industry.

Employers of MTSU alumni include:

Emory University School of Medicine
Lifepoint Hospitals
Sarah Cannon Research Institute
Tribal Epidemiology Center
Vanderbilt Ingram Cancer Center

Read less
The Graduate Program in Pharmaceutical Sciences, located on the Texas Tech University Health Sciences Center (TTUHSC) campus at Amarillo, Texas offers Masters (M.S.) and Doctoral (Ph.D.) degrees in integrated biomedical/pharmaceutical research as part of the TTUHSC Graduate School of Biomedical Sciences. Read more
The Graduate Program in Pharmaceutical Sciences, located on the Texas Tech University Health Sciences Center (TTUHSC) campus at Amarillo, Texas offers Masters (M.S.) and Doctoral (Ph.D.) degrees in integrated biomedical/pharmaceutical research as part of the TTUHSC Graduate School of Biomedical Sciences.

About the Program

Modern pharmaceutical science encompasses a number of disciplines, including biochemistry, molecular biology, physiology, immunology, pharmacology, pharmaceutics, and medicinal chemistry. The field is unified by the search for novel drug targets and the development of new agents and formulations for the treatment biomedical disease. This includes cutting edge techniques to target drugs to sites of therapeutic action and to reduce adverse effects related to drug metabolism, lack of target selectivity, and pharmacogenetic differences within the human population. PhD’s in pharmaceutical science are well trained for drug discovery and development positions in academic labs, government (e.g., Food and Drug Administration), and the pharmaceutical or biotech industries.
Each student completes a core curriculum including foundation training in biochemistry, physiology, pharmacology and pharmaceutics designed to give students a basic understanding of the biomedical processes by which the body operates and the pharmaceutical agents and delivery systems available to interact with these systems. Electives studies offer the student the opportunity for specialization in more focused areas of interest, including receptor biology, molecular drug action, cell signaling, cancer research, pharmacokinetics, drug metabolism, and biotechnology. Communication, research design, professional skills and ethics are developed throughout the curriculum in complementary courses. Students become immersed in the philosophy of life-long learning and the importance of maintaining and updating their knowledge base as critical, independent thinkers and scientists. The faculty sees this integrated approach as one of the primary strengths of the program, combining cutting-edge molecular and biomedical breakthroughs with modern drug development, targeting and formulation. A broad range of biomedical and pharmaceutical research opportunities are available throughout the department. Focus areas of the Department with links to specific faculty interests are listed below:
Aging/Brain/Neuroprotection/Stroke
Blood Brain Barrier and Neurovascular
Cancer and Molecular Biology & Therapy
Cardiovascular Disease & Regulation
Drug Discovery and Formulation & Pharmacokinetics
Receptor Biology, Cell Signaling & Immunotherapy

Funding

Typically, students may complete a course of study for a Ph.D. degree within 4-5 years or a Masters degree in about half that time (2-2.5 years). Funding is available in the form of stipends ($23,000) from the Department/Graduate School and from individual faculty research resources. These stipends are awarded on a competitive basis to qualifying Ph.D. candidates. Currently, the Department has 43 funded graduate students.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X