• University of Leeds Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
University of Reading Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University College London Featured Masters Courses
Newcastle University Featured Masters Courses
0 miles
Engineering×

University College London, Full Time MSc Degrees in Engineering

We have 44 University College London, Full Time MSc Degrees in Engineering

  • Engineering×
  • University College London×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 15 of 44
Order by 
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

About this degree

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored to graduate scientists, engineers, or biochemical engineers.

Students undertake modules to the value of 180 credits.

The programme offers three distinct pathways tailored to: graduate scientists ("Engineering Stream"); graduate engineers from other disciplines ("Science Stream"); or graduate biochemical engineers ("Biochemical Engineering Stream"). The programme for all three streams consists of a combination of core and optional taught modules (120 credits) and a research or design project (60 credits).

Core modules

Students are allocated to one of the three available streams based on their academic background (life science/science, other engineering disciplines, biochemical engineering). The programme for each stream is tailored to the background of students in that stream. Core modules may include the following (depending on stream allocation). 

  • Advanced Bioreactor Engineering
  • Dissertation on Bioprocess Research
  • Fundamental Biosciences
  • Integrated Downstream Processing
  • Sustainable Industrial Bioprocesses and Biorefineries

Please go to the "Degree Structure" tab on the departmental website for a full list of core modules.

Optional modules

Optional modules may include the following (details will vary depending on stream allocation).

  • Bioprocess Management – Discovery to Manufacture
  • Bioprocess Microfluidics
  • Bioprocess Systems Engineering
  • Bioprocess Validation and Quality Control
  • Commercialisation and Bioprocess Research
  • Vaccine Bioprocess Development

Please go to the "Degree Structure" tab on the departmental website for a full list of optional modules

Research project/design project

Students allocated to the "Engineering" stream will have to complete a bioprocess design project as part of their MSc dissertation.

Students allocated to the "Science" and "Biochemical Engineering" streams will have to complete a research project as part of their MSc dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Further information on modules and degree structure is available on the department website: Biochemical Engineering MSc

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Recent career destinations for this degree

  • Biopharmaceutical Processing Engineer, Johnson & Johnson
  • Process Engineer, ExxonMobil
  • PhD Biochemical Engineering, UCL
  • Bio-Pharmaceutical Engineer, GSK (GlaxoSmithKline)
  • Research Analyst, CIRS (Centre for Innovation in Regulatory Science)

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensures that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers. 

Accreditation

Our MSc is accredited by the Institute of Chemical Engineers (IChemE).

The “Science” and “Biochemical Engineering” streams are accredited by the IChemE as meeting the further learning requirements, in full, for registration as a Chartered Engineer (CEng, MIChemE).



Read less
This MSc will equip you with state-of-the-art knowledge of biomaterials, bioengineering, tissue engineering, medical engineering and related management topics. Read more

This MSc will equip you with state-of-the-art knowledge of biomaterials, bioengineering, tissue engineering, medical engineering and related management topics. Delivered by experts from across UCL and eminent visiting lecturers from industry and medical charities, this interdisciplinary programme attracts physical sciences, engineering and life sciences graduates, including those with qualifications in medicine.

About this degree

You will develop an advanced knowledge of topics in biomaterials and tissue engineering alongside an awareness of the context in which healthcare engineering operates, in terms of safety, environmental, social and economic aspects. You will also gain a wide range of intellectual, practical and transferable skills necessary for a career in this field.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research dissertation (60 credits).

Core modules

  • Biomaterials
  • Tissue Engineering
  • Biofluids and Medical Devices
  • Biomechanics and Biostructures
  • Applications of Biomedical Engineering
  • Bioengineering
  • Medical Imaging (ionising and non-ionising)
  • Evaluation and Planning of Business Opportunities

Optional modules

There are no optional modules for this programme.

Dissertation/report

Culminating in a substantial dissertation and oral presentation, the research project focuses your research interests and develops high-level presentation, critical thinking and problem-solving skills. The project can be based in any relevant UCL department.

Teaching and learning

This dynamic programme is delivered through lectures, tutorials, individual and group projects, and practical laboratory work. Assessment is through written, oral and viva voce examinations, the dissertation and coursework (including the evaluation of laboratory reports, technical and project reports, problem-solving exercises, assessment of computational and modelling skills, and oral presentations).

Further information on modules and degree structure is available on the department website: Biomaterials and Tissue Engineering MSc

Careers

There are many career opportunities and the programme is suitable for students wishing to become academics, researchers or professionals and for those pursuing senior management careers, in manufacturing or healthcare engineering

Recent career destinations for this degree

  • Dentist, Dental Life
  • Good Manufacturing Process Scientist, RMS (Regenerative Medical System)
  • Postgraduate Research Assistant, University of Cambridge
  • PhD in Biomaterials and Tissue Engineering, UCL
  • PhD in Surgery, UCL

Employability

Delivered by leading researchers from across UCL, as well as industrial experts, you will have plenty of opportunities to network and keep abreast of emerging ideas in biomaterials and tissue engineering. Collaborating with companies and bodies such as the NHS, JRI Orthopaedics and Orthopaedics Research (UK) is key to our success and you will be encouraged to develop networks through the programme itself and through the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

There are internationally renowned research groups in biomaterials and bioengineering in UCL Engineering and you will have access to a state-of-the-art research portfolio.

In recent years, UCL Mechanical Engineering has seen unprecedented activity in refurbishing and re-equipping our laboratories. For example, six new biomaterials and bioengineering laboratories have been set up with funding from the Royal Society and Wolfson Foundation. A new biomaterials processing and forming laboratory is also available in the Materials Hub in the Engineering Building.

The programme is also delivered by leading researchers across UCL's Division of Medicine, Eastman Dental Institute, the Institute of Biomedical Engineering and visiting experts from other UK organisations.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mechanical Engineering

90%: Aeronautical, Mechanical, Chemical and Manufacturing Engineering subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. Read more

The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. The degree comprises study in analysis and design of power machinery systems, engineering structures, vibration, control and the use of computers in advanced engineering analysis.

About this degree

You will develop an advanced knowledge of mechanical engineering and associated disciplines, alongside an awareness of the context in which engineering operates, in terms of safety, environmental, social and economic aspects. Alongside this you will gain a range of intellectual, practical and transferable skills necessary to develop careers in this field.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), optional modules (15 credits), and a research project (75 credits).

Core modules

  • Advanced Computer Applications in Engineering
  • Group Project
  • Materials and Fatigue
  • Vibrations, Acoustics and Control
  • Project Management
  • Power Transmission and Auxiliary Machinery Systems

Optional modules

One of the following subject to availability:

  • Applied Thermodynamics and Turbomachinery
  • Heat Transfer and Heat Systems
  • New and Renewable Energy Systems

Dissertation/report

Culminating in a substantial dissertation, the research project, which often has industry input, focuses your research interests and develops high-level presentation and critical thinking skills.

Teaching and learning

This dynamic programme is delivered through a combination of lectures, seminars, tutorials and example classes all of which frequently draw upon real-life industrial case studies. Each module is assessed by coursework submission alone or a combination of examination and coursework. Some include an oral presentation of project or assignment work.

Further information on modules and degree structure is available on the department website: Mechanical Engineering MSc

Careers

Engineering graduates with good analytical abilities are in high demand and our graduates have little difficulty gaining employment across many industries. The programme specifically aims to equip students with skills in analysis and design such that they can be employed as professional engineers in virtually any sector of the mechanical engineering industry.

Recent career destinations for this degree

  • Graduate Mechanical Engineer, Babcock
  • Graduate Trainee, Jaguar Land Rover
  • Petroleum Engineer, Total
  • Facility Engineer, Nigerian Agip Oil Company (NAOC)
  • PhD in Mechanical Engineering, UCL

Employability

Delivered by leading researchers from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas. Collaborating with companies and bodies such as the Ministry of Defence and industry leaders such as BAE Systems and Shell are key to our success and we will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Mechanical Engineering scored highly in the UK's most recent Research Excellence Framework survey with research in such diverse areas as Formula 1, biomedical engineering and naval architecture. The department is located in the centre of one of the most dynamic cities in the world.

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAE Systems, Cosworth Technology, Shell, BP, Lloyds Register Educational Trust, and many others.

The Mechanical Engineering MSc has been accredited by the Institute of Mechanical Engineers (IMechE) and the Institute of Marine Engineering, Science & Technology (IMarEST) as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2017 student cohort intake.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mechanical Engineering

90%: Aeronautical, Mechanical, Chemical and Manufacturing Engineering subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Read more

This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Students gain an understanding of bioengineering principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

About this degree

Students study in detail the engineering and physics principles that underpin modern medicine, and learn to apply their knowledge to established and emerging technologies in medical imaging and patient monitoring. The programme covers the engineering applications across the diagnosis and measurement of the human body and its physiology, as well as the electronic and computational skills needed to apply this theory in practice.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered.

A Postgraduate Certificate (60 credits) is offered.

Core modules

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Imaging with Ionising Radiation
  • MRI and Biomedical Optics
  • Ultrasound in Medicine
  • Medical Electronics and Control
  • Clinical Practice
  • Medical Device Enterprise Scenario

Optional modules

Students choose one of the following:

  • Applications of Biomedical Engineering
  • Materials and Engineering for Orthopaedic Devices
  • Computing in Medicine
  • Programming Foundations for Medical Image Analysis

Dissertation/report

All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a written report of 10,000 words, a poster and an oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, practicals, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework, the dissertation and an oral examination.

Further information on modules and degree structure is available on the department website: Physics and Engineering in Medicine: Biomedical Engineering and Medical Imaging MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates from the Biomedical Engineering and Medical Imaging stream of the MSc programme have obtained employment with a wide range of employers in health care, industry and academia sectors.

Employability

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the UCL Hospitals Trust, as well as undertaking industrial contract research and technology transfer.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development, as well as new biomedical engineering facilities at the Royal Free Hospital and Royal National Orthopaedic Hospital in Stanmore.



Read less
This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. Read more

This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. The programme combines traditional lectures with group projects and an individual research project in the student's chosen specialist field. The Civil Engineering MSc at UCL now offers six additional routes.

About this degree

Students develop advanced knowledge of civil engineering and associated engineering and scientific disciplines (structure dynamics, sustainable building design, transport, fluids, geotechnics, water and drainage, environmental and coastal engineering, planning and construction). They gain awareness of the context in which engineering operates, in terms of design, construction and the environment, alongside transferable skills, which leads to careers in industry and research.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits), and a research project (60 credits).

Core modules

  • Advanced Soil Mechanics
  • Advanced Structures
  • Roads and Underground Infrastructure
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project, which culminates in a dissertation of approximately 12,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering MSc

Careers

There are excellent employment prospects for our graduates. Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting multidisciplinary department with a tradition of excellence in teaching and research, situated within the heart of London.

This MSc reflects the broad range of expertise available within the department and its strong links with the engineering industry and places emphasis on developing skills within a teamwork environment. The programme provides a clear route to a professional career in civil engineering.

In addition, students wishing to combine the general MSc in Civil Engineering can now apply to one of six specialist pathways in related disciplines (Seismic Design, Environmental Systems, GIS, Surveying, Integrated Design and Infrastructure Planning).

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more

The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

About this degree

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits).

A Postgraduate Diploma (120 credits) is offered.

Core modules

  • Collaborative Environmental Systems Project
  • Environmental Systems
  • Systems Engineering and Management
  • Systems Society and Sustainability
  • Environmental Modelling

Optional modules

Options may include the following:

  • Engineering and International Development
  • Industrial Symbiosis
  • Politics of Climate Change
  • Project Management
  • Water and Wastewater Treatment
  • Urban Flooding and Drainage
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Energy Systems Modelling
  • Smart Energy Systems: Theory, Practice and Implementation
  • Indoor Air Quality in Buildings
  • Light, Lighting and Wellbeing in Buildings
  • Building Acoustics
  • Science, Technology and Engineering Advice in Practice
  • Energy Systems and Sustainability
  • Waste and Resource Efficiency

Dissertation/report

All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Further information on modules and degree structure is available on the department website: Environmental Systems Engineering MSc

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Recent career destinations for this degree

  • Air Quality Engineer, National Environment Agency
  • Environmental Engineering Consultant, DOGO
  • Nuclear Analyst, EDF Energy
  • Graduate Flood Risk Engineer, Pell Frischmann
  • Project Manager, Veolia Environmental Services

Employability

The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:

  • design, construct and operate urban water systems
  • develop and implement cleaner production technologies to minimise industrial pollution
  • recycle waste materials into new products and generate energy
  • evaluate and minimise the environmental impact of engineering projects
  • develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Accreditation

The progamme is accredited by the Joint Boad of Moderators, which is made up of the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institutions of Highways and Transportation, and the Institute of Highway Engineers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of integrated design.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of integrated design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of one core module, (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, one core module (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Integrated Design Project

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Integrated Design) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of seismic design.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of seismic design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Seismic Design of Structures
  • Structural Dynamics
  • Seismic Loss Mitigation
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Seismic Design) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of surveying.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of surveying and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is offered.

Core modules

  • Data Analysis
  • Principles and Practices of Surveying
  • Mapping Science
  • Project Management (Professional Development Module)

Optional modules

Students choose four of the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Surveying) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of infrastructure planning.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of seismic design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Infrastructure Business Case
  • Risk, Uncertainty & Complexity in Decision-Making
  • Infrastructure Policy, Planning and Consent
  • Project Management

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Infrastructure Planning) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This MSc programme builds on the success of our undergraduate Engineering with Business Finance programme and is designed to give graduates with a first degree in a relevant numerate subject the engineering, management and finance knowledge and skills necessary to work on engineering projects, and in business and finance. Read more

This MSc programme builds on the success of our undergraduate Engineering with Business Finance programme and is designed to give graduates with a first degree in a relevant numerate subject the engineering, management and finance knowledge and skills necessary to work on engineering projects, and in business and finance.

About this degree

Core engineering content concentrates on areas of new and emerging technologies and materials combined with modules in project management and financial markets and institutions. Students undertake two engineering projects (a group design project and an individual project) which integrate the knowledge acquired through the taught modules.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), a group design project (30 credits) and the individual research project (60 credits).

Core modules

  • Materials and Fatigue
  • Project Management
  • Financial Institutions and Markets
  • New and Renewable Energy Systems

Optional modules

  • Advanced Computer Applications in Engineering
  • Vibration, Acoustics and Control
  • Compliance, Risk and Regulation
  • Entrepreneurial Finance
  • Numerical Analysis for Finance
  • Financial Engineering

Please note: Restrictions apply to selection of optional modules. Please visit the Departmental degree structure page for more information

Dissertation/report

All students undertake a group design project and an individual research project, both culminating in a substantial dissertation. The group project focuses on creativity and design, teamwork, project management and business planning and feasibility. The research project revolves around student research interests; it often has industry input and develops high-level presentation, critical thinking and research skills.

Teaching and learning

This dynamic programme is delivered through a combination of lectures, tutorials, seminars, laboratory and project work, workshops and problem classes, all of which frequently draw upon real-life industrial case studies. Assessment is through examinations, coursework, laboratory reports, presentations, the group design project and the individual research project.

Further information on modules and degree structure is available on the department website: Engineering with Finance MSc

Careers

Graduates of this programme will be well placed for a future career within engineering, project management, finance, investment banking or IT sector. For example, as part of the programme you will complete modules in project management and finance, utilise UCL’s virtual trading room that uses Reuters’ electronic platform and receive guidance on how to work toward recognised certifications for the financial industries. 

Recent career destinations for this degree

  • Analyst, J.P. Morgan
  • Assistant Management Accountant, Network Rail
  • Finance Intern, ZhongHui Futures
  • Mergers and Acquisitions Intern, First Capital Partners
  • Procurement Manager, Hellenic Army

Employability

The programme is delivered by leading researchers from across UCL, and students have plenty of opportunity to network and keep themselves informed about employment opportunities and skills required. Students are encouraged to participate in the UCL Financial Industry Series which organises high-impact conferences, debates and talks on financial topics, to pursue projects in industry and attend events organised by the UCL Finance community. Students also develop networks through the programme itself and through the department’s careers programme which includes employer-led events and individual coaching. This carefully designed programme is equipping our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Mechanical Engineering is a dynamic and vibrant place to study and do research. Located in central London it was the first mechanical engineering department in the UK. It has a long reputation for internationally leading research funded by numerous organisations and industry, and quality teaching.

The department benefits from state-of-the-art facilities and close links with industry, and has access to expertise in other disciplines, including engineering and management sciences within UCL.

The Engineering with Finance MSc has been accredited by the Institute of Mechanical Engineers (IMechE).

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mechanical Engineering

90%: Aeronautical, Mechanical, Chemical and Manufacturing Engineering subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Marine Engineering MSc is concerned with the design, analysis and operation of machinery and systems for merchant and naval ships and submarines. Read more

The Marine Engineering MSc is concerned with the design, analysis and operation of machinery and systems for merchant and naval ships and submarines. The programme covers a wide range of engineering subjects relevant to the development and procurement of marine engineering, and the programme features two parallel mechanical and electrical streams.

About this degree

The programme comprises study in analysis and design of propulsive systems and auxiliary equipment for the latest compliant marine vessel designs as well as the use of computers in advanced engineering analysis. Students develop an understanding of elements of engineering, alongside the skills necessary to apply their knowledge in a systematic and effective manner in a group ship design exercise and an individual project.

Students undertake modules to the value of 180 credits. The programme offers two parallel streams, mechanical and electrical.

The programme consists of four core modules (60 credits), two options (30 credits), a ship design exercise (45 credits) and an independent project (45 credits).

Core modules

  • Advanced Computer Applications in Engineering
  • Applied Thermodynamics and Turbomachinery
  • Power Transmission and Auxiliary Machinery Systems
  • Vibrations, Acoustics and Control

Optional modules

Either:

  • Heat Transfer and Heat Systems (Mechanical Stream)
  • Materials and Fatigue (Mechanical Stream)

Or:

  • Electrical Machines and Power Electronic Systems (Electrical Stream)
  • Electrical Power Systems & Electrical Propulsion (Electrical Stream)

Dissertation/report

All students complete a ship design exercise, working on the design of a specific vessel, and undertake an independent research project which is either analytical or design, build and test in nature.

Teaching and learning

This dynamic programme is delivered through a combination of lectures, seminars, tutorials, coursework exercises and case studies. The taught modules are assessed through formal examination and coursework, the ship design exercise is assessed through a report and oral presentations, and the individual project is assessed through a report and presentation. Visits to the marine industry are also offered.

Further information on modules and degree structure is available on the department website: Marine Engineering (Mechanical and Electrical Options) MSc

Careers

The Marine Engineering MSc has been accredited by the Institute of Marine Engineering, Science & Technology (IMarEST) and Institute of Engineering and Technology (IET) as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2017 student cohort intake onwards.There is currently a global shortage of well-qualified marine engineers and consequently the job prospects are good.

Recent career destinations for this degree

  • Civil Servant, Civil Service
  • Marine Engineer, Royal Navy
  • Marine Engineering Officer, Royal Canadian Navy
  • Warfare Officer, Royal Netherlands Navy
  • PhD in Marine Engineering, UCL

Employability

Delivered by leading researchers and academics from across UCL, students will have plenty of opportunities to network and keep abreast of emerging ideas. Collaborating with companies and bodies such as the Ministry of Defence and industry leaders such as BAE Systems and Rolls Royce is key to our success and we will encourage students to develop networks through the programme itself and through the department’s careers programme, which includes employer-led events and individual coaching. We are unique in having a close relationship with the UK MoD as well Commercial Shipping companies and students benefit through industrial lectures, ship design projects and individual projects. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

Despite being part of a central city campus university, UCL Mechanical Engineering has excellent laboratories, including engine labs and a wave tank.

This MSc has been selected by the UK Ministry of Defence (MoD), Royal Navy, Canadian and other navies for the advanced training of their marine engineers. It also receives students from many other major maritime nations. Run in parallel with the Naval Architecture MSc, students from both programmes work together on a comprehensive and unique ship design exercise.

The department has an international reputation for excellence and is funded by numerous bodies including the Royal Society, the Leverhulme Trust, UK MoD, BAE Systems, US Naval Research (ONR).

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mechanical Engineering

90%: Aeronautical, Mechanical, Chemical and Manufacturing Engineering subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and the expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and the expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of environmental systems.

About this degree

The programme aims to provide students with a solid academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of environmental systems and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Systems, Society and Sustainability
  • Environmental Systems
  • Waste and Wastewater Treatment
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Environmental Systems
  • Roads and Underground Infrastructure
  • Advanced Soil Mechanics
  • Introduction to Seismic Design of Structures
  • Water and Wastewater Treatment
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Principles & Practices of Surveying
  • Finite Element Modelling and Numerical Methods
  • Urban Flooding and Drainage
  • Structural Dynamics
  • Data analysis
  • GIS Principles & Technology
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Design and Analysis of Structural Systems
  • Advanced Civil Engineering Materials
  • Engineering Study of Rail Systems and Infrastructure
  • Building Engineering Physics
  • Financial Aspects of Project Engineering and Contracting

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Environmental Systems) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated in the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond. There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of geographic information science.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving, which are necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of geographic information science and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • GIS Principles and Technology
  • Principles of Spatial Analysis
  • Web and Mobile GIS
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Environmental Systems
  • Roads and Underground Infrastructure
  • Advanced Soil Mechanics
  • Introduction to Seismic Design of Structures
  • Water and Wastewater Treatment
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Principles & Practices of Surveying
  • Finite Element Modelling and Numerical Methods
  • Urban Flooding and Drainage
  • Structural Dynamics
  • Data analysis
  • GIS Principles & Technology
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Design and Analysis of Structural Systems
  • Advanced Civil Engineering Materials
  • Engineering Study of Rail Systems and Infrastructure
  • Building Engineering Physics
  • Financial Aspects of Project Engineering and Contracting

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Geographic Information Science) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated in the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design. This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. Read more

The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. This wide range of industries includes transport, conventional and renewable power generation.

About this degree

Students study analysis and design of conventional and renewable machinery systems and the use of computers in their advanced engineering analysis. Students gain knowledge of electrical and mechanical engineering principles, quantitative methods, and mathematical and computer modelling alongside an awareness of the codes of practice, standards and quality issues within the modern industrial world. They also take modules in project management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), one optional module (15 credits) and a research project (75 credits).

Core modules

  • Power Transmission and Auxiliary Machinery Systems
  • Electrical Machines and Power Electronic Drives
  • Electrical Power Systems and Electrical Propulsion
  • New and Renewable Energy Systems
  • Project Management
  • Group Project

Optional modules

  • Applied Thermodynamics and Turbomachinery
  • Vibrations, Acoustics and Control
  • Advanced Computer Applications in Engineering

Dissertation/report

All students undertake an independent research project which culminates in a project report and oral presentation. In many cases the work has some input from industry.

Teaching and learning

This dynamic programme is delivered through lectures, tutorials, individual and group projects, practical laboratory work and coursework assignments, (including computational analysis). Assessment is through written, oral and viva voce examinations and coursework (including the evaluation of laboratory reports, technical and project reports, problem-solving exercises, computational and modelling skills and oral presentations).

Further information on modules and degree structure is available on the department website: Power Systems Engineering MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The Power Systems Engineering MSc has been accredited by the Engineering Council as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake onwards.

Recent career destinations for this degree

  • PhD Research Assistant in Electromagnetic Engineering, Forschungszentrum J゚lich (J゚lich Research Centre)
  • Business Development Associate, Enviromena Power Systems
  • Graduate Electrical Engineer, Mott MacDonald
  • Graduate Project Manager, EDF Energy
  • Power Engineer, General Electric (GE)

Employability

Delivered by leading research and academic staff from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas through cross-fertilisation with collaborating companies and governmental bodies such as BAE Systems, Rolls Royce, Lloyds Register and TfL who provide specialised lectures and are key to our research success. We will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: EPSRC, EU, Wellcome Trust, the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAe Systems, Cosworth Technology, Ebara, Jaguar Cars, Shell, and BP.

The Power Systems Engineering MSc is accredited under UK-SPEC by the Institution of Mechanical Engineers (IMechE), Institute of Engineering and Technology (IET), and the Institute of Marine Engineering Science and Technology (IMarEST). This programme also constitutes in part the requirement to obtain Chartered Engineering status.

UCL Mechanical Engineering has seen, in recent years, unprecedented activity in refurbishing and re-equipping our laboratories. Highlights of this include an extensive workshop, four engine test cells of the highest specification, a fuel cell laboratory, an electrical power laboratory and a new fluid mechanics laboratory.



Read less

Show 10 15 30 per page



Cookie Policy    X