• New College of the Humanities Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
Cass Business School Featured Masters Courses
Loughborough University Featured Masters Courses
0 miles
Engineering×

Newcastle University, Full Time MSc Degrees in Engineering

  • Engineering×
  • Newcastle University×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 15 of 32
Order by 
The Design and Manufacturing Engineering MSc develops your knowledge and skills in mechanical engineering as well as materials and manufacturing engineering. Read more
The Design and Manufacturing Engineering MSc develops your knowledge and skills in mechanical engineering as well as materials and manufacturing engineering. You have the opportunity to undertake in-depth studies through your research projects.

This one year course is intended for honours graduates (or an international equivalent) in mechanical or mechanical-related engineering, maths, physics or a related discipline, eg automotive, aeronautical or design.

A two year MSc is also available for non-native speakers of English that includes a Preliminary Year.

The taught part of the course consists of major engineering themes such as:
-Sustainable energy management
-Manufacturing materials and processes
-Engineering design
-Computational methods
-Engineering software

Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic engineering science to practical design, make and test investigations.

Recent areas for project work include:
-Design and manufacture
-Thermo-fluid dynamics
-Composite materials
-Bioengineering and biomaterials
-Microelectronic-mechanical systems
-Mathematical and computational engineering modelling

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Mechanical and Systems Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Masters course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The courses have been accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

The School of Mechanical and Systems Engineering is based in the Stephenson Building. It has both general and specialist laboratories and workshop facilities. These are used for training, course delivery and the manufacture of materials/components needed to support project work.

The Stephenson Building houses one of the largest networked computer clusters on campus (120+ PCs), which supports all of the specialist software introduced and used within the course (eg CAD, stress analysis, fluid dynamics, signal processing packages) in addition to the School’s own cluster (60+ PCs) used for instrumentation and data acquisition laboratories.

Read less
The Mechanical Engineering MSc develops your knowledge and skills in mechanical engineering. You have the opportunity to undertake in-depth studies through your research projects. Read more
The Mechanical Engineering MSc develops your knowledge and skills in mechanical engineering. You have the opportunity to undertake in-depth studies through your research projects.

This one year course is intended for honours graduates (or an international equivalent) in mechanical or mechanical-related engineering (eg automotive, aeronautical or design), maths, physics or a related discipline.

A two year MSc is also available for non-native speakers of English that includes a Preliminary Year.

The taught part of the course consists of major engineering themes such as:
-Energy sources and storage
-Manufacturing
-Vehicle drives and dynamics
-Computational methods
-Engineering software

You will develop skills in:
-Mechanical engineering principles, practices, materials, components and systems
-Research and information retrieval
-Data collection
-Critical evaluation and effective application
-Current and developing practices in the field

Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic engineering science to practical design, make and test investigations.

General areas for project work include:
-Design and manufacture
-Thermo-fluid dynamics
-Composite materials
-Bioengineering and biomaterials
-Microelectronic-Mechanical Systems
-Mathematical and computational engineering modelling

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Mechanical and Systems Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Graduates of this course, who pass with merit are normally offered the opportunity to progress to PhD study either on a self-funded project or on a funded PhD studentship.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's level course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The courses have been accredited by the Institution of Mechanical Engineers (IMechE) and the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

The accreditations are a mark of assurance that the course meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). This will give you some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
The Biomedical Engineering MSc enables you to widen your biomedical engineering knowledge and skills. You develop these to a postgraduate level with the opportunity to undertake in-depth studies through your research projects. Read more
The Biomedical Engineering MSc enables you to widen your biomedical engineering knowledge and skills. You develop these to a postgraduate level with the opportunity to undertake in-depth studies through your research projects.

This one year course is intended for honours graduates (or an international equivalent) in mechanical or mechanical-related engineering (eg biomedical, materials or design), maths, physics or a related discipline.

A two year MSc is also available for non-native speakers of English that includes a preliminary year.

The taught part of the course covers major biomedical engineering themes, including:
-Bioengineering
-Manufacturing
-Nanomaterials
-Biomaterials
-Tissue engineering
-BioMEMs and microsystems engineering
-Design for human-systems integration

Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic biomedical engineering science to practical design, make and test investigations.

Recent projects include:
-Investigations of bone cutting
-Assessment of finger splints
-Design of assistive technology
-Testing of artificial shoulder joints
-Design of a rig to flex spinal segments
-Investigation of nanoparticles
-Measuring the material properties of orthopaedic biopolymers

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Mechanical and Systems Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The courses have been accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
The Sustainable Transport Engineering MSc is a mainstream mechanical engineering course with a focus on vehicles and drive systems, and energy sources and management. Read more
The Sustainable Transport Engineering MSc is a mainstream mechanical engineering course with a focus on vehicles and drive systems, and energy sources and management. For anyone wishing to specialise in railways, the course also has a rail option.

This course is intended for honours graduates (or an international equivalent) in mechanical or mechanical-related engineering (eg automotive, aeronautical or design), maths, physics or a related discipline.

Course structure

All Sustainable Transport Engineering MSc students will undertake taught modules in the following core subjects:
-Mechanical power transmission
-Vehicle drives and dynamics
-Human-systems integration
-Energy sources and storage
-Sustainable energy management

You then have the option to take further general engineering modules or rail transport modules. See the module page for more information.

Alongside students undertaking other mechanical engineering MSc courses, you will also be introduced to engineering software and computational methods, ie Computer-Aided Design (CAD) and Finite Element Analysis (FEA).

Your research project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic engineering science, to practical design-make-test investigations.

If you are specialising in the rail option, you will undertake a railway-themed research project. Newcastle University is actively involved in a wide range of railway research projects.

Some research may be undertaken in collaboration with industry.

There is an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's level course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Effective communication is an important skill for the modern professional engineer, and this course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Accreditation

The courses have been accredited by the Institution of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

The School of Mechanical and Systems Engineering is based in the Stephenson Building. It has both general and specialist laboratories and workshop facilities. These are used for training, course delivery and the manufacture of materials/components needed to support project work.

The Stephenson Building houses one of the largest networked computer clusters on campus (120+ PCs), which supports all of the specialist software introduced and used within the course (eg CAD, stress analysis, fluid dynamics, signal processing packages) in addition to the School’s own cluster (60+ PCs) used for instrumentation and data acquisition laboratories.

Read less
This course gives you an understanding of marine engineering and its practice. It covers topics associated with Naval Architecture (hull and propulsor) and Marine Engineering (machinery). Read more
This course gives you an understanding of marine engineering and its practice. It covers topics associated with Naval Architecture (hull and propulsor) and Marine Engineering (machinery).

The course develops your practical skills to enable you to:
-Design, select, analyse and install marine propulsion and transmission systems
-Produce mathematical and computer modelling of marine machinery and engineering systems
-Design and analyse control systems for marine machinery
-Use mathematics and physics appropriate to marine technology
-Develop engineering solutions to practical problems
-Test design ideas through laboratory work or simulation with technical analysis
-Critically evaluate results
-Integrate and analyse information from a variety of sources

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in marine engineering.

You will choose an individual dissertation project. This may be theoretical, experimental or the development of a simulation model of marine engineering systems. It can include ships' propulsion and power transmission systems. Our research strengths include:
-Design of diesel-electric hybrid propulsion configurations
-Engine emission prediction and simulation
-Online ship performance monitoring and optimisation
-Ballast water management

You benefit from participating in projects sponsored directly by industry partners whenever they are available.

Delivery

Six taught modules worth 100 credits are delivered through semester one and/or two. A dissertation research project, worth 80 credits, is undertaken across the three semesters.

The course is delivered by the School of Marine Science and Technology.

It is also available with a preliminary year if you do not meet the entry criteria for the one year MSc course.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
Our Sustainable Chemical Engineering MSc, PGDip gives scientists and engineers with an understanding of sustainable engineering practices the opportunity to work with researchers in the field of new energy technologies. Read more
Our Sustainable Chemical Engineering MSc, PGDip gives scientists and engineers with an understanding of sustainable engineering practices the opportunity to work with researchers in the field of new energy technologies. This includes areas such as fuel cells and gasification, process intensification and new advanced materials.

The course meets the growing need for engineers skilled in material and process engineering. It highlights the potential of sustainable engineering and provides an understanding of the environmental, economic and social issues associated with the operation of industrial processes.

It is intended for honours graduates with an engineering or chemical science based degree who wish to learn how to apply their knowledge to sustainable chemical and process engineering design.

You will gain specialist knowledge and understanding via lecture classes, seminars and personal supervision. The course uses taught modules in a variety of topics, including:
-Sustainable design and manufacture
-Renewable energy
-Energy management
-Materials

In addition, you will benefit from the use of industrial case studies and visiting speakers. Academics, such as Dr Sue Haile, work with you and are responsible for supervising your final projects.

Placements

You will have a unique opportunity to complete a three month work placement with a local company or research organisation. Projects vary from examining the sustainability of existing or new processes, to environmental assessment and energy efficiency, and examination of Carbon Reduction Potential versus the Potential Risk.

Read less
Our Offshore Engineering MSc provides you with the specialist education necessary to enter the offshore engineering industry. You will specialise in the design, dynamic and strength analysis of fixed and floating offshore oil and gas platforms. Read more
Our Offshore Engineering MSc provides you with the specialist education necessary to enter the offshore engineering industry. You will specialise in the design, dynamic and strength analysis of fixed and floating offshore oil and gas platforms. You will also study subsea systems, including marine systems to produce renewable energy.

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in offshore engineering. You also choose an individual dissertation project. This may be theoretical, experimental or the development of a simulation model of hydrodynamics and/or structural strength of offshore systems. Research strengths include:
-Hydrodynamics of deepwater offshore structures
-Pipeline and subsea systems
-Structural analysis of offshore structures
-Dynamics of mooring and marine riser systems

You will also benefit from participating in projects sponsored directly by industry partners whenever they are available.

Delivery

Seven taught modules worth 100 credits are delivered through semester one and/or two. A dissertation research project, worth 80 credits, is undertaken across the three semesters.

The course is also available with a preliminary year if you do not meet the entry criteria for the one-year MSc course.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
This course teaches you the essential skills required to become a practicing pipeline engineer. The oil and gas industry help to specify the curriculum so we meet their requirements in high-pressure offshore and onshore pipelines. Read more
This course teaches you the essential skills required to become a practicing pipeline engineer. The oil and gas industry help to specify the curriculum so we meet their requirements in high-pressure offshore and onshore pipelines.

You will gain:
-An understanding of the key steps in a pipeline's lifecycle: design, construction, installation, asset management, maintenance and dismantling
-Experience from specialists in pipeline operation
-The ability to develop a thesis through selection of appropriate experimental, computer simulation or data analysis procedures
-Skills in identifying, designing and applying laboratory tests to solve pipeline engineering problems
-Knowledge in applying appropriate mathematical models in the simulation of pipeline engineering problems

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in pipeline engineering. The degree is taught using a mix of academic staff from the School of Marine Science and Technology as well as visiting lecturers and experts from industry.

You will choose an individual dissertation project. This may be a critical review and/or computational or experimental project using our world leading testing facilities. You also benefit from participating in projects sponsored directly by industry partners whenever they are available.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
The Environmental Engineering MSc provides you with the advanced understanding, technical knowledge and practical skills required to enable you to develop a successful career in the environmental industries worldwide. Read more
The Environmental Engineering MSc provides you with the advanced understanding, technical knowledge and practical skills required to enable you to develop a successful career in the environmental industries worldwide.

Environmental Engineers apply scientific and engineering principles to protect the environment and public health. This comprehensive course enables you to provide clean water, treat wastewater, manage solid waste, remediate contaminated land and control air pollution.

You will study the areas of:
-Mathematical and scientific analytical methods appropriate to environmental engineering and research investigations
-Engineering project management and design
-Integrated pollution prevention and control
-Management principles and business practices
-Design, construction and operations practices
-Health and safety issues

This well-respected course has been running since 1963. Its rich history of both teaching and research assure the quality of the experience for today’s students. More than 1000 alumni of the course are now working across the world including some in senior governmental, academic and scientific positions.

Accreditation

This course is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates with an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) degree.

The course is also accredited by the Chartered Institution of Water and Environmental Management (CIWEM) and the Royal Institution of Chartered Surveyors (RICS).

Facilities

The School of Civil Engineering and Geosciences has an exceptional range of laboratories equipped with a wide range of analytical instrumentation supporting our research, teaching and contract research projects.

Chemical and Biological Research Laboratories
Geotechnics and Structures Research Laboratories

Read less
Our Materials Design and Engineering MSc gives graduates in science and engineering disciplines an understanding of the role and application of materials. Read more
Our Materials Design and Engineering MSc gives graduates in science and engineering disciplines an understanding of the role and application of materials. It provides knowledge of traditional and new materials and the science underpinning their behaviour and properties.

This course takes you through 120 credits of modules. Half of these are for an extended practical based project supported by our research laboratories and staff.
You will study a range of traditional and modern topics such as joining technology and nanomaterials.

The course will provide you with a high level of understanding of new and current materials, their applications, and design issues related to their use. You will also develop your reporting and research skills and extend your problem solving and written and verbal communication skills.

Many successful students from this course have gone on to do PhD research with us. The course gives an insight into the field of materials, bridging the gap between many science and engineering disciplines.

Delivery

The one year course includes taught modules and a major research project in the form of a dissertation.

The two year course is designed for students who require extra English tuition, or who need further training in certain other key background skills. You take a preparatory year comprising English language and other relevant introductory modules, including engineering modules. You then continue into the second year and take the one year version of the course as described above.

Placements

The course includes a 60 credit project module which is a laboratory based practical exercise. Some of these projects are related to industrial problems and you can also create links to companies yourself to generate a suitable project topic.

Read less
Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. Read more
Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. The course is designed for you as an experienced or recently graduated engineer who wants to develop your subsea knowledge.

Your teaching modules operate in short 'intensive schools' with time after the module to complete the assignments, where applicable. They include:
-Input from industry experts
-Site visits
-Industry-based projects
-Teaching from other disciplines

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in subsea engineering. The degree is taught using a mix of the academic staff from the School of Marine Science and Technology as well as visiting lecturers and experts from industry.

You will undertake a research project leading to a dissertation. This may be a critical review and/or computational or experimental project using the University's world leading testing facilities. The research project is supported by an academic supervisor and may be conducted with an industrial partner which, where appropriate, may be your employer.

Delivery

Ten taught modules worth 120 credits are delivered in blocks through semester one and/or two. A dissertation or research project, worth 60 credits, is undertaken across the three semesters.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
The Geotechnical Engineering MSc will give you the specialist knowledge required to meet the needs of the construction, environmental and extractive industries. Read more
The Geotechnical Engineering MSc will give you the specialist knowledge required to meet the needs of the construction, environmental and extractive industries. You will learn the principles and application of geotechnical engineering in a range of settings.

The course provides an advanced knowledge and understanding of:
-Soils and rocks and their engineering properties
-Site investigation, testing, interpretation and reporting
-Construction practice and awareness of safe operation
-Key aspects of geotechnical design, such as foundations and slopes
-Application of mathematical methods and computational tools

Once you have graduated will be able to:
-Identify, generate and interpret data relevant to an engineering scenario
-Employ numerical methods for modelling and analysing problems
-Select and apply ideas, concepts and data to generate innovative designs
-Evaluate the quality of data through testing and measurement equipment in field and lab
-Present and summarise data and critically appraise its significance, using numerical techniques
-Formulate and test key hypotheses using logical and consistent quantitative or qualitative arguments

Delivery

You will study compulsory modules plus optional modules, followed by a research project written up as a dissertation. The teaching methods on the course include:
-Formal lectures
-Tutorials
-Seminars
-Open learning
-Group projects
-Computing workshops
-Laboratory work
-Fieldwork
-Site visits

Numerous contributions are made to the course by prominent visitors from the construction industry. Assessment is by formal written examinations, course work, the dissertation, and oral presentations.

Read less
This course develops your knowledge and skills in mechatronics design and practice. You will develop skills in mechanical and electronic engineering, computing and control, and multidisciplinary skills appropriate to the requirements of modern manufacturing technologies. Read more
This course develops your knowledge and skills in mechatronics design and practice. You will develop skills in mechanical and electronic engineering, computing and control, and multidisciplinary skills appropriate to the requirements of modern manufacturing technologies.

This one year course is intended for honours (or international equivalent) graduates in mechatronics, mechanical or mechanical related engineering (eg automotive, aeronautical or design), physics or a related discipline.

A two year MSc is also available for non-native speakers of English that includes a Preliminary Year.

The taught part of the course consists of major mechatronic engineering themes such as:
-Mechatronics
-Robotics
-Industrial automation
-Embedded systems
-Instrumentation and drives

You have the opportunity to undertake in-depth studies through research projects. Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of mechatronics to practical design, make and test investigations.

General areas for project work include:
-Mechatronics
-Mobile robotics
-Industrial robotics
-Microelectronic-mechanical systems
-Computational engineering modelling

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Mechanical and Systems Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Graduates of this course who pass with merit are normally offered the opportunity to progress to PhD study either on a self-funded project or on a funded PhD studentship.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's level course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The courses have been accredited by the Institute of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
This course provides specialist knowledge in electrical power distribution at an advanced level. It meets the increasing demand for skilled Power Distribution Engineers in industry. Read more
This course provides specialist knowledge in electrical power distribution at an advanced level. It meets the increasing demand for skilled Power Distribution Engineers in industry. It provides professional career development with major input from industrial experts.

We offer full and part time courses in Power Distribution Engineering to support professional and career development. They are:
-Designed to meet the increasing demand for skilled Power Distribution Engineers
-Focused on application of knowledge
-Structured to allow flexibility for you and your employer
-Taught by industry-based module leaders giving invaluable practical experience and relevant industrial context

The majority of part time students are based in industry while completing the course, allowing you to share and learn from the experiences of your peers.

Delivery

The course is in modular form, mixing direct teaching with distance learning. Each module comprises two days of face-to-face teaching and three days of teaching delivered by distance learning. Assessment of each module is by written examination and module assignment.

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Facilities

You will have access to a range of specialist facilities. Each research group in the school has dedicated equipment and laboratories.

Read less
The Structural Engineering MSc aims to provide you with the advanced conceptual understanding, detailed factual knowledge, and specialist technical skills that are required for success in an engineering-based consultancy business. Read more
The Structural Engineering MSc aims to provide you with the advanced conceptual understanding, detailed factual knowledge, and specialist technical skills that are required for success in an engineering-based consultancy business.

This course is research informed and industrially focused, helping you to develop your knowledge and understanding of how business opportunities are identified and pursued within the civil and structural engineering sector.

Delivery

You will study a combination of compulsory and optional modules, followed by a research project written up as a dissertation. Most modules are taught in one or two week blocks and our teaching methods include:
-Formal lectures
-Tutorials
-Seminars
-Open learning
-Group projects
-Computing workshops
-Laboratory and fieldwork
-Site visits

Prominent experts from the construction industry make significant contributions to the course, ensuring that your studies are industrially focussed. You will be assessed using formal written examinations, course work, a dissertation, and oral and poster presentations.

Accreditation

The course is accredited by the Joint Board of Moderators (JBM) (comprising ICE, IStructE, CIHT and IHIE), as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for students with an Accredited CEng (Partial) BEng Honours degree or Accredited IEng (Full) BEng/BSc Honours degree.

Read less

Show 10 15 30 per page



Cookie Policy    X