• University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
King’s College London Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Leeds Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Bath Spa University Featured Masters Courses
United Kingdom
Exeter×
0 miles
Materials Science×

Full Time MSc Degrees in Materials Science, Exeter, United Kingdom

We have 6 Full Time MSc Degrees in Materials Science, Exeter, United Kingdom

  • Materials Science×
  • United Kingdom
  • Exeter×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 6 of 6
Order by 
This programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career. Read more
This programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career.

It focusses on the theory and computational simulation of material structures for application into automotive, aerospace, technology and energy sectors. You will gain a strong understanding of the properties and behaviours of different substances, from raw materials to finished products, identifying their strengths and limitations, enabling you to find solutions to complex contemporary problems.

Our particular research strengths are drawn into the masters programme, in areas including functional materials (those with extra functionality such as electro-magnetic screening, self-sensing and active materials, and materials with negative thermal expansion and Poisson’s ratios), polymers, composites and bio-materials.

The programme will prepare you for an exciting and rewarding career in materials engineering.

Programme Structure

This programme is modular and consists of eight core engineering, modules totalling 165 credits, and one 15-credit option module.

Core modules

The core modules can include; Mechanics of Materials; Software Modelling; Advanced Materials Engineering; Computer Aided Engineering Design; Research Methodology; Sustainable Engineering; New Developments in Materials Engineering and Engineering MSc Project

Optional modules

Some examples of the optional modules are Contemporary Advanced Materials Research and Functional Materials.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

Read less
This exciting programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career. Read more
This exciting programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career.

Alongside the core engineering modules, you will also study three management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

It focusses on the theory and computational simulation of material structures for application into automotive, aerospace, technology and energy sectors. You will gain a strong understanding of the properties and behaviours of different substances, from raw materials to finished products, identifying their strengths and limitations, enabling you to find solutions to complex contemporary problems.

Our particular research strengths are drawn into the programmes, in areas including functional materials (those with extra functionality such as electro-magnetic screening, self-sensing and active materials, and materials with negative thermal expansion and Poisson’s ratios), polymers, composites and bio-materials.

MSc Materials Engineering with Management will prepare you for an exciting and rewarding career, whether you have a desire to lead and manage teams, or wish to progress in a technical materials engineering role.

Programme Structure

This programme is modular and consists of seven core modules totalling 150 credits, and two 15-credit option modules.

Core modules

The core modules can include; Mechanics of Materials; Software Modelling; Advanced Materials Engineering; Computer Aided Engineering Design; Management Concepts; Professional Skills; and Engineering MSc Project

Optional modules

Some examples of the optional modules are Contemporary Advanced Materials Research; Functional Materials. Strategic Innovation Management and Strategy.
The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

Read less
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. Read more
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. It is suitable for those who already have an honours degree in geology, mining/minerals engineering or a related subject.

You will attain a comprehensive understanding of the role of a geoscientist working in the mining industry. New skills include underground geological and geotechnical mapping, surveying, mineral exploration, ore microscopy, ore deposit modelling and mine planning. In-depth coverage of mineral resource estimation and grade control, mineral extraction and management, mining law and the environmental impact of mining, enable skills in quantifying the economic value of an ore body and assessing its potential for exploitation to be attained. There is emphasis on acquiring knowledge of the geological characteristics and genesis, methods of exploration, extraction and processing techniques of the major types of metalliferous ore deposit, bulk commodities and industrial minerals.

Taught modules are presented over two semesters and individual projects are undertaken throughout the summer vacation, often as industrial placements with a mining/exploration company. Recent projects have been carried out in all major mining countries on six continents, including Australia, Tanzania, Mongolia, Chile as well as in the UK.

Programme Structure

You will study 180 credits to obtain an MSc and 120 credits for a PgDip

Compulsory modules

The compulsory modules can include; Research Project and Dissertation; Resource Estimation; Ore Deposit Geology and Industrial Minerals; Techniques in Mining Geology ; Excavation and Geomechanics ; Economics, Processing & Environment

Optional modules

Some examples of the optional modules are; Advanced Techniques for Mineral Analysis and Mine Wastes: Principles, Monitoring and Remediation.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

Formal teaching ends in late April/May with a field excursion to examine the geology and visit mines in an area of the world famous for its mining activity. Extensive use is made of Camborne School of Mines' underground mine facilities, laboratories, mineral processing pilot plant, and the superb field geology and extractive industry operations in South West England.

Read less
The programme provides specialist analytical, design and management skills. The MSc provides skill enhancement for engineers and geologists already employed in the mining, minerals, quarrying and civil engineering industries. Read more
The programme provides specialist analytical, design and management skills. The MSc provides skill enhancement for engineers and geologists already employed in the mining, minerals, quarrying and civil engineering industries. It is also suitable for geology and engineering graduates wishing to specialise in either of the following main study areas: mine and general management; excavation (geotechnics and tunnelling).

Taught modules take place at the Camborne School of Mines; projects are often company-based.

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include; Project and Dissertation; Excavation and Geomechanics; Health and Safety in the Extractive Industry; Economics, Processing & Environment and Project Management

Optional modules

Some examples of the optional modules are; Surface Excavation Design; Resource Estimation; Tunnelling and Underground Excavation; Production and Cost Estimation; Mine Planning and Design; Geomechanics Computer Modelling for Excavation Design and Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. For up to date information please see the website at http://www.exeter.ac.uk/postgraduate/taught/mining-engineering/msc-mining-engineering/#Programme-structure

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

For the award of the Masters (MSc), you must pass four modules and complete a project and dissertation. To obtain a Postgraduate Diploma (PgDip), you must pass two modules and a project with dissertation.
Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.

Read less
This specialist engineering programme will equip you with the skills required to be a modern mechanical engineer. It focusses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems. Read more
This specialist engineering programme will equip you with the skills required to be a modern mechanical engineer. It focusses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems.

You will gain a range of computational skills which will enable you to analyse systems using numerical methods, simulation and optimisation techniques. Sustainability is also emphasised throughout the programme and you will be encouraged to consider responsible solutions to modern day challenges.

The programme is supported by internationally leading research projects in areas such as nano-scale materials engineering, biomedical engineering, 3D analysis from CT scans for prosthetic bone replacement surgery, additive layer manufacturing for high specification applications with aerospace metals, and application and recycling of polymers and composites.

The programme has been designed for mechanical engineers who want to progress their careers, and will enable graduates to proceed to Chartered Engineer status.

Programme Structure

This programme is modular and consists of seven core engineering, modules totalling 150 credits, and two 15-credit option modules.

Core modules

The core modules can include; Mechanics of Materials; Software Modelling; Systems Analysis in Engineering; Computer Aided Engineering Design; Research Methodology; Sustainable Engineering; Engineering MSc Project

Optional modules

Some examples of the optional modules are Advanced CFD, Contemporary Advanced Materials Research; Functional Materials. Strategic Innovation Management and Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

Read less
This exciting programme will equip you with the skills required to be a modern mechanical engineer. It focusses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems. Read more
This exciting programme will equip you with the skills required to be a modern mechanical engineer. It focusses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems.

Alongside the core engineering modules, you will also study two management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

You will gain a range of computational skills which will enable you to analyse systems using numerical methods, simulation and optimisation techniques. Sustainability is also emphasised throughout the programme and you will be encouraged to consider responsible solutions to modern day challenges.

The programme is supported by internationally leading research projects in areas such as nano-scale materials engineering, biomedical engineering, 3D analysis from CT scans for prosthetic bone replacement surgery, additive layer manufacturing for high specification applications with aerospace metals, and application and recycling of polymers and composites.

The programme has been designed for mechanical engineers who want to develop their management expertise in order to progress their careers. It also enables graduates to proceed to Chartered Engineer status.

Programme Structure

This programme is modular and consists of seven core engineering, modules totalling 150 credits, and two 15-credit option modules.

Core modules

The core modules can include; Mechanics of Materials; Software Modelling; Systems Analysis in Engineering; Management Concepts; Professional Skills; Computer Aided Engineering Design; Engineering MSc Project

Optional modules

Some examples of the optional modules are Advanced CFD, Contemporary Advanced Materials Research; Functional Materials. Strategic Innovation Management and Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X