• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
SOAS University of London Featured Masters Courses
University of Leeds Featured Masters Courses
Cardiff University Featured Masters Courses
Imperial College London Featured Masters Courses
Loughborough University Featured Masters Courses
United Kingdom
Sheffield×
0 miles
Engineering×

Full Time MSc Degrees in Engineering, Sheffield, United Kingdom

  • Engineering×
  • United Kingdom
  • Sheffield×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 15 of 47
Order by 
For professionals with an engineering background in computing or a related discipline such as electronic or electrical engineering, this masters course will equip you will the skills you need to move into computer and network engineering. Read more
For professionals with an engineering background in computing or a related discipline such as electronic or electrical engineering, this masters course will equip you will the skills you need to move into computer and network engineering. You learn about the hardware and software aspects of computer network technologies and examine their design, specification and integration in a range of applications.

Ideal for you if you are a professional with a background in computer engineering, communication systems or electronic/electrical engineering, and provides you with the skills and knowledge needed to move into computer networking. It is particularly useful for people working in companies that rely on constant innovation in electronics, computer engineering and communications.

Computer networks currently provide the infrastructure for most, businesses, educational institutions, retailers, manufacturers and public services. Many companies rely increasingly on computer and network engineering, which is now a global discipline.

This course is hardware and software based, and examines the design, specification, and integration of current and next generation computer and communications network technologies.

This course provides an opportunity for you to
-Increase the depth of your technical knowledge.
-Develop your computer hardware and software skills.
-Gain a thorough working knowledge of computer engineering.
-Study the latest technologies used in modern day computer networking systems and their applications.
-Gain the skills needed to design, develop and maintain computer network systems.

You may wish to expand your current knowledge and expertise if you already have computer networking skills or possibly move into a new area of engineering and have the necessary entry requirements for this course.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-computer-and-network-engineering

Professional recognition

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – 12 to 18 months.
Part time – typically 3 years, maximum 6 years.
Starts September and January.

Modules
The course is based around two main themes, communication and networks, and computer engineering. You study eight modules plus a major project.
-Communications and network modules
At least three from: communication engineering, communication media, communication networks, network applications.
-Computer engineering modules
At least three from: microprocessor engineering, object-oriented methods, operating systems, software engineering.
-Option modules
Up to two from: applicable artificial intelligence, digital signal processing, embedded systems.
-Project (equivalent to four modules)
You undertake a major project under the supervision of a tutor.

Assessment: by final examination, coursework and project reports.

Read less
On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology. Read more
On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology.

A rewarding career

Engineers apply scientific and technological principles to solve problems in a creative way. It’s a well-paid and rewarding career that is constantly changing with new developments in technology. And with a shortage of electrical and electronic engineers in the UK, your skills will be in demand. Electrical engineers are at the forefront of many innovations in the way we live and work today. They design, produce and install systems which power and control a range of products and digital communications.

What you study

You can follow your interests to create the right programme of study for you. Initially, you take two modules in engineering principles. Then, with guidance from your course leader, you select from a range of technical modules covering topics including electrical and control engineering and electronic systems.

In addition to your technical modules, you also take an engineering management subject and participate in a multidisciplinary product development project with MSc students from a range of engineering specialisms. You develop an understanding of how engineering projects work and how they relate to the commercial world, as well as becoming part of our engineering community and learning to think like an engineer.

One third of your study will be an individual project and dissertation. You specialise in a technical area of your interest and carry out your own in-depth investigation into a particular problem. Where possible, this will be an industry-related problem.

Expertise

Many of our academic staff are actively involved in research. Examples of recent projects include • developing equipment to monitor the bone mineral density of young children for Sheffield Children's Hospital • developing palm-sized robots to enable firefighters to safely enter and negotiate hazards in burning buildings.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-electrical-and-electronic-engineering

Course structure

Course structure
Full time – 12 to 18 months
Part time – typically 3 years, maximum 6 years
Starts September

Core modules
-Engineering principles
-Electrical and electronic engineering
-International product development (group project)
AND
-Project and quality management
OR
-Global supply chain and manufacturing strategy

Options
Your remaining four modules are themed in the following subjects. You can choose to specialise in one theme or a mix of both:
Electrical and Control Engineering
-Electrical energy systems
-Efficient machines and electromagnetic applications
-Control of linear systems
-Industrial automation
Electronic Systems
-Digital electronic systems design
-Mixed signal design
-Digital signal processing
-Microprocessor engineering

Assessment: assessments will be a mix of coursework and exam, depending on the specific module studied.

Read less
Engineering is constantly changing, and graduates often need to deepen their technical skills and understanding. This course is especially relevant for mechanical and manufacturing engineers and technicians wishing to broaden their industrial and managerial skills. Read more
Engineering is constantly changing, and graduates often need to deepen their technical skills and understanding.

This course is especially relevant for mechanical and manufacturing engineers and technicians wishing to broaden their industrial and managerial skills. It is ideal for continuing professional development and updating technical skills.

You study eight taught modules drawn from a wide choice of technical and management modules. This gives you advanced tuition in areas of engineering tailored to your career needs such as design, manufacturing, materials, networking or electronics and telecommunications.

We emphasise applying knowledge to relevant workplace skills in areas such as:
-Design, manufacture, electronics, telecommunications and information technology, networking and materials.
-Core management disciplines of quality, finance and marketing and others.

The international product development module involves working in multidisciplinary teams to design and develop a product in the global market.

This flexible course helps you to develop your career based your needs, and helps you on your path towards Chartered Engineer status.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-advanced-engineering

Professional recognition

Accredited by the Institute of Materials, Minerals and Mining (IOM3).

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration. It should be noted that graduates from an accredited MSc programme, who do not also have an appropriately accredited Honours degree, will not be regarded as having the exemplifying qualifications for professional registration as a Chartered Engineer with the Engineering Council; and will need to have their first qualification individually assessed through the Individual Case Procedure if they wish to progress to CEng.

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – 12 to 18 months.
Part time – typically 3 years, maximum 6 years.
Starts September and January.

Course design
You choose a combination of management, technical and optional modules from a choice of 36. Your choice must total eight 15-credit modules and be agreed with your course leader. At least four must be technical modules.

Optional management modules
-Finance and marketing
-Project and quality management
-Management of strategy, change and innovation
-Lean operations and six sigma
-Manufacturing systems

Optional technical modules
-Group project - international product development
-Competitive materials technology
-Advanced CAD/CAM
-Competitive design for manufacture
-Advanced manufacturing technology
-Advanced metallic materials
-Sustainability, energy and environmental management
-Computer networks
-Communication media
-Network applications
-Communication engineering
-Digital signal processing
-Applicable artificial intelligence
-Microprocessor engineering
-Software engineering
-Operating systems
-Object oriented methods
-Digital electronic system design
-VLSI design
-Industrial applications of finite element methods
-Industrial automation
-Robotics
-Machine vision
-Equipment engineering and design
-Control of linear systems
-Advanced investigatory techniques for materials engineers
-Advanced control methods
-Advanced vibration and acoustics

MSc
-Project and dissertation (60 credits)

Assessment: by final examination; coursework and project reports.

Other admission requirements

Overseas applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

Read less
This course is for computing, science and technology graduates who want to qualify to work as an mechanical engineer – a globally recognised profession with a shortage of qualified practitioners in the UK. Read more
This course is for computing, science and technology graduates who want to qualify to work as an mechanical engineer – a globally recognised profession with a shortage of qualified practitioners in the UK.

About this course

On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology.

A rewarding career

Engineers apply scientific and technological principles to solve problems in a creative way. It’s a well-paid and rewarding career that is constantly changing with new developments in technology. And with a shortage of mechanical engineers in the UK, your skills will be in demand.

What you study

You can follow your interests to create the right programme of study for you. Initially, you take two modules in engineering principles. Then, with guidance from your course leader, you select from a range of technical modules covering a broad range of topics in mechanical design and analysis.

In addition to your technical modules, you also take an engineering management subject and participate in a multidisciplinary product development project with MSc students from a range of engineering specialisms. You develop an understanding of how engineering projects work and how they relate to the commercial world, as well as becoming part of our engineering community and learning to think like an engineer.

One third of your study will be an individual project and dissertation. You specialise in a technical area of your interest and choosing and carry out your own in-depth investigation into a particular problem. Where possible, this will be an industry-related problem.

Expertise

Many of our academic staff are actively involved in research. Examples of recent projects include:
-Developing materials to improve insulation and temperature control in pipelines and refineries.
-Developing ultra-light solar and electric powered vehicles.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-mechanical-engineering

Course structure

Full time – 12 to 18 months
Part time – typically 3 years, maximum 6 years
Starts September.

Core modules
-Engineering principles
-Mechanical engineering principles
-Project and quality management
-International product development (group project)

Options
-Equipment engineering and design
-Competitive design for manufacture
-Advanced CAD/CAM
-Industrial applications of finite element methods
-Advanced vibration and acoustics
-Competitive materials technology

Assessment: assessments will be a mix of coursework and exam, depending on the specific module studied.

Read less
This course is for practising engineers or new graduates who want to become technical specialists developing engineering solutions for the food and drink industry. Read more
This course is for practising engineers or new graduates who want to become technical specialists developing engineering solutions for the food and drink industry. It is suited to graduates with a mechanical, electrical, food science or technology background.

Through a combination of management, food, and technical modules, you focus on areas of need identified by industry. These include:
-Lean and supply chain.
-Food processing.
-Environmental management.
-Sustainability.
-Automation, control and robotics.
-Process efficiency.
-Food quality and safety.
-Manufacturing and process improvement.
-Packaging and maintenance.

You gain experience of designing experiments and testing food engineering systems in our specialist engineering and food laboratories. By applying your technical knowledge to practical challenges faced by industry, you build the skills to develop innovative solutions to problems. You also learn how these techniques can improve product quality and reduce environmental impact while maintaining industrial competitiveness.

During the course you attend guest lectures from industry experts, and work on real life case studies and projects. You also experience advanced level research by taking part in real life studies. This means your learning is based in the real world of industry and increases your employability when you graduate.

During the course you complete a consultancy project. Recent masters level projects have covered topics such as:
-The use of robotics to automatically peel a grape
-Voice controlled automation for the packaging of food products
-Innovative machine vision techniques to determine the condition of fruit

Students have also completed projects spanning areas of food engineering such as:
-Innovative packaging design.
-Sustainable processing.
-The modelling of complex fluid flows.
-The reclamation of energy using innovative heat exchangers.

The course is supported by our new National Centre of Excellence for Food Engineering, which has been developed with the food and drink industry and is guided by a board of industry members.

Professional recognition

This course is delivered by Sheffield Hallam University working in partnership with the National Skills Academy for Food and Drink and the Food and Drink Federation.

Course structure

Full time – 1 year.
Part time – 2 years study plus a work-based project.
Starts September and January.

Core modules
-Sustainability, energy and environmental management
-Lean operations and six sigma
-Contemporary issues in food operation
-Food processing, safety and quality management
-Industrial automation
-Manufacturing systems
-Processing and packaging machinery
-Consultancy project and dissertation
This module combines the various technical and managerial strands of the course into a major piece of research with an element of originality. This involves working with the Centre for Food Engineering and its industrial partners on projects relating to key sector challenges. The project typically takes approximately 600 hours to complete and deepens the knowledge gained in the taught components of the course.

Optional modules
You choose one from: advanced control methods; equipment engineering and design; rheology and multi-phase flow.

Assessment: coursework, group project, examinations, dissertation.

Other course requirements

Overseas students
-India – a first class BE in an relevant discipline or a good second class BE with a strong performance in core engineering subjects.
-China – a four year Bachelor degree in a relevant discipline with an overall average of at least 80 per cent or equivalent.
-Other countries – a good honours degree or equivalent in a relevant subject.
Applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills is the standard for non-native speakers of English. If your English language skill is currently below the required level we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

Read less
Looking after our water resources has never been more important or more challenging. The world needs engineering graduates who can tackle the problems of flooding, pollution and infrastructure design. Read more

About the course

Looking after our water resources has never been more important or more challenging. The world needs engineering graduates who can tackle the problems of flooding, pollution and infrastructure design. Our MSc aims to meet that demand.

Powered by the world-leading research of our own specialists, the course offers training in sustainable urban development, environmental management, and the chance to carry out research of your own. This is the basic structure:

The first semester gives you a grounding in the relevant engineering science: hydrology, hydraulics, hydrogeology and modelling methods. In the second semester, you’ll apply that knowledge to a series of topics, including: urban drainage, groundwater remediation and open channel flow.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Engineering Hydrology; Advanced Hydraulics; Hydrogeology and Research Skills;
Surface Water Quality Processes; Computational Methods for Water Engineering.

Examples of optional modules

Flood Risk Management; SuDS and Green Infrastructure; Remediation of Groundwater Pollution; Design of Water Distribution and Sewer Networks; Coastal Engineering.

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

This course is for practicing engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies. It increases your career potential by improving your:
-Knowledge and experience of mechanical engineering.
-Technical and problem solving skills.
-Management skills.
-Ability to take on greater responsibility.

You also develop your understanding of current best practice in the theory and application of leading edge technologies, processes and systems in mechanical engineering. You study:
-Two management modules
-Five technical modules
-One optional module

Option modules include: advanced manufacturing technology; competitive design for manufacture; computational flow dynamics (CFD); sustainability, energy and environmental management.

The international product development module involves working in multidisciplinary teams to develop a new product in a global market. This develops much sought after advanced technical and business skills. The project provides a supported environment to develop your ability in an area of your interest.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-advanced-mechanical-engineering

Professional recognition

This course is accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration. It should be noted that graduates from an accredited MSc programme, who do not also have an appropriately accredited Honours degree, will not be regarded as having the exemplifying qualifications for professional registration as a Chartered Engineer with the Engineering Council; and will need to have their first qualification individually assessed through the Individual Case Procedure if they wish to progress to CEng.

Course structure

Full time – 12 to 18 months. Part-time – typically 3 years, maximum 6 years. Starts September and January.

Core management modules
-Finance and marketing
-Project and quality management

Core technical modules
-Advanced vibration and acoustics
-CAD/CAM
-Equipment engineering and design
-Group project – international product development

Option modules (one from)
-Competitive design for manufacture
-Sustainability, energy and environmental management

MSc
-Project and dissertation (60 credits)

Assessment: examination; coursework; project reports.

Other admission requirements

Overseas applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

India
-A first class BE in an relevant discipline, or a good second class BE with a strong performance in mechanical and manufacturing subjects
China
-A four year Bachelors degree in an relevant discipline, with an overall average of at least 80 per cent or equivalent
Other countries
-A good honours degree or equivalent in an relevant subject

Read less
The increased need for communications in modern day society has led to the development of a complex global communication infrastructure that uses the latest wireless and wired technologies for the communication of information. Read more
The increased need for communications in modern day society has led to the development of a complex global communication infrastructure that uses the latest wireless and wired technologies for the communication of information. To keep up with the increasing demands placed on this infrastructure requires engineers with the latest knowledge of and skills in current and emerging technologies.

Studying this course enables you to gain an advanced understanding of current telecommunications and electronic systems and acquire the skills necessary for their design, development and maintenance. You study key technical areas such as digital electronics and communications with the option of selecting management modules to develop your project and managerial ability.

A number of option modules ranging from artificial intelligence to software engineering allow you to focus your studies towards your career aspirations and tailor the course to your requirements. As well as improving your technical skills and knowledge, we also focus on building wider professional skills, such as planning, research techniques and promoting innovation.

We emphasise learning through practical investigations and problem solving, where you explore the complex issues that are typical of modern telecommunication systems typically through real world case studies. You complete a major project, supported by a project tutor, in an area of your choice allowing you to focus on a topic that can contribute to your career aims.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-telecommunication-and-electronic-engineering

Professional recognition

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – 12 to 18 months.
Part time – typically 3 years, maximum 6 years.
Starts September and January.

Core modules
-Communication media
-Digital electronic system design
-Project

Management modules (choose up to two from)
-Finance and marketing
-Management of strategy, change and innovation
-Project and quality management

Options (choose up to six from)
-Advanced control methods
-Applicable artificial intelligence
-Business process management
-Communication engineering
-Computer networks
-Control of linear systems
-Microprocessor engineering
-Digital signal processing
-Group project – international product development
-Network applications
-Object-oriented methods
-Operating systems
-Software engineering
-VLSI design
-Machine vision
-Embedded systems

Assessment: coursework, examinations, project reports.

Other admission requirements

Overseas applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

Read less
This course is for practising engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies. Read more
This course is for practising engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies. It increases your career potential by improving your:
-Knowledge and experience of materials engineering.
-Technical and problem solving skills.
-Management skills.
-Ability to take on greater responsibility.

You also develop your understanding of current best practice in the theory and application of leading edge technologies, processes and systems in materials engineering.

You study:
-Two management modules
-Five technical modules
-One optional module (option modules include: advanced manufacturing technology; CAD/CAM; engineering for sustainability; equipment engineering and design; finite element / finite difference analysis)

The international product development module involves working in multidisciplinary teams to develop a new product within a global market. This develops much sought after advanced technical and business skills. The project provides a supported environment to develop your ability in an area of your interest.

Professional recognition

Accredited by the Institute of Materials, Minerals and Mining (IOM3), on behalf of the Engineering Council for the purposes of partly meeting the academic requirement for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-advanced-materials-engineering

Course structure

Full time – 12 to 18 months.
Part time – typically 3 years, maximum 6 years.
Starts September and January.

Core management modules
-Finance and marketing
-Project and quality management

Core technical modules
-Fatigue and fracture mechanics
-Advance investigatory techniques for materials engineers
-Advanced metallic materials
-Competitive materials technology
-Group project – international product development

Option modules (one from)
-Advanced manufacturing technology
-CAD/CAM
-Sustainability energy and environmental management

MSc
-Project and dissertation (60 credits)

Assessment: examination, coursework, project reports.

Other admission requirements

Overseas applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

India
-A first class BE in an relevant discipline, or a good second class BE with a strong performance in mechanical and manufacturing subjects.

China
-A four year Bachelors degree in an relevant discipline, with an overall average of at least 80 per cent or equivalent.

Other countries
-A good honours degree or equivalent in an relevant subject.

Read less
Accredited by the the Institution of Chemical Engineers. Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. Read more

About the course

Accredited by the the Institution of Chemical Engineers

Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. You’ll learn from world-class researchers, including staff from Biomedical Science and Materials Science and Engineering. Our graduates work in biotechnology, biopharmaceutical and bioprocess organisations.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Four core modules including research project, a conversion module, and three optional modules.

Core modules

Biopharmaceutical Bioprocessing
Biosystems Engineering and Computational Biology
Bioanalytical Techniques
Research Project

Examples of optional modules

Any three from:

Microfluidics
Bio-energy
Synthetic Biology
Tissue Engineering Approaches to Failure in Living Systems
Bionanomaterials
Stem Cell Biology
Proteomics and Bioinformatics

Conversion modules:

Principles in Biochemical Engineering or
Principles in Biomolecular Sciences.

Read less
The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation. Read more

About the course

The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation.

The core modules give you a grounding in engineering analysis and design. In the second semester, you can follow your interests and choose from a list of specialist modules.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis; Structural Design; Geotechnical Design; Constitutive Modelling of Geotechnical Materials; Hydrogeology and Research Skills.

Optional modules

These vary but can include:

Advanced Hydraulics
Engineering Hydrology
Innovations in Structural Concrete
Advanced Concrete Design
Blast and Impact Effects on Structures
Design of Earthquake Resistant Structures
Sustainable Concrete Technology
Flood Risk Management
SuDS and Green Infrastructure
Computational Methods in Water Engineering
Design of Water Distribution and Sewer Networks
Coastal Engineering

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
This new course will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including. Read more

About the course

This new course will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including: project management, risk management, professional skills and effective management of innovative development.

Our world-leading research and our partnerships with industry give you an advantage in a competitive careers market. You’ll learn about the very latest developments in systems, control, computational intelligence and robotics – effectively preparing you for a future in engineering.

[Push yourself further]]

We have cutting edge facilities and technology, including: advanced control and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core Modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Managing Engineering Projects and Risk; Design Innovation Toolbox; Professional Responsibilities of the Engineer; Control Systems Project and Dissertation.

Examples of optional modules

Advanced Industrial Control; Robotic and Autonomous Systems; Intelligent and Vision Systems; Multisensor and Decision Systems; Nonlinear and Hybrid Systems.

Teaching and Assessment

There are lectures, tutorials, laboratory work and individual assignments. You will be assessed on examinations, coursework assignments and a project dissertation.

Read less
Deepen your knowledge and understanding with a series of advanced engineering modules. You choose the subjects from a list of options. Read more

About the course

Deepen your knowledge and understanding with a series of advanced engineering modules. You choose the subjects from a list of options. You’ll also have the chance to explore a subject that interests you through your own research project.

Your career

Our courses are designed to prepare you for a career in industry. You’ll get plenty of practical research experience, as well as training in research methods and management. Recent graduates now work for Arup, Rolls-Royce and Network Rail.

A world-famous department

This is one of the largest, most respected mechanical engineering departments in the UK. Our reputation for excellence attracts world-class staff and students. They’re involved in projects like improving car designs and designing jaw replacements – projects that make a difference.

Our world-famous research centres include the Insigneo Institute, where we’re revolutionising the treatment of disease, and the Centre for Advanced Additive Manufacturing. We also work closely with the University’s Advanced Manufacturing Research Centre (AMRC).

Support for international students

Our students come from all over the world. We’ll help you get to know the department and the city. Your personal tutor will support you throughout your course and we can help you with your English if you need it.

Labs and equipment

We’ve just refurbished a large section of our lab space and invested over £350,000 in equipment including new fatigue testing facilities, a CNC milling centre, a laser scanning machine and a 3D printer.

Core modules

Technical Communication for Mechanical Engineers; Information Management; Advanced Experiments and Modelling; Individual Research Project; Design
Innovation Toolbox.

Examples of optional modules

A selection from: Computational Fluid Mechanics; Reciprocating Engines; Signal Processing and Instrumentation; Mechanical Engineering of Railways; Sports Engineering; Additive Manufacturing; Renewable Energy; Condition Monitoring.

Teaching and assessment

You’ll learn through lectures, tutorials, small group work and online modules. You’re assessed by exams, coursework assignments and a dissertation.

Read less
This version of our flagship course includes a 12-month work placement. In the first year, you’ll take basic and advanced modules. Read more

About the course

This version of our flagship course includes a 12-month work placement. In the first year, you’ll take basic and advanced modules. In the second year, you’ll put your knowledge and skills to work.

We’ll give you training in research skills. You’ll carry out an extended research project with a dissertation. You’ll also write a report and give a presentation based on your work placement.

Push yourself further

We have cutting edge facilities and technology, including: advanced control
and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core Modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Managing Engineering Projects and Risk; Design Innovation Toolbox; Professional Responsibilities of the Engineer; Control Systems Project and Dissertation.

Examples of optional modules

Advanced Industrial Control; Robotic and Autonomous Systems; Intelligent and Vision Systems; Multisensor and Decision Systems; Nonlinear and Hybrid Systems.

Teaching and Assessment

There are lectures, tutorials, laboratory work and individual assignments. You will be assessed on examinations, coursework assignments and a project dissertation.

Read less
Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. This continually evolving course has been running for over 40 years and is well supported by the UK Engineering and Physical Sciences Research Council (EPSRC). Read more

About the course

Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. This continually evolving course has been running for over 40 years and is well supported by the UK Engineering and Physical Sciences Research Council (EPSRC).

The core modules provide you with the basic skills you’ll need to become a control and systems engineer. You’ll take advanced modules in current areas of interest and complete a research-level dissertation project.

Push yourself further

We have cutting edge facilities and technology, including: advanced control
and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Advanced Industrial Control; Control Systems Project and Dissertation.

Examples of optional modules

Intelligent and Vision Systems; Nonlinear and Hybrid Systems; Robotic and Autonomous Systems; Multisensor and Decision Systems.

Project work

You can use our award-winning take-home lab kits to explore core concepts at home. It supports our teaching, giving you the chance to learn by doing, when you want to, not just in classes. You’ll work on a major project of your own as part of your final assessment and there are chances to contribute to other projects throughout the course.

Teaching and assessment

You can expect a mix of lectures, tutorials, laboratory work and individual assignments. All the lectures and tutorials are for our systems and control students only. This helps you to bond with your fellow students, so you can learn from each other. You’re assessed on exams, coursework assignments and a project dissertation.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X