• University of Derby Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
Bournemouth University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
FindA University Ltd Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Bath Spa University Featured Masters Courses
0 miles
Engineering×

University of Westminster, Full Time MSc Degrees in Engineering

  • Engineering×
  • University of Westminster×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 12 of 12
Order by 
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing. Read more
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing.

Graduates will be able to follow a flexible program of study designed to lead to, and enhance, a career in software engineering with a focus on new technologies and areas of application, such as cybersecurity, big data, or mobile application development.

The rapid pace of technical change in software development is notorious and this has been accompanied and compounded by an increase in the complexity of the systems that are developed. Recently this has been most noticeable in the increase in mobile computing and the use of sophisticated hardware that require developer knowledge of new paradigms.

Many applications that run on these systems whether mobile or stationary are distributed in nature and will consume web services provided by service-oriented architectures and cloud-based platforms. There has also been an increase in the use of virtualisation techniques for providing flexible and maintainable systems. Businesses are now regularly using virtualised systems and techniques to lower cost and complexity and increase availability in computing environments.

The surge in cybersecurity issues and threats facing businesses and organisations that depend on IT systems has meant that software engineers need a thorough understanding of security when building and maintaining software applications and systems.

There is an acknowledged national shortage of IT and computing skills in the workforce. In the specific area of software development, a number of factors contribute to this. Most obviously, the rate of technological change means that an individual's specific knowledge frequently becomes out of date. Secondly, many significant technological developments originate in industry rather than academia, and are not yet firmly embedded in undergraduate curricula. Finally, many people enter the software industry without a specific educational background in computer science and acquire much vital knowledge in the workplace in relatively ad hoc ways.

In response to this, for many years the Department of Computer Science has been running courses that combine an emphasis on methodical approaches to the development of software applications and information systems with a determination to equip graduates with a portfolio of relevant research-oriented and practical skills and knowledge to compliment and expand their own knowledge.

The rationale behind the MSc in Advanced Software Engineering is to draw on this experience to provide an education that will cover in-depth specific skills and best current practice in software development where there is currently a significant skills shortage, whilst at the same time instilling important research-based skills that will equip students for independent lifelong learning in fast-changing and technically challenging environment.

Course content

The Masters of Science in Advanced Software Engineering takes into account the emerging needs of industry underpinned by theory and software engineering practices. As a consequence the modules emphasise both the critical conceptual underpinnings as well as the practical skills for each subject.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-ADVANCED SOFTWARE DESIGN
-ENTERPRISE DEVELOPMENT
-CONCURRENCY AND PARALLELISM
-RESEARCH METHODS AND PROFESSIONAL PRACTICE
-ADVANCED SOFTWARE ENGINEERING PROJECT

Option modules - In addition you will pursue a pathway of your choice, selected with the guidance and advice of our academic staff. You can chose up to five of the following pathways modules:
-BIG DATA THEORY AND PRACTICE
-ADVANCED BIG DATA ANALYTICS
-CLOUD COMPUTING APPLICATIONS
-DATA MINING & MACHINE LEARNING
-DATA VISUALISATION AND DASHBOARDING
-CYBERSECURITY THREATS AND COUNTERMEASURES
-INTERNET SECURITY
-MOBILE APPLICATION DEVELOPMENT
-MOBILE AND UBIQUITOUS COMPUTING
-USABILITY AND USER EXPERIENCE DESIGN
-FREE CHOICE MODULE

Associated careers

Graduates will typically be part of a team working on sophisticated n-tier applications, as a designer, programmer, systems administrator or systems analyst (among others). Graduates will also find positions within new and established businesses that specialise in mobile applications. Other roles are possible in computer science research for either a commercial enterprise or academic institution. Further PhD study opportunities within the University of Westminster are also an option.

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning.

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

Course content

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset.

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-Electric Motors and Control for Transport Systems
-Power Conversion and Drives for Transport Systems
-Project
-Sensor, Data Acquisition and Communication for Transport Systems

Associated careers

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.

Professional recognition

This course will be seeking accreditation from the IET.

Read less
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Read more
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Practical skillset development is emphasized throughout the course. Students will be taught the theory, protocol and the efficient use of both analogue and digital interfaces and sensor devices together with the principles of and use of Real-Time-Operating-Systems (RTOS). A key focus of the course will be in the implementation of power aware sustainable solutions, the course will provide an in-depth discussion of the underlying power management hardware sub-systems within modern MCUs and will show and use software techniques that will exploit these to reduce power consumption.

Broader consideration of embedded system design will be examined. In particular, the design process, risk assessment, product life-cycle, software life-cycle, safety and regulation will be investigated and used. It is intended that the course will re-focus existing knowledge held by the student in software engineering and hardware engineering and deliver a set of enhanced practical skills that will enable the student to fully participate in this multi-disciplined, fast expanding and dominating engineering sector of embedded systems.

Course Structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

There are plenty of opportunities for employment in the electronic systems subject area, in particular, there is a demand for engineers that can solve problems requiring a multi-disciplined approach covering skills from software engineering, control engineering, digital electronic systems engineering, analogue electronic engineering, medical physics, and mechanics amongst others. The MSc in Electronics and its specialist pathways will provide the foundations required to re-focus existing knowledge and enter this exciting world of multi-disciplined jobs.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. Read more
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. The course will provide ample opportunity to develop practical skill sets. The student will also develop an in-depth understanding of the scientific principles and use of the underlying components such as medical transducers, biosensors and state-of-the-art tools and algorithms used to implement and test diagnostic devices, therapeutic devices, medical imaging equipment and medical instrumentation devices.

The course broadens the discussion of medical equipment and its design by investigating a range of issues including medical equipment regulation, user requirements, impacts of risk, regulatory practice, legislation, quality insurance mechanisms, certification, ethics and ‘health and safety’ assessment. The course will enable a student with an interest in medical electronics to re-focus existing knowledge gained in software engineering, embedded systems engineering and/or electronic systems engineering and will deliver a set specialist practical skills and a deeper understanding of the underlying principles of medical physics. A graduate from this course will be able to immediately participate in this multi-disciplined engineering sector of biomedical and medical instrumentation systems design.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

Read less
The MSc in Electronics with Robotic and Control Systems aims to produce postgraduates with a strong practical skill base that will enable them to model, analyse, design and prototype smart robotic sub-systems. Read more
The MSc in Electronics with Robotic and Control Systems aims to produce postgraduates with a strong practical skill base that will enable them to model, analyse, design and prototype smart robotic sub-systems. Specialist knowledge and practical skillsets will be taught, extensively developed and practiced in the areas of control systems and the analysis, categorisation and design of robotic systems that facilitate movement with multiple degrees of freedom. The knowledge and skillsets taught are key enabling skillsets used to implement devices for applications such as security drones, warehouse robots, medical robots and more humanoid like robots. It is intended that the course will re-focus and enhance existing knowledge in the areas of software engineering, electronic engineering and real-time embedded systems to enable the student to participate in the fast expanding and exciting sector of industrial and consumer robotic systems.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The MSc Electronics with System-On-Chip Technologies aims to produce postgraduates with an advanced understanding of the various routes to implementing systems-on-chip (SoC) and with hands-on experience of the design of such systems using several approaches to their implementation. Read more
The MSc Electronics with System-On-Chip Technologies aims to produce postgraduates with an advanced understanding of the various routes to implementing systems-on-chip (SoC) and with hands-on experience of the design of such systems using several approaches to their implementation. The core aim of the course is to produce students who are “silicon qualified” by providing them with a complete SoC design experience by setting a framework of activities that allow the student to use industry-standard Computer-Aided-Engineering (CAE) software tools for the fast and accurate design, simulation and verification of integrated circuits.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.
Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The MSc in Telecommunications with Satellite and Broadband Technologies aims to produce postgraduates with an advanced understanding of communication systems utilising satellite and broadband elements. Read more
The MSc in Telecommunications with Satellite and Broadband Technologies aims to produce postgraduates with an advanced understanding of communication systems utilising satellite and broadband elements. Students’ understanding of the theoretical principles underpinning digital communication systems is taken to an advanced level, and the problems and challenges associated with the implementation of both fixed and mobile wireless communication systems receives special attention. Leading- edge satellite and broadband systems utilising modern architectures are central to this programme of study.

Course Structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Telecommunications Suite of Courses

The MSc Telecommunications has three distinct pathways:
-Digital Signal Processing
-Satellite and Broadband Communications
-Wireless Technologies

The demand for engineers in both wide-area and local-area communication systems is currently flourishing and is expected to grow for the foreseeable future. These three pathways offer both recent engineering graduates and industry-based engineers access to in-depth skills for closely related aspects of the communications discipline.

The course structure is quite flexible, affording industry-based students an opportunity to attend and accumulate module credits over an extended period of time. It also simultaneously serves the full-time student cohort which generally progresses through the MSc pathway in a single calendar year.

The MSc programmes are short course based and feature assessment through sequentially submitted result portfolios for the work packages, ie the ILPs. These are assigned immediately upon each short course module where the students are able to concentrate their study efforts just on the most recently-taught subject material. This greatly promotes efficient focused learning. The individual oral examination administered for each ILP furnishes valuable experience in oral defence, and frees students from written examination burdens.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Telecommunications MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The MSc in Telecommunications with Digital Signal Processing aims to produce postgraduates with an advanced understanding of communication systems with special emphasis on the application of digital signal processing, which supports and pervades all modern communication systems. Read more
The MSc in Telecommunications with Digital Signal Processing aims to produce postgraduates with an advanced understanding of communication systems with special emphasis on the application of digital signal processing, which supports and pervades all modern communication systems. It makes extensive use of MATLAB and Simulink simulation tools to design digital filters that perform noise reduction, signal shaping and channel modelling. Adaptive filters, matched filters, reception and detection algorithms essential for digital communications are also modelled and tested.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Telecommunications Suite of Courses

The MSc Telecommunications has three distinct pathways:
-Digital Signal Processing
-Satellite and Broadband Communications
-Wireless Technologies

The demand for engineers in both wide-area and local-area communication systems is currently flourishing and is expected to grow for the foreseeable future. These three pathways offer both recent engineering graduates and industry-based engineers access to in-depth skills for closely related aspects of the communications discipline.

The course structure is quite flexible, affording industry-based students an opportunity to attend and accumulate module credits over an extended period of time. It also simultaneously serves the full-time student cohort which generally progresses through the MSc pathway in a single calendar year.

The MSc programmes are short course based and feature assessment through sequentially submitted result portfolios for the work packages, ie the ILPs. These are assigned immediately upon each short course module where the students are able to concentrate their study efforts just on the most recently-taught subject material. This greatly promotes efficient focused learning. The individual oral examination administered for each ILP furnishes valuable experience in oral defence, and frees students from written examination burdens.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Telecommunications MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The MSc in Telecommunications with Wireless Technologies aims to produce postgraduates with an advanced understanding of communication systems with a focus on wireless technologies. Read more
The MSc in Telecommunications with Wireless Technologies aims to produce postgraduates with an advanced understanding of communication systems with a focus on wireless technologies. It fosters the student’s ability to analyse, design and build RF and microwave systems for wireless communication systems. Special emphasis is placed on enhancing the student’s ability to model the behaviour of wireless systems from circuits, filters and antennas, and to utilise these models to guide the design and implementation of a variety of communication techniques.

Course Structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Telecommunications Suite of Courses

The MSc Telecommunications has three distinct pathways:
-Digital Signal Processing
-Satellite and Broadband Communications
-Wireless Technologies

The demand for engineers in both wide-area and local-area communication systems is currently flourishing and is expected to grow for the foreseeable future. These three pathways offer both recent engineering graduates and industry-based engineers access to in-depth skills for closely related aspects of the communications discipline.

The course structure is quite flexible, affording industry-based students an opportunity to attend and accumulate module credits over an extended period of time. It also simultaneously serves the full-time student cohort which generally progresses through the MSc pathway in a single calendar year.

The MSc programmes are short course based and feature assessment through sequentially submitted result portfolios for the work packages, ie the ILPs. These are assigned immediately upon each short course module where the students are able to concentrate their study efforts just on the most recently-taught subject material. This greatly promotes efficient focused learning. The individual oral examination administered for each ILP furnishes valuable experience in oral defence, and frees students from written examination burdens.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Telecommunications MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
This course has been specifically designed as, a 'top-up' qualification for individuals who wish to become Health and Care Professions Council (HCPC)-registered biomedical scientists but who do not hold an Institute of Biomedical Science (IBMS)-accredited BSc Honours degree. Read more
This course has been specifically designed as, a 'top-up' qualification for individuals who wish to become Health and Care Professions Council (HCPC)-registered biomedical scientists but who do not hold an Institute of Biomedical Science (IBMS)-accredited BSc Honours degree. This programme is accredited by the IBMS and, in combination with a suitable first degree, the Applied Biomedical Science MSc will ensure that you possess the required academic knowledge for HCPC registration.

When you have completed both this course and the IBMS registration training portfolio (and been awarded your Certificate of Competence from the IBMS) you will then meet the HCPC standards of competency and can apply to become registered as a Biomedical Scientist.

The combination of modules that you study will be based in part upon your requirements for supplementary education as identified by the IBMS but, depending on the number of compulsory modules required, there is still some scope to tailor the course to match your own interests. The course also includes the opportunity to study Masters-level research projects in an area of your interest.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT

Option modules
-CELLULAR PATHOLOGY
-CLINICAL CHEMISTRY
-CLINICAL IMMUNOLOGY
-HAEMATOLOGY AND TRANSFUSION SCIENCE
-MEDICAL MICROBIOLOGY
-MOLECULAR AND CELLULAR THERAPEUTICS
-MOLECULAR SCIENCE AND DIAGNOSTICS
-PRINCIPLES OF MOLECULAR MEDICINE

Associated careers

If you do not already have an IBMS accredited BSc Honours degree in Biomedical Science then this MSc programme is the next step on your path to becoming an HCPC registered Biomedical Scientist. Biomedical Scientists have the knowledge and skills to provide the crucial laboratory diagnostic service central to modern medicine and will be involved in over 70 per cent of all disease diagnoses from ante-natal care to emergency medicine.

Read less
This course develops your ability to initiate and implement advanced analysis and research in transport policy, planning and management. Read more
This course develops your ability to initiate and implement advanced analysis and research in transport policy, planning and management. You will learn the techniques and methodologies you need to take decisions, or to provide the necessary information for others to take policy decisions.

The MSc course has been running successfully for many years, and is offered by the Department of Planning and Transport. It will give you full exemption from the examination requirements for Membership of the Chartered Institute of Logistics and Transport (MCILT), and also forms part of the pathway to the Transport Planning Professional (TPP) qualification.

If you are unable to study for a full Masters course, we also offer a Transport Planning and Management Postgraduate Diploma and a Transport Planning and Management Postgraduate Certificate. Please scroll to the bottom of this page for information on these courses. Alternatively you can also study some of the individual modules from the Transport Planning and Management MSc course as stand alone short courses.

Course content

The MSc course balances theoretical and practical applications in the three separate components: core modules, option modules and a research dissertation.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-RESEARCH DISSERTATION
-STATISTICS AND SURVEY METHODS FOR TRANSPORT
-TRANSPORT ECONOMICS
-TRANSPORT POLICY AND POLITICS

Option modules - Choose three from the following:
-AIRLINE PLANNING AND MANAGEMENT
-AIRPORT PLANNING AND MANAGEMENT
-FREIGHT TRANSPORT AND LOGISTICS SERVICES
-LAND USE, PLANNING AND TRANSPORT
-PUBLIC PASSENGER TRANSPORT
-TRAFFIC AND STREETS
-TRANSPORT FIELD TRIP

Professional accreditation

The MSc course will give you a full exemption form the examination requirement for membership of the Chartered Institute of Logistics and Transport (MCILT), and also forms part of the pathway to the Transport Planning Professional (TPP) qualification.

Associated careers

Transport graduates develop their careers in a wide range of transport organisations, highlighting the breadth of the course content. Key employers regularly come in to speak to students about new opportunities in transport. Many part-time students are recruited from organisations including local government transport planning, transport consultancies, NGOs and transport operators.

Read less
Modules on this course are taught in blocks of five days at a time to enable international participants to travel efficiently to London several times a year. Read more
Modules on this course are taught in blocks of five days at a time to enable international participants to travel efficiently to London several times a year. Students take six taught modules in total (over one year on the full-time course*, or two to three years on the block release part-time course) and complete a research dissertation. Email contact and tutorial support is provided between the module blocks along with guest lectures and workshop sessions for full-time students.

The block attendance mode for this course is not compatible with visa restrictions for international students. Therefore, this mode of attendance is not available for international students requiring a visa. The block mode of attendance is still available to UK and EU students. International students can still apply for our full-time course.

This course has been developed to meet the needs of graduates worldwide seeking to gain greater knowledge and experience of the air transport industry, and looking to progress into senior roles in management, operations and commercial planning of airlines, airports, government departments and aviation-related businesses such as aircraft manufacturing, finance and consultancy. It is designed to provide a strong theoretical and analytical basis, coupled with the application of many practical techniques and strategies.

The course builds on the successful series of aviation short courses that have attracted participants from around the globe to the University each year. The Department has a long-established interest in air transport research, consultancy and teaching, having been set up by the renowned aviation academic Professor Rigas Doganis some 40 years ago. The University's association with aviation goes back much further, however, as it was here in the 19th century that Sir George Cayley first demonstrated the principles of flight.

Modules on this course can also be taken as short courses which are not formally assessed. Students who have followed the relevant short course(s) within the last five years may be able to register at a reduced fee to complete the module on an 'assessment only' basis as part of the Master's degree.

Modules

The following modules are indicative of what you will study on this course. For more details on course structure and modules, and how you will be taught and assessed, see the full course document.

Core modules
-AIR TRANSPORT ECONOMICS
-AIR TRANSPORT FORECASTING AND MARKET RESEARCH
-AIR TRANSPORT MANAGEMENT AND OPERATIONS
-RESEARCH DISSERTATION

Option modules
-AIR TRANSPORT POLICY AND PLANNING
-AIRLINE MARKETING AND BUSINESS MODELS
-AIRPORT FINANCE AND STRATEGY

Associated careers

If you are a full-time student without a prior background in the air transport industry you should be well placed on completion of the course to take up a junior position in a planning, management and operational role with airlines and airports. You will also be well equipped for employment as an analyst with consultancies, government bodies and aircraft manufacturers.

If you have a prior industry background you should be able to return to your position with new skills and understanding, plus a greater maturity of approach. You will be well placed to move into senior managerial, policy or research functions. The competitive nature of the industry will also provide many new opportunities for suitably qualified personnel.

A strong performance on the MSc provides the opportunity to study further by registering for a research degree in the Department of Planning and Transport. Graduates will also be equipped with the knowledge, understanding and skills needed to participate in the activities of professional bodies such as the Air Transport Research Society, the German Aviation Research Society and AirNeth.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X