• Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Durham University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
United Kingdom ×
0 miles
Biological Sciences×

Full Time MSc Degrees in Biological Sciences, United Kingdom

We have 768 Full Time MSc Degrees in Biological Sciences, United Kingdom

  • Biological Sciences×
  • United Kingdom ×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 15 of 768
Order by 
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within… Read more
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within an excellent environment of state-of-the-art research laboratories, cutting-edge provision for proteomics, genomics, advanced genome sequencing and analysis, a cell imaging suite, transgenic plants facility and an NMR centre for protein structure analysis.

The School has developed bespoke pathways to MSc awards across all of its research areas, affording applicants the opportunity to develop their own postgraduate degree programmes. These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice, which in turn reflects the research interest of the research grouping, for example, MSc Advanced Biological Sciences (Molecular Oncology).

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. You will also be offered a flexible but guided programme of study, which will enable you to develop your leadership, information technology and professional skills.

Pathways include:

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Human Immunity)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Post-Genomic Science)
Advanced Biological Sciences (Structural Biology)

Projects

Research projects offered in previous years include:

Combining species-specific and site-specific conservation: towards a more integrated conservation effort
Interference interactions between Staphylococcus aureus and other members of the nasal microflora
Preparation of recombinant S100P protein for interaction studies
Investigating the activity of potential malarial therapeutics
From mate choice to partner preference
MCL-1 as a regulator of apoptosis in myeloid cell lines
Using experimental evolution to test diffuse coevolution theory in host-symbiont interactions.

Read less
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines. genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few. Read more
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines: genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few.

In 2014 the school relocated to a new £54 million, state-of-the-art Life Sciences building. Our new laboratory facilities are among the best in the world, with critical '-omics' technologies and associated computing capacity (bioinformatics) a core component. The new building is designed to foster our already strong collaborative and convivial environment, and includes a world-leading centre for evolutionary biology research in collaboration with key researchers from earth sciences, biochemistry, social medicine, chemistry and computer sciences. The school has strong links with local industry, including BBC Bristol, Bristol Zoo and the Botanic Gardens. We have a lively, international postgraduate community of about 150 research students. Our stimulating environment and excellent graduate school training and support provide excellent opportunities to develop future careers.

Research groups

The underlying theme of our research is the search for an understanding of the function, evolution, development and regulation of complex systems, pursued using the latest technologies, from '-omics' to nanoscience, and mathematical modelling tools. Our research is organised around four main themes that reflect our strengths and interests: evolutionary biology; animal behaviour and sensory biology; plant and agricultural sciences; and ecology and environmental change.

Evolutionary Biology
The theme of evolutionary biology runs through all our research in the School of Biological Sciences. Research in this theme seeks to understand organismal evolution and biodiversity using a range of approaches and study systems. We have particular strengths in evolutionary genomics, phylogenetics and phylogenomics, population genetics, and evolutionary theory and computer modelling.

Animal Behaviour and Sensory Biology
Research is aimed at understanding the adaptive significance of behaviour, from underlying neural mechanisms ('how', or proximate, questions) to evolutionary explanations of function ('why', or ultimate, questions). The approach is strongly interdisciplinary, using diverse physiological and biomechanical techniques, behavioural experiments, computer modelling and molecular biology to link from the genetic foundations through to the evolution of behaviour and sensory systems.

Plant and Agricultural Sciences
The global issue of food security unifies research in this theme, which ranges from molecular-based analysis of plant development, signal transduction and disease, to ecological studies of agricultural and livestock production systems. We have particular strengths in functional genomics, bioinformatics, plant developmental biology, plant pathology and parasite biology, livestock parasitology and agricultural systems biology. Our research is helped by the LESARS endowment, which funds research of agricultural relevance.

Ecology and Environmental Change
Research seeks to understand ecological relations between organisms (plant, animal or microbe) at individual, population and community levels, as well as between organisms and their environments. Assessing the effect of climate change on these ecological processes is also fundamental to our research. Key research areas within this theme include community ecology, restoration ecology, conservation, evolutionary responses to climate change and freshwater ecology. Our research has many applied angles, such as ecosystem management, wildlife conservation, environmental and biological control, agricultural practice and informing policy.

Careers

Many postgraduate students choose a higher degree because they enjoy their subject and subsequently go on to work in a related area. An Office of Science and Technology survey found that around three-quarters of BBSRC- and NERC-funded postgraduates went on to a job related to their study subject.

Postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and for work in some public bodies or private companies. Around 60 per cent of biological sciences doctoral graduates continue in research. Academic research tends to be contract-based with few permanent posts, but the school has a strong track record in supporting the careers of young researchers by helping them to find postdoctoral positions or develop fellowship applications.

Read less
This is a one-year Masters Research degree programme beginning in September. Read more

The programme

This is a one-year Masters Research degree programme beginning in September. It offers students with a good BSc degree in Biochemistry, Biology or related disciplines the opportunity to acquire a wide range of advanced research techniques through carrying out a one-year laboratory based research project under the direction of a member of staff selected by the student. Students will advance their research skills (including data analysis, bioinformatics tools and presentation skills).

This course is designed to equip students with the necessary skills of a researcher in biomedical sciences, ecology, evolution and behaviour or plant molecular sciences.

The aims of this degree programme are:
• to provide training in the key generic skills required to be a scientific researcher;
• to provide advanced training in a specialised branch of biological sciences research;
• to ensure familiarity with a range of transferable, advanced research skills;
• to provide practice in communicating results of research both by oral presentation and by
preparation of a Master thesis.

Students are offered: a major supervised research project lasting approximately eight months, the opportunity to work with a leading scientist in a chosen field, experience of working as part of a research team and development of high level practical research skills in the lab or field.

Teaching, learning and assessment

Although this is a research degree there is a taught component with lectures being delivered throughout the first two terms. As part of this there is a requirement to complete coursework, prepare and present your research to a School audience by means of a poster as well as a 20 minute oral presentation in the summer term. All elements of the programme must be passed in order to be able to submit the final project for assessment in summer.

Students receive regular, scheduled, feedback on their performance in taught modules, their project plan, literature review/draft introduction (autumn term), draft materials and methods write up (spring term), preparatory oral presentation (spring term); oral presentation (summer term); and draft project write up (summer term).

Applying

Before applying you will need to peruse and then identify academic staff members whose projects you are interested in. https://www.royalholloway.ac.uk/biologicalsciences/study-here/postgraduate/home.aspx

The project will be selected from one of three major research areas within the School: Biomedical Sciences (BMS), Plant Molecular Sciences (PMS), and Ecology Evolution and Behaviour (EEB).
Once you have identified your area of interest, you should contact potential supervisors (via e-mail) to discuss details of the projects and availability of placement. Having made contact remember to state at least 2 the supervisors and project names in the 'supporting statement' section of our online application.

Places/projects on our course are limited. In order to secure your place and confirm your acceptance to our programme, it is advisable to pay a tuition fee deposit after you receive our offer.

Further learning and career opportunities

The programme prepares students for future careers in Biological Sciences research, including doctoral degrees, and related areas of employment. Students are provided with training in a range of subject specific and transferable skills.

If you wish to discuss the MSc informally, please contact the MSc Programme Director Dr Pavlos Alifragis () (01784 444988).

Read less
This practical course is based on a single research project under the training and supervision of one of our Academic researchers. Read more
This practical course is based on a single research project under the training and supervision of one of our Academic researchers. Topics tend to be interdisciplinary and range from laboratory-based fundamental science to field-based applied agriculture and ecology. The course will give you hands-on experience of your chosen specialism and can be used in preparation for a PhD. It also prepares you for careers in science administration, business where the products sold involve advanced technology, and as a consultant in many highly skilled sectors.

Read less
Cell Biology lies at the heart of today's central questions in the biological sciences. Research in Cell Biology is crucial to understand the inner workings of animals, plants and bacteria. Read more
Cell Biology lies at the heart of today's central questions in the biological sciences. Research in Cell Biology is crucial to understand the inner workings of animals, plants and bacteria. It is central to diverse subjects including cell communication, cell division and cell motility. Importantly, our understanding of Cell Biology will undoubtedly help in the quest for treatments for major diseases, including cancer. This programme will give you the unique opportunity to consider the most exciting current problems in cell biology under the guidance of leading experts in Cell Biology.

You will gain training and experience in the concepts and techniques used in cutting edge research in cell biology and it's application in widespread fields of research. Importantly, you will have the opportunity to directly apply these ideas in your research projects. The diverse fields studied and large number of leading researchers employing Cell Biological approaches in Manchester permits you to perform your studies in the area you find most stimulating.

Through this programme, you will have a unique opportunity to define the mechanisms that define and regulate the function of cells and organisms.

This is a research focused master's course. We do not teach Cell Biology using a traditional lecture-based format; instead we use an interactive approach where you learn through seminars, workshops, small group tutorials and during your research placements.

Teaching and learning

The programme comprises four compulsory components:

Research projects: Your two projects will provide experience in carrying through a substantive research project including the planning, execution and communication of original scientific research. They are assessed by written report.

Tutorials and Workshop Unit : Tutorials give you the opportunity to learn about research being carried out in the Faculty of Biology, Medicine and Health and thereby to acquire a broad knowledge of biological sciences.The Bioethics Workshop gives you experience of exploring and debating some of the ethical issues that surround current scientific research. Activities for the Tutorials and Bioethics unit include preparative directed reading, private study and preparation of oral presentations. This unit is assessed by members of staff for the tutorial session and staff assessment of oral presentation during the tutorial and written reports.

Science Communication Unit: This unit allows you to acquire the ability to listen to a presentation, understand the key concepts and record important details, and then summarise its contents in a brief written report. Activities include private study and preparation of written assignment. For each of 5 seminar presentations, a 500 word precis has to be written. You are assessed on these assignments plus a poster and an oral presentation.

Experimental Design and Statistics Unit: This unit aims to introduce you to the procedures and tools used in the design of experiments and the methods and tools used in statistical data analysis. Activities include lectures, workshops, group discussions and e-learning. Assessment is through multiple choice exam, critical assessment of literature and online statistics exercises.

Career opportunities

This course will provide training in transferable and subject specific skills. Your experiences of group based activities and presentations will be valuable in scientific and non-scientific careers. Your general scientific training will provide you with invaluable skills for a career in academic research, further study (e.g. PhD) or in industrial research. Finally, the widespread impact of Cell Biology on diverse subject areas will provide you with experiences in diverse subject areas and permit you to work within almost any area in the Biological Sciences.

Read less
For those seeking a role in the technology transfer, technology finance or pharmaceutical and biotechnology industries, it is essential to develop an understanding of the science, regulatory environment, and communication and deal-making. Read more
For those seeking a role in the technology transfer, technology finance or pharmaceutical and biotechnology industries, it is essential to develop an understanding of the science, regulatory environment, and communication and deal-making. The Bio-business programme delivers an overview of the history and trends in scientific research and development in the industrial biosciences. This is supported and complemented by business, entrepreneurial and industry-facing modules, including the structure of the biotechnology and pharmaceutical industries in the context of regulation and public perception. The programme highlights issues of risk and regulation and the socio-economic benefits stemming from technology and material developments.

The main aims are to convey a broad and detailed understanding of all these critical issues, and to provide insight into both the theory and practice of entrepreneurship and business in the context of the bioscience industry, recognising the differences between science-based projects and other types of commercial activity.

The programme features specialist presentations from researchers and authorities in subject areas such as ethics, biological products and business development. Hands-on experiential learning is also provided, developing students' ability to build talented teams and pitch for funds, among other essential skills.

Why study this course at Birkbeck?

- Provides training in management and business principles, in research methods via new and existing modules offered by CIMR in the Department of Management, and new modules in the Department of Biological Sciences.
- Analyses core and specialist issues in business innovation, focused on biological and chemical sciences.
- Specialist presentations from authorities in subject areas such as ethics, pharmaceuticals and technology transfer. New biological sciences module content is informed by a high-profile industrial panel.
- Requires you to carry out an independent piece of research within the subject area of the programme.
- Evening, face-to-face study in full-time and part-time modes.

Read less
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. Read more
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. We offer many opportunities for you to explore medically relevant research in the School of Biological Sciences including hospital-based sessions through our collaboration with local cancer specialists and clinicians.

An important and exciting part of your programme is an extensive independent research project, based in one of our academic research groups using advanced laboratories facilities and bioinformatics tools. There are also opportunities for research projects to take place within an industrial or clinical setting.

Throughout the course, you develop your knowledge in the essential areas of molecular and cellular biology which complement your specialist modules in cancer biology. You gain expertise in areas including:
-Specific cancer types (including breast, prostate, pancreatic and colon cancer)
-Clinical aspects of cancer
-Emerging trends in cancer research

You are also trained in modern research methods and approaches which will develop your skills in complex biological data analysis and specific techniques in cancer research.

Within our School of Biological Sciences, two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you will learn from and work alongside our expert staff as you undertake your own research.

Our expert staff

We have a very strong research team in the area of cancer biology, who are well placed to deliver the specialist teaching on this course.

The team includes the course leader Professor Elena Klenova (molecular oncology and cancer biomarkers), Dr Ralf Zwacka (apoptotic and survival signalling in cancer), Dr Greg Brooke (steroid hormone receptor signalling in cancer), Dr Metodi Metodiev (clinical proteomics and bioinformatics), Dr Pradeepa Madapura (cancer epigenetics), Dr Vladimir Teif (computational and systems biology), Professor Nelson Fernandez (tumour immunology) and Dr Filippo Prischi (structural biology and biophysics of novel drug targets).

External experts also input to your teaching, including guest speakers from hospitals and research institutions, who deliver classes both on-campus and within the hospital environment.

As one of the largest schools at Essex, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching, and you benefit from our academics’ wide range of expertise and research.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Study in an open and friendly department, with shared staff-student social spaces
-Carry out your research project in shared lab space, alongside PhD students and researchers engaged in cutting-edge cancer research
-Learn to use state-of-the-art research facilities, including an advanced microscopy suite, proteomics laboratory, cell culture, bioinformatics and genomics facilities, modern molecular biology laboratories, and protein structure analysis

Your future

Graduates who are skilled in the research methods embedded into your course are in demand from the biotechnology and biomedical research industries in this area of the UK and beyond.

Many of our Masters students progress to study for a PhD, and there are many opportunities within our school leading to a career in science.

We work with our University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Advanced Cancer Biology
-Practical Skills in Cancer Research
-Gene Technology and Synthetic Biology
-Protein Technologies
-Professional Skills and the Business of Molecular Medicine
-Cancer Biology (optional)
-Research Project: MSc Cancer Biology
-Genomics (optional)
-Cell Signalling (optional)
-Molecular Medicine and Biotechnology (optional)
-Human Molecular Genetics (optional)
-Molecular and Developmental Immunology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)

Read less
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. Read more
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. The degree provides an ideal grounding for PhD research or a career in plant breeding and crop improvement with modules including Genetics, Plant Genomics, Plant Molecular Genetics and Statistics for Plant Science.

Your taught modules will be complemented by a six-month laboratory-based research project, giving you the opportunity to work closely with world-leading scientists from the John Innes Centre and our School of Biological Sciences.

The John Innes Centre – based on Norwich Research Park alongside UEA – is one of the world’s leading research institutes in plant genetics and crop improvement, so there are few places in the world where you’ll find a better opportunity to work with such leading authorities and world-class facilities.

Read less
Programme description. Bioinformatics is about the application of computer-based approaches to understanding biological processes. Read more

Programme description

Bioinformatics is about the application of computer-based approaches to understanding biological processes. Our programme will introduce you to the current methods used to interpret the vast amounts of data generated by modern high-throughput technologies.

The aim of this MSc is to equip you with a strong background in biology, plus the computing skills and knowledge necessary to navigate the vast wealth of modern biological data. On completing this programme you will be able to take up PhD studies or bioinformatics posts in academia or in industry.

The programme covers programming skills, statistical analysis and database science as well as bioinformatics. Option courses allow you to specialise in several aspects of bioinformatics.

Programme structure

The MSc comprises two semesters of taught courses followed by a research project and dissertation. The project is a key element in deciding how your career in bioinformatics should develop further. Teaching is through lectures, tutorials, seminars, computer practicals and lab demonstrations.

Compulsory courses:

  • Bioinformatics Programming & System Management
  • Bioinformatics Research Proposal
  • MSc Dissertation (Bioinformatics)
  • Statistics & Data Analysis

Optional courses:

  • Bioinformatics 1
  • Human–Computer Interaction
  • Information Processing in Biological Cells
  • Molecular Modelling and Database Mining
  • Quantitating Drug Binding
  • Bioinformatics Algorithms
  • Bioinformatics 2
  • Functional Genomic Technologies
  • Introduction to Website and Database Design for Drug Discovery
  • Molecular Phylogenetics
  • Next Generation Genomics
  • Software Architecture, Process, and Management
  • Drug Discovery
  • Introduction to Java Programming

Research

The research project is carried out independently, but under the guidance of a supervisor, during the summer, with results presented in a dissertation. A wide range of projects is available through both the School of Biological Sciences and the School of Informatics.

Career opportunities

The programme is good preparation for further academic research or for technical or managerial roles in various commercial sectors, from medical electronics to defence.



Read less
This course is designed to develop the professional and field skills, including identification and survey techniques, required for effective conservation. Read more
This course is designed to develop the professional and field skills, including identification and survey techniques, required for effective conservation. It will familiarise you with the key ecological concepts underlying evidence-based conservation. You will produce professional reports and assessments and undertake monitoring of species and communities. You will also gain additional skills essential for conservation practitioners, for example:
- knowledge of international and national wildlife legislation, planning law and environmental policy

- IT competencies, including Geographical Information Systems (GIS)

- an understanding of the ecological requirements of different species and the implications of environmental change

- an ability to statistically interpret field data.

The course has two pathways: one is focused on conservation within the UK/EU and the other focuses on conservation at the International level.

See the website http://www.brookes.ac.uk/courses/postgraduate/conservation-ecology/

Why choose this course?

- Our lecturers conduct first-class research in conservation ecology.

- We have strong links with many conservation organisations and research institutions, such as the NERC Centre for Ecology and Hydrology, RSPB, Fauna and Flora International, TRAFFIC and Conservation International, providing excellent project opportunities and enhancing career prospects.

- Focusing on the practical application of theory means graduates can adapt quickly to the demands of the conservation professions. We develop your field skills including identification techniques, required when undertaking biodiversity surveys.

- Research-informed teaching keeps our students up to date with the latest thinking. Equipping you with current conservation legislation and practice is essential in the context of rapidly-changing demands on land use.

- We develop your transferable skills, particularly communication, organisation and research planning, which will assist you when carrying out your project and prepare you for a career in conservation ecology.

- On successful completion of the MSc, you will be able to apply for graduate membership of the Chartered Institute of Ecology and Environmental Management.

Professional accreditation

CIEEM accreditation indicates that a key professional body recognises that we offer our students the opportunity to develop the key skills needed for employment in conservation ecology. Additionally our students have access to vital information about current developments in ecology and consultancy and can benefit from all that CIEEM offers.

Teaching and learning

Teaching and learning methods reflect the wide variety of topics associated with conservation ecology, and include field visits and exercises, lectures, directed reading, workshops, seminars, practical exercises, laboratory sessions and project work. A key component of the course is developing field skills, including species identification. Techniques for identification are taught in the field and in laboratory sessions, using expertise from the Department of Biological and Medical Sciences and, where appropriate, from the University of Oxford Museum of Natural History.

As needed, you will be taught by guest speakers who are conservation practitioners or who work in conservation research organisations. Some parts of the course share modules with master’s provision in Environmental Assessment and Management and also in Primate Conservation. This cross-disciplinary nature for certain aspects of the course is a key strength.

Field trips

We use the varied landscape of Oxfordshire and Buckinghamshire as our natural laboratory, and the course has a large practical component, developing survey and assessment methods as well as identification skills. This landscape is used to illustrate major conservation issues as well. Most of this field work is conducted as part of the modules during semesters but we also have a field skills based period at the end of the taught component of the course and offer opportunities to work towards gaining specialist licences, which are invaluable for consultancy work.

There are no extra costs associated with the fieldwork components of this MSc.

Work placement and professional recognition

We encourage you to conduct your research project with conservation organisations or with one of our research groups. We have good links with a range of national and local conservation organisations and ecological consultancies. On successful completion of this MSc, you will be eligible to apply for graduate membership of the Chartered Institute of Ecology and Environmental Management. With an additional two years' work experience, you will be eligible to apply for associate membership.

How this course helps you develop

We help you to develop links with potential employers, often through project work, and we encourage contact with practitioners throughout the course. The course is underpinned by theory but there is an emphasis on developing practical skills, including industry standard survey techniques and species identification skills. We also provide opportunities to develop techniques for data handling and analysis along with a focus on professional communication skills. We encourage all our students to learn from their peers as well, helping to develop essential teamworking skills.

Careers

Graduates of this course gain employment primarily with environmental consultancies or agencies, conservation organisations or charities, or continue academic research as a PhD student. Some of our past students are currently working for environmental consultants, the RSPB, the Environment Agency, DEFRA and Natural England.

Free language courses for students - the Open Module

Free language courses are available to full-time undergraduate and postgraduate students on many of our courses, and can be taken as a credit on some courses.

Please note that the free language courses are not available if you are:
- studying at a Brookes partner college
- studying on any of our teacher education courses or postgraduate education courses.

Research highlights

In the Research Excellence Framework (REF) 2014, 95% of our research in Biological Sciences was rated as internationally recognised, with 58% being world leading or internationally excellent. That makes us the top post’ 92 University for its Biological Sciences submission.

In addition to this research which underpins our teaching, our Centre for Ecology, Environment and Conservation is developing the use of mobile applications for data collection and processing in the field. Our Phase One Toolkit, which was developed by staff who deliver our MSc Conservation Ecology, with student input, is widely used by consultancies, demonstrating that our students have access to innovative data collection tools.

Read less
- https://www.kent.ac.uk/locations/medway/. This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company.

It was designed and conceived by pharmaceutical industry experts in drug discovery and will be delivered and assessed by experts in this field at the School of Pharmacy.

The MSc covers how fundamental science is applied to the discovery and development of medicines and the main aims are to:

- provide you with the experience of critically appraising the research questions and techniques that are routine in the pharmaceutical industry workplace

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- provide expert preparation for students who wish to pursue a career in drug discovery, or wish to proceed to a PhD.

Visit the website https://www.kent.ac.uk/courses/postgraduate/736/applied-drug-discovery

Duration: One year full-time (campus based), two years part-time (distance learning)

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

This programme is taught as either a classic one year full-time programme with attendance required on Mondays and Tuesdays for 48 weeks plus an additional study day off-campus, or delivered through distance e-learning using an interactive virtual learning environment on a two-year part-time basis.

The programme comprises 60 credits at certificate level, 60 credits at diploma level and 60 credits at Master’s level. You may choose to end your study at any one of these stages.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by 100% coursework; including scientific reports, assignments, essays, a research project and portfolio entries.

Programme aims

This programme aims to:

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- teach you an understanding of the drug discovery process

- provide you with expanded training in the biological sciences technical skills that underpin the processes of drug discovery

- provide you with the experience of critically appraising the research questions and techniques they use routinely in the workplace

- develop a variety of postgraduate level intellectual and transferable skills

- equip you with lifelong learning skills necessary to keep abreast of developments in drug discovery

- provide you with opportunities for shared multidisciplinary learning in drug discovery

- give you the experience of undertaking an independent research project

- provide expert preparation for students who wish to pursue and/or further a career in drug discovery, or wish to proceed to a higher degree (PhD) in topics related to the drug discovery process

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career. While the MSc in Applied Drug Discovery produces elite drug discovery personnel, who can pursue a career in the pharmaceutical industry or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Regenerative Medicine. MSc ( 1 year Full-time ). Overview. Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. Read more
Regenerative Medicine
MSc ( 1 year Full-time )

Overview

Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. It is a rapidly growing area of biomedical research that encompasses stem cell biology, tissue engineering, drug delivery, and nanotechnology. This MSc course provides advanced, multi-disciplinary training in the scientific principles and clinical applications of regenerative medicine, and is delivered jointly by Barts and The London School of Medicine and Dentistry and the School of Engineering and Materials Science.

Taught modules will develop a strong scientific foundation in the biology of stem cells and regeneration and the fundamental principles of biomaterials, tissue engineering and cellular reprogramming. Through an intensive 12-week research project, students will then gain hands on experience applying these concepts to problems in human health and the development of novel regenerative technologies.

Upon completion of the MSc in Regenerative Medicine, students will be well placed for further training at the PhD level or professional careers in the biotechnology and pharmaceutical industries.

Structure
The MSc in Regenerative Medicine is a one year, full-time programme. Students are required to complete 180 credits comprising taught and research modules.


Taught Modules (15 credits each)

o Cellular and Molecular Basis of Regeneration
o Stem Cell and Developmental Biology
o Advanced Tissue Engineering and Regenerative Medicine
o Research Skills and Methodology
o Biomaterials in Regenerative Medicine
o Tissue-specific Stem Cells
o Induced Pluripotent Stem Cells and Genome Engineering
o Ethics and Regulatory Affairs

Research Project in Regenerative Medicine (60 credits)
During the final 12 weeks of the course, students will work full time on their laboratory-based research projects. Students will select research projects from a wide range of topics in regenerative medicine. Examples include research on the cellular and molecular aspects of tissue regeneration, disease pathogenesis, development of stem cell therapies, design of novel nano-biotechnologies, or engineering biomaterials and tissue scaffolds.


Entry requirements
As a multi-disciplinary course, the MSc is appropriate for a wide range of students. Graduates with degrees in biological sciences or medicine will gain an in-depth understanding of the cellular and molecular aspects of regenerative medicine as well as an introduction to the interdisciplinary fields of biomaterials and tissue engineering. Similarly, students with a physical sciences background will have the opportunity to broaden their experiences and acquire new skills in the biological sciences.
Admission to the course is selective, and based upon academic credentials, research experience, and motivation. At a minimum, students must have an undergraduate degree equivalent to UK second-class honours from a recognised academic institution. Applicants are required to submit a statement of purpose and letter of recommendation with their application.
Applications are accepted all year round, but there are limited places to ensure high-quality training, so please apply early to avoid disappointment.

Read less
The MSc in Infectious Diseases has been designed for students who wish to gain an advanced education and training in the biological sciences, within the context of a range of human diseases that affect a significant proportion of the global population. Read more
The MSc in Infectious Diseases has been designed for students who wish to gain an advanced education and training in the biological sciences, within the context of a range of human diseases that affect a significant proportion of the global population.

The programme provides training in the modern practical, academic and research skills that are used in academia and industry. Through a combination of lectures, small-group seminars and practical classes, you apply this training towards the development of new strategies to combat the spread of infectious diseases.

You learn skills in experimental design using appropriate case studies that embed you within the relevant research literature. You also gain experience of analysis and statistical interpretation of complex experimental data.

The programme culminates with a research project under the supervision of faculty that currently perform research on disease-causing microorganisms.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/361/infectious-diseases

About the School of Biosciences

The University of Kent’s School of Biosciences ranks among the most active in biological sciences in the UK. We have recently extended our facilities and completed a major refurbishment of our research laboratories that now house over 100 academic, research, technical and support staff devoted to research, of whom more than 70 are postgraduate students.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

The MSc in Infectious Diseases involves studying for 120 credits of taught modules, as indicated below. The taught component takes place during the autumn and spring terms, while a 60-credit research project take place over the summer months.

The assessment of the course will involve a mixture of practical classes, innovative continuous assessment to gain maximise transferable and professional skills, and examinations.

In addition to traditional scientific laboratory reports, experience is gained in a range of scientific writing styles relevant to future employment, such as literature reviews, patent applications, regulatory documents, and patient information suitable for a non-scientific readership.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year. Please note the modules listed below for this programme are compulsory core modules:

BI845 Research project (60 credits)
BI853 - Bacterial Pathogens (15 credits)
BI854 - Fungi as Human Pathogens (15 credits)
BI855 - Advances in Parasitology (15 credits)
BI856 - Viral Pathogens (15 credits)
BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)

Assessment

Assessment is by examination, coursework and the research project.

Programme aims

This programme aims to:

- provide an excellent quality of postgraduate level education in the field of infectious diseases, their biology and treatments

- provide a research-led, inspiring learning environment

- provide a regional postgraduate progression route for the advanced study of diseases that affect a high proportion of the global population

- promote engagement with biological research into infectious diseases and inspire students to pursue scientific careers inside or outside of the laboratory

- develop subject-specific and transferable skills to maximise employment prospects

- promote an understanding of the impact of scientific research on society and the role for scientists in a range of professions.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

The MSc in Infectious Diseases provides advanced research skills training within the context of diseases that affect significant proportions of the UK and global populations. With the UK being a world leader in infectious diseases research and pharmaceutical development, and Kent having a strong research focus in this area, there are significant opportunities for career progression for graduates of this programme in academia (PhD) and industry.

There are also opportunities for careers outside the laboratory in advocacy, media, public health and education.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/361

Read less
Designed to prepare you to interact with the world’s most advanced biological and clinical datasets - this programme will prepare you for careers, or further graduate work, in the omics-enabled biosciences. Read more
Designed to prepare you to interact with the world’s most advanced biological and clinical datasets - this programme will prepare you for careers, or further graduate work, in the omics-enabled biosciences.

The future of biology is bioinformatics – computational analysis procedures that leverage state-of-the-art statistics and machine learning to gain insight into systems of exquisite complexity. We have entered an era of unprecedented expansion in the biological sciences, and our data now grows exponentially faster than Moore’s law.

The biological sciences have been transformed by the advent of omics. Enabled by revolutionary advances in molecular sequencing and mass spectrometry, it is now possible to sequence a genome in six hours, simultaneously assess the expression level of every gene in a genome, quantify the abundance of proteins and metabolites, and determine the epigenetic and regulatory landscape of individual cells. Hypotheses are generated through the integrative analysis of enormous datasets, and tested in high-throughput with third-generation genome-engineering technologies, including CRISPR.

Biology is now driven by data.

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This new programme prepares students for a career in the rapidly developing field of biological physics. Read more
This new programme prepares students for a career in the rapidly developing field of biological physics. Navigating across the boundaries of the established disciplines of biology and physics - using tools and techniques developed for one discipline to answer questions arising in another – students will also interact with experienced researchers in the laboratory from the outset.

Degree information

Students gain broad background knowledge of cell and developmental biology, and physical theories and experimental physics techniques applied to biological systems. They also gain theoretical and working knowledge of techniques from physics and engineering used in biological physics research, including optical microscopy, microfabrication, and data analysis.

Students undertake modules to the value of 180 credits. The programme consists of five core modules (75 credits), two optional modules (45 credits) and a report (60 credits).

Core modules
-Advanced Biophysical Theories
-BioMEMs and Microscopy Techniques
-Biosciences Research Skills
-Molecular Biophysics
-The Scientific Literature

Optional modules - students must select one of the following 30-credit modules:
-Advanced Cell Biology
-ABC – Analysis of Biological Complexity

And one of:
-Aspects of Bioengineering
-Image Processing
-Introduction to Physical Techniques in the Life Sciences
-Machine Vision
-Matlab Programming for Biology
-Mechanisms of Development
-Statistics for Biology

Dissertation/report
All students undertake an independent research project which culminates in a report of 10,000 words.

Teaching and learning
Teaching is delivered through a combination of lectures, seminars and workshops and by an element of problem-centred learning, innovatively linking taught material to a set of student-selected research case studies, Taught modules are assessed by problem sets and examinations; ‘hands-on’ modules (e.g. BioMEMs and Microscopy Techniques) and research projects are assessed by presentations, assessed reports and the dissertation.

Careers

This programme will prepare students for an increasingly interdisciplinary work and research environment in biological physics and quantitative biology and their applications in industrial research or academic settings.

Employability
The programme includes significant transferable skills components (e.g. scientific writing, presentations, outreach, innovation) which are highly relevant to future employability. Students gain a deep understanding of both the physics and biology underpinning phenomena observed in living systems - as well as direct knowledge of cutting-edge technologies likely to play a role in industrial development and academic research - while addressing key societal challenges (from cancer to healthy ageing).

Why study this degree at UCL?

The new Biological Physics MSc brings together expertise in biological and physical sciences at UCL. In the last two years the UCL Institute for the Physics of Living Systems has been created to enhance the teaching and research opportunities in interdisciplinary physics and life sciences at UCL.

The necessity to cross traditional disciplinary boundaries is particularly true of biology where there is a growing realisation that understanding the physics underlying biological phenomena is critical in order to rationally develop next generation treatments for disease and solutions for food security in a globalised world.

Students are immersed in an active research environment from the outset, interacting with experienced researchers in the laboratory and familiarising themselves with state-of-the-art biological and biophysical research techniques.

Read less

Show 10 15 30 per page



Cookie Policy    X