• University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Coventry University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Bath Spa University Featured Masters Courses
0 miles
Engineering×

University of Manchester, Full Time MSc Degrees in Engineering

  • Engineering×
  • University of Manchester×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 15 of 27
Order by 
The School of Mechanical, Aerospace and Civil Engineering has a strong and unique tradition in the UK in Aerospace Design, Helicopters, Heat Transfer, Aerodynamics, Computational Fluid Dynamics and Flow Diagnostics. Read more
The School of Mechanical, Aerospace and Civil Engineering has a strong and unique tradition in the UK in Aerospace Design, Helicopters, Heat Transfer, Aerodynamics, Computational Fluid Dynamics and Flow Diagnostics. This course builds on those strengths and exploits our links with BAe Systems, Airbus, Rolls-Royce, DSTL, USAF, North West Aerospace Alliance, North West Development Agency and SBAC.

This MSc aims to produce high quality graduates with specialist training in aerospace engineering who will be suitable for employment in the engineering industries and consultancies linked to that industry. Aerospace engineering graduates are highly valued and are currently in great demand and the Manchester programme specifically seeks to serve this growing industry requirement. The programme is suitable for engineering and science graduates, as well as engineering professionals working in technical and commercial management. The programme is also well designed to be used for conversion to Aerospace Engineering from some close enough specialities such as Mechanics, Mathematics and Physics.

Teaching and learning

The Aerospace Engineering MSc is a full time course which is studied over 12 months and there is one start date each year in September. You will develop advanced technical skills in Aerospace Engineering that will enable you to pursue a career in both general and specialised engineering industries or develop an in depth knowledge for a career in research in industry or academia.

Career opportunities

The Aerospace Engineering MSc has a strong focus on employability to support you to take control of your future and give yourself the best chance of securing your ideal job after graduation.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors to target Manchester graduates.

After graduating with an Aerospace Engineering MSc you will be in a strong position to seek employment with companies such as: Airbus, Rolls Royce, GE Aviation, Airbus, Bombardier Transportation, BAe Systems, MBDA, SAFRAN, GKN Aerospace, Spirit, Finmeccanica, EDF, BP, Schlumberger, etc.

The UK Aerospace Engineering is 2nd largest in the world and around 30% of companies in the Aerospace sector currently have vacancies.

Destination of Leavers Survey
Past graduates have found employment in:
-Airframe manufacturers
-Gas turbine and aircraft systems industries
-Defence laboratories
-Consultancy and management
-Postgraduate research

Accrediting organisations

Two highly established organisations, the Royal Aeronautical Society and Institution of Mechanical Engineers , have accredited the Aerospace Engineering MSc course under license from the UK regulator, the Engineering Council . This allows satisfactory completion of the Aerospace Engineering MSc to contribute towards the academic requirements for registration with these Institutions as a Chartered Engineer.

Read less
The MSc in Engineering Project Management prepares students for a professional role in the management of engineering projects by providing students with an understanding of both the people-related and technical requirements necessary for the successful management of engineering projects, as well as the organisational and strategic aspects. Read more
The MSc in Engineering Project Management prepares students for a professional role in the management of engineering projects by providing students with an understanding of both the people-related and technical requirements necessary for the successful management of engineering projects, as well as the organisational and strategic aspects. The programme also stresses the processes that are used to produce, process and service engineering-based innovation projects from idea through relevant analyses to launch, relate innovation to improvements in products, processes and competitive advantage and explain how intellectual property is protected and exploited.

This MSc is one of four MSc courses within the Management of Projects Group of Programmes. The other MSc courses are: Management of Projects, Commercial Project Management and Construction Project Management.

The School of Mechanical, Aerospace and Civil Engineering has a long history of delivering project management related masters courses and the staff who deliver the programme are drawn for a wide variety of backgrounds and industrial experience.

Teaching and learning

The Engineering Project Management MSc is a full time course which is studied over 12 months, starting in September each year. The programme comprises eight taught course units, each worth 15 credits, and a research dissertation worth 60 credits. Students study four core units fundamental to project management, and which are shared by students on the other programmes within the group. In addition, the Innovation Management unit is programme specific unit where students will be required to collaborate in a project team to interpret information, make decisions, solve problems and overcome difficulties associated with teamwork and communication when managing an innovation project. Students must also select three option units and carry out an Engineering Project Management based dissertation.

Assessment of the taught part of the programme is via a combination of formal written examinations and coursework assignments, which will include group work and oral presentations. Some assessment is based on online material provided by the Association for Project Management (APM) and PRINCE2 (a process-based method for effective project management).

Career opportunities

The MSc Engineering Project Management Programme acquaints students with the basic processes of project management but focuses more specifically on the application of these in an engineering and innovation context. Practical skills in engineering-based innovation projects and protection and exploitation of intellectual property are developed. Successful graduates of this programme find employment in a wide range of organisations such as High Speed Two (HS2) Ltd, Nissan Technical Center South East Asia, Worley Parsons India, Saudi Aramco.

Accrediting organisations

The MSc in Engineering Project Management is listed by the Joint Board of Moderators (JBM) as being Approved Further Learning Schemes for Chartered Engineer. The JBM represents the Institution of Civil Engineers, the Institution of Structural Engineers, the Institution of Highways and Transportation and the Institute of Highway Incorporated Engineers. This means that successful completion of the MSc will enable applicants with an accredited first degree at BEng level to become chartered engineers.
Students who successfully complete the unit MACE 60062 Conflict Management and Dispute Resolution optional unit are eligible for associate membership of the Chartered Institute of Arbitrators.

Read less
This MSc provides a state-of-the-art introduction to technical design within mechanical engineering. The School is a vibrant environment to study, we have 200 years of expertise in teaching engineering, high calibre facilities, strong links with industry and a vision to provide a modern world-class education. Read more
This MSc provides a state-of-the-art introduction to technical design within mechanical engineering. The School is a vibrant environment to study, we have 200 years of expertise in teaching engineering, high calibre facilities, strong links with industry and a vision to provide a modern world-class education. Our course integrates advanced engineering techniques with hands-on-learning to provide a complementary blend of skills desired by employers.

The course has fundamental modules in the areas of analytical and conceptual design with a wider range of options enabling you to individually tailor the course to meet your specific needs or interests.

We are curiosity driven and industry inspired and foster an environment in which our highly sought after graduates have fulfilled their potential.

Teaching and learning

The Mechanical Engineering Design MSc is a full time course which is studied over 12 months and there is one start date each year in September. You will develop advanced technical skills in Mechanical Engineering Design that will enable you to pursue a career in both general and specialised engineering industries or develop an in depth knowledge for a career in research in industry or academia.

Career opportunities

The Mechanical Engineering Design MSc has a strong focus on employability to support you to take control of your future and give yourself the best chance of securing your ideal job after graduation. For example there are regular industrial guest lectures and optional short courses delivered by companies such as National Instruments and Maxon Motors.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how Top employers target Manchester graduates.

After graduating with a Mechanical Engineering Design MSc you will be in a strong position to seek employment with companies such as: BP, Rolls Royce, GE Aviation, Airbus, Siemens, Jaguar Land Rover, Bentley Motors, Nissan Motor Company, Bombardier Transportation, DePuy International, GE Healthcare, E-ON, EDF, Sellafield, Apple.

Read less
Control Engineering is a multi-disciplinary subject, with applications across a wide range of industrial sectors. The Control Systems Group in the School of Electrical and Electronic Engineering at the University of Manchester has been running an MSc course in Advanced Control and Systems Engineering since 1968. Read more
Control Engineering is a multi-disciplinary subject, with applications across a wide range of industrial sectors. The Control Systems Group in the School of Electrical and Electronic Engineering at the University of Manchester has been running an MSc course in Advanced Control and Systems Engineering since 1968. The course is geared for graduates from a variety of scientific and engineering disciplines.

The aims of the course are to:
-Provide an advanced education in control and systems engineering, emphasising modern theoretical developments and their practical application
-Give a sound fundamental understanding of the principles underlying the operation of control systems
-Enable students to apply modern control principles in various areas of industry

Students acquire a range of intellectual skills that cover the design, analysis and simulation of control systems. A strong emphasis is placed on practical and transferable skills through laboratory exercises and the use of software packages.

Coursework and assessment

The taught part of the course comprises six course units of 15 credits each. This is assessed by written examinations, coursework and laboratory reports.

A strong feature of the course is the dissertation project, which constitutes 60 Credits. The project introduces students to cutting edge control theory and applications.

Course unit details

Typical course units include Control and Computer Laboratory, Linear Optimal Control, Intelligent Systems, Non-linear Controllers & Systems, Self-tuning and Adaptive Systems, Manufacturing Automation and Data Engineering, Fault Detection and Diagnosis, and Process Control Systems.

Career opportunities

In 2008 we celebrated the 40 th anniversary of our MSc course. In that time graduates of the course have achieved top ranking industrial and academic positions in their home countries, in the UK and around the world.

Graduates from the course are employed in a variety of industries, including process and petro-chemical industries, manufacturing, power generation and the automotive and aerospace sectors. Recently there has been a surge in demand for control engineers in the field of biomedicine. More generally feedback control and systems engineering skills play an important part in an ever widening range of high tech applications.

The MSc can also be used a spring board for postgraduate research. Approximately 50% of the current PhD students in the Control Systems Group are graduates from the MSc course.

Read less
Modern chemical engineering is a vast subject extending far beyond its traditional roots in oil and gas processing. Read more
Modern chemical engineering is a vast subject extending far beyond its traditional roots in oil and gas processing. As well as dealing with chemical reactors, distillation and the numerous processes that take place in a chemical or petrochemical plant, there is an increasing need for chemical engineers able to design and develop formulated products and to have knowledge of biotechnology and environmental issues.
-If you already have a first degree in chemical engineering you can study the discipline in greater depth as well as learning about broader issues through the choice of elective subjects.
-If you are already working in industry or are planning to work in a particular area, then this course can be tailored to focus on issues related to those of direct concern to you.

Who will benefit from the course?
-Those who already have a background in chemical engineering but who wish to obtain a higher level qualification from a top-ranking British university.
-Those who wish to enhance their career prospects in a chemical industry.

What are the benefits to students?
-Our graduates get great jobs and chemical engineers are the highest paid professionals in the engineering field
-Courses are designed to meet the needs of employers and you develop many skills for a successful career - design, problem solving, numeracy, analysis, communication and teamwork
-The University of Manchester has an excellent international reputation and a qualification from us will significantly increase your chances of getting a job anywhere in the world
-Specialist subjects are all taught by experts in the field
-Entry requirements are flexible - relevant experience is considered alongside your formal qualifications

Teaching and learning

We use modern, innovative teaching and learning methods which have proved extremely successful and are enjoyed by our students. Much of the source materials and study aids are available through Blackboard (the University's web learning package) which has the advantage of enabling you to carry out much of your study when and where you want. You take part in face-to-face lectures, seminars and laboratory classes.

The Dissertation Project forms a major part of the MSc course and provides useful practice in carrying out academic research and writing in an area that you are interested in. You have the opportunity to study a chosen topic in depth - you can choose one of the challenging topical projects available through the University or if you are employed can base your project on an aspect of your current job or employer's business.

The course helps you to develop valuable transferable skills such as report writing, data analysis and presentation skills - these are all invaluable for your career development.

Coursework and assessment

Assessment is a combination of examinations and written coursework assignments. For the MSc a major part of the assessment is through an in-depth project which is written up as a formal dissertation report.

Career opportunities

For those with a chemical engineering background, a masters level qualification in Advanced Chemical Engineering from a top UK University will provide a boost to your career prospects.

The National Signposts to Employability Survey 2000 (Performance Indicator Project) found that employers preferred to employ University of Manchester engineering graduates above any others.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).

Read less
The Thermal Power and Fluid Engineering MSc is a highly successful course which has been offered here for almost forty years. Read more
The Thermal Power and Fluid Engineering MSc is a highly successful course which has been offered here for almost forty years. The aim of this postgraduate course is to train and educate thermofluid engineers to enable them to meet present and future demands of the industry and to equip them with the necessary skills to engage in employment or further research.

The course is suitable for engineering/science graduates and professionals who not only wish to enhance their expertise in thermofluids but also to develop their competence in the use of state-of-the-art analytical, computational and experimental methods; advanced methods which are specifically designed for the analysis of heat and fluid flow in both industrial and research applications.

The objectives of this course are to produce postgraduate specialists with:
-Advanced understanding of heat and fluid flow processes and their role in modern methods of power generation
-In-depth understanding of numerical and experimental techniques in heat and fluid flow

Teaching on the course is delivered by academics from our world-leading research group in the field of turbulence modelling and heat transfer.

Special features

The three students who achieve the highest performance in this MSc course in 2016-17 will receive an award.

The winners of the Thermal Power and Fluid Engineering Merit Award are presented with a certificate by the Head of the School, Prof Andy Gibson, and are awarded a cash prize. The awards are £3,000 for the top student, £2,000 for the second and £1,000 for the third student in each semester.

The winners of the award this semester were: Aseem Bhavnesh Desai (1st), Robert O'Donoghue (2nd) and Luca Cappellone (3rd).

Teaching and learning

This is a full-time course studied over 12 months with one start date each year in September. Every year this MSc course in Thermal Power and Fluid Engineering attracts a large number of applications from all around the world, which allows us to select only the best candidates.

Throughout the course, alongside the teaching, special emphasis is placed on both computational and experimental work; the aim is to provide insight through experimentally observed phenomena, and also to provide practical/computational experience of a wide range of measurement and data analysis techniques. Thus, the course has a strong practical orientation which is supported by our School laboratories and facilities and it aims to produce engineers who are able to engage in the design, development and testing of internal combustion engines, turbines or power producing devices. Whilst on the course, students have the opportunity to participate in a number of industrial visits. Relevant companies sometimes offer projects to our students as a result of these visits.

The MSc is continually reviewed and now includes course units such as research and experimental methods, advanced fluid mechanics, advanced heat transfer, engineering thermodynamics, power engineering and computational fluid dynamics. Students are assessed based upon a combination of coursework, laboratory calculations, exams and projects. Upon successful completion of taught modules the students are required to do a research dissertation.

Career opportunities

The MSc in Thermal Power and Fluid Engineering trains graduates in the theory and practice of a broad range of industrially relevant topics within the fields of thermodynamics and fluid mechanics. It is specifically designed to meet the needs of the modern engineer both in industry and in research. Most of our research is derived and funded by industry, and we have always been proud of maintaining strong links with our industrial partners. Teaching staff on this course have research-based collaborations with multinational companies such as Boeing, Airbus, Rolls Royce, Jaguar Land rover, Électricité de France, Procter and Gamble, Unilever, Dyson, Alstom and many others.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how employers target Manchester graduates.

Our recent graduates have gone on to work in internationally renowned companies including:
-Airbus, UK
-Électricité de France, UK
-Jaguar Land Rover, UK
-Dassault Systèmes, France
-Honda Motors, UK
-Doosan Global, UK
-ExxonMobil, UK
-Saudi Aramco, KSA
-Engro Chemicals, Pakistan
-Abu Dhabi National Oil Company, UAE
-ANSYS, UK
-ABB Group, UK
-Exa GmbH, UK

Accrediting organisations

This Masters Course is accredited by the IMechE, the Institution of Mechanical Engineers which is the UK's professional body of Mechanical Engineers. This means that graduates from this course are recognised by the IMechE as having the academic qualifications required of candidates for the status of Chartered Engineer.

Read less
Due to the high volume of applications, this course is now over-subscribed. Applications for this course can still be made, and successful applicants will be added to a waiting list. Read more
Due to the high volume of applications, this course is now over-subscribed. Applications for this course can still be made, and successful applicants will be added to a waiting list. Places will be allocated from the waiting list on a first-come, first-served basis should places become available.

Please note, having a space on the waiting list is not a guarantee of an offer.

Aims

The programme aims to convey detailed knowledge of state-of-the-art materials systems, with a focus on composites, advanced alloys and functional and engineering ceramics. The students explore the technologies used in the manufacture and processing of advanced materials and develop an understanding of the relationships between composition, microstructure, processing and performance. The student learn how to assess materials performance in service and develop an understanding of the processes of degradation in hostile conditions. They are also trained in the essential skills needed to design and develop the next generation of high performance engineering materials, establishing a strong foundation for a future career in industry or research.

Course unit details

The taught units cover the structure and design of advanced engineering materials and provide graduates with an increased depth and breadth of knowledge of materials science, technology and engineering.

Taught units include:
-Introduction to Materials Science
-Industrial Processing of Materials
-Advanced Composite Materials
-High Performance Alloys
-Advanced Analytical Techniques
-Functional and Engineering Ceramics

Facilities

To underpin the research and teaching activities at the School, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Career opportunities

Our graduates of this programme have gone on to fill key posts as materials scientists, engineers, managers and consultants in academia, industry and research and development. You may also be able to advance to PhD programmes within the School.

Accrediting organisations

The MSc in Advanced Engineering Materials is accredited by the Institute of Materials, Minerals and Mining (IoM3) with the award of Further Learning.

Read less
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. Read more
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. This course will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

In the first semester you learn how power systems are designed and operated. This involves studying not only the characteristics of the various components (generators, lines, cables, transformers and power electronics devices) but also how these components interact. Through lectures and computer based exercises you become familiar with power flow and fault calculations and you learn how the techniques used to study the behaviour of large systems. Experiments in our high voltage laboratory give you an appreciation for the challenges of insulation co-ordination.

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

Prior to your summer break a preliminary study and the outline of your MSc dissertation project is completed, this is fully developed throughout the second year of the course. The yearlong enhanced individual research provides you great opportunities to develop advanced research skills and to explore in depth some of the topics discussed during the course. This includes training in research methods, and advanced simulation and experimental techniques in power systems and high voltage engineering as well as academic paper writing and poster and paper presentation.

Aims

-Provide an advanced education in electrical power engineering.
-Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.
-Give a sound understanding of the principles and techniques of electrical power engineering.
-Give a broad knowledge of the issues and problems faced by electrical power engineers.
-Give a solid working knowledge of the techniques used to solve these problems.
-Educate students with advanced research skills necessary to address current and future technological advancements.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of coursework only.

The enhanced research project is assessed on the basis of a research poster, an extended abstract, a research papers and a dissertation of about 70 pages.

Course unit details

Course units typically include:
-Electrical Power Fundamentals
-Analysis of Electrical Power and Energy Conversion Systems
-Power System Plant, Asset Management and Condition Monitoring
-Power System Operation and Economics
-Power System Dynamics and Quality of Supply
-Power System Protection
-Smart Grids and Sustainable Electricity Systems
-Techniques for Research and Industry

Career opportunities

Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.

This course also provides the students with additional research skills necessary for starting a PhD degree or entering an industrial research and development career.

Read less
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. Read more
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. These programmes will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

During the summer, your MSc dissertation project gives you a chance to develop your research skills and to explore in depth one of the topics discussed during the course.

Aims

-Provide an advanced education in electrical power engineering.
-Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.
-Give a sound understanding of the principles and techniques of electrical power engineering.
-Give a broad knowledge of the issues and problems faced by electrical power engineers.
-Give a solid working knowledge of the techniques used to solve these problems.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of course work only. The summer research project is assessed on the basis of a dissertation of about 50 pages.

Career opportunities

Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.

Read less
Reliability Engineering and Asset Management is a critical field of managerial and technical importance to UK and International industry. Read more
Reliability Engineering and Asset Management is a critical field of managerial and technical importance to UK and International industry. It is estimated that 10% of annual typical plant cost is spent maintaining plant. Maintenance costs are likely to influence competitiveness on a global scale and this allows Maintenance Managers to make major impacts on their companies' bottom line.

The programme is a key element in increasing industrial competitiveness and is a sophisticated discipline which embraces management techniques, organisation, planning and the application of substantial electronic, engineering and analytical knowledge to manufacturing processes, transport, power generation and the efficient operation of industrial, commercial and civic buildings. The aim of the programme is to give companies the technical and managerial expertise to thrive in the global marketplace.

On completion of the course students will be able to obtain one of the following degrees: MSc, Postgraduate Diploma (PGDip), Postgraduate Certificate (PGCert).

The programme consists of course units which include various aspects of applied management and technology in the field of REAM. It is designed such that after enrolment participants already working in industry will benefit from the structure and content of the course in order to enhance their capability in Reliability Engineering and Asset Management. Our teaching staff are internationally recognised professionals with years of experience working in industry and academic institutions.

Teaching and learning

The coherent atmosphere in the classroom is to maintain high standards and quality and as such places are limited. Our teaching methods are similar to knowledge transfer concepts as well as case studies without involving much mathematical theories.

For part-time Distance Learning students, the entire course is delivered via Blackboard, an online virtual learning environment. Two course units per semester are undertaken on-line accessing web-based teaching material which will include text, images, video and animation in parallel, over a three month period. Most importantly web-based teaching generates an interactive environment with real, active communication between students and staff and between groups of students throughout the programme. Distance Learning students will need to visit the University for a 2-day residential per semester for face-to-face discussion with their Unit leader.

Career opportunities

The majority of graduates who have entered the programme to date already occupied senior maintenance related engineering positions within their organisation. Most continued in this discipline in their organisations, often in a more senior position.

Read less
Computer Systems Engineering is a well-established branch of Computer Science, closely related to Electrical Engineering, and concerned with software-hardware integration and the development of high-performance and energy-efficient embedded systems, for example as used in mobile computing. Read more
Computer Systems Engineering is a well-established branch of Computer Science, closely related to Electrical Engineering, and concerned with software-hardware integration and the development of high-performance and energy-efficient embedded systems, for example as used in mobile computing. Aspects covered include questions such as how software can be designed to make use of new, ever more powerful (and often multicore) hardware, or how hardware can be designed to support certain software paradigms. The School of Computer Science is home to internationally renowned research groups working on these challenging tasks, and students following the Computer Systems Engineering pathway will have the opportunity to profit from their understanding of current technology and visions of how to exploit, for example, the formidable complexity of the billion transistor microchips that semiconductor technology will make commonplace over the next decade.

This pathway combines two themes, namely the Parallel Computing in the Mulit-core Era theme and the Mobile Computing theme. The former provides the student with techniques and tools to successfully develop concurrent multicore systems, while alleviating problems of correctness, reliability, performance and system management. The latter provides the student with an understanding of the current state of the art in computing to support mobility for telecommunications.

Teaching and learning

Computational thinking is becoming increasingly pervasive and is informing our understanding of phenomena across a range of areas; from engineering and physical sciences, to business and society. This is reflected in the way the Manchester course is taught, with students able to choose from an extremely broad range of units that not only cover core computer science topics, but that draw on our interdisciplinary research strengths in areas such as Medical and Health Sciences, Life Sciences and Humanities.

Coursework and assessment

Lectures and seminars are supported by practical exercises that impart skills as well as knowledge. These skills are augmented through an MSc project that enables students to put into practice the techniques they have been taught throughout the course.

Facilities

-Newly refurbished computing labs furnished with modern desktop computers
-Access to world leading academic staff
-Collaborative working labs complete with specialist computing and audio visual equipment to support group working
-Over 300 Computers in the School dedicated exclusively for the use of our students
-An Advanced Interfaces Laboratory to explore real time collaborative working
-A Nanotechnology Centre for the fabrication of new generation electronic devices
-An e-Science Centre and Access Grid facility for world wide collaboration over the internet
-Access to a range of Integrated Development Environments (IDEs)
-Specialist electronic system design and computer engineering tools

Career opportunities

The MSc in Advanced Computer Science has an excellent record of employment for its graduates. Opportunities exist in fields as diverse as finance, films and games, pharmaceuticals, healthcare, consumer products, and public services - virtually all areas of business and society. Manchester Computer Science MSc courses are considered among the best in the country and our graduates are actively targeted for the very top jobs in industry and academia.

We maintain close relationships with potential employers and run various activities throughout the year, including career fairs, guest lectures, and projects run jointly with partners from industry.

Accrediting organisations

This programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with CEng accredited Bachelors programme.

Read less
The MSc in Corrosion Control Engineering provides you with a thorough training in corrosion and its control. Initially, you will study the fundamental chemistry, physics, and metallurgy underpinning corrosion processes. Read more
The MSc in Corrosion Control Engineering provides you with a thorough training in corrosion and its control. Initially, you will study the fundamental chemistry, physics, and metallurgy underpinning corrosion processes. Subsequently, you will learn about approaches to corrosion control, ranging from material selection, through cathodic protection, to corrosion inhibition and protective coatings. Finally, you will cover industrial scenarios where knowledge of corrosion and its control is paramount, e.g. oil production. This MSc is the ideal preparation for a career either in industry as a corrosion scientist or engineer, or for cutting-edge academic research.

Aims of the course:
-To produce competent, professionally qualified graduates who are appropriately trained and will secure immediate, rewarding and useful employment in UK, European or overseas industries as corrosion scientists or engineers.
-To provide conversion training, which is intellectually challenging, as well as being industrially relevant.
-To satisfy the needs of practising engineers, scientists and technologists wishing to develop professional competence in the areas of corrosion and corrosion control methods.

Special features

Embarking upon the Corrosion Control Engineering MSc gives you direct access to the knowledge, skills and expertise of 10 leading academics in the field of corrosion. They will teach you the fundamentals of corrosion, and provide you with insight into cutting-edge corrosion engineering problems and solutions in their specialist fields. Latterly, you will work more closely with one of these academics, becoming an active member of their research group during your dissertation project. Further to the teaching by academics, eminent guest speakers from industry are a key feature of the course, delivering invaluable first-hand practical knowledge and case studies.

Coursework and assessment

Unit 1 is assessed by an in-sessional exam at the end of the Unit. Units 2-6 are examined by both exam (75%) and coursework (25%). The nature of the coursework differs from Unit to Unit, but is largely a mix of laboratory reports and case studies. As regards the research project, the mark for this section of the course is based upon the independent assessment of two academics.

Career opportunities

Opportunities for our graduates are wide ranging, with the majority of graduates going on to fill key posts as corrosion scientists, engineers, managers, and consultants in industry, or proceeding towards a career in academia. Our graduates are highly sought after and employed across a diverse range of sectors such as oil and gas, nuclear, energy production, and manufacturing. Leading industrial players target our students, with many going on to develop their careers in world renowned companies, e.g. Shell, Rolls Royce, Tata Steel, and BP.

Accrediting organisations

The MSc in Corrosion Control Engineering is accredited by the Institute of Materials Minerals and Mining (IoM3).

Read less
This course provides an up-to-date view of communication systems and networking, including RF and microwave systems design. The syllabus covers. Read more
This course provides an up-to-date view of communication systems and networking, including RF and microwave systems design. The syllabus covers:
-Digital communication theory
-Signal processing tools
-Microwave and optical circuit design techniques
-System level design of sensors
-Mobile and optical communication networks

The course is aimed at those with some previous undergraduate knowledge of communication engineering wanting to enhance their skills to an advanced level for a career in the communications industry. The course also serves as an excellent introduction for those wanting to pursue a career in research or wanting to study for a PhD.

Course description

This course provides an up-to-date view of communication systems and networking, including RF and microwave systems design. The syllabus covers:
-Digital communication theory
-Signal processing tools
-Microwave and optical circuit design techniques
-System level design of sensors
-Mobile and optical communication networks

The course is aimed at those with some previous undergraduate knowledge of communication engineering wanting to enhance their skills to an advanced level for a career in the communications industry. The course also serves as an excellent introduction for those wanting to pursue a career in research or wanting to study for a PhD.

Course unit details

The first semester contains mainly fundamental material on communication theory, signal analysis, antenna and microwave circuit design principles. The second semester covers the advanced material on wireless and optical communication systems and networks.

The first semester course work is examined in January while the second semester work is examined in May. Course work marks also contribute to the assessment.

The final four months of the programme, during the summer, are devoted to the dissertation project. Projects with industrial involvement are encouraged.

Career opportunities

On graduating you will be able to enter directly all areas of the modern communications/telecommunications engineering industry, including the fast growing mobile and wireless technology sectors. You will also be well prepared to begin PhD research programmes, which may lead to careers in research establishments and universities.

Read less
This MSc in Structural Engineering comprises eight taught course units worth 15 credits each and a research dissertation worth 60 credits. Read more
This MSc in Structural Engineering comprises eight taught course units worth 15 credits each and a research dissertation worth 60 credits. The taught units provide an introduction to experimental work and research methods and cover advanced aspects of theory and design principles relevant to the static and dynamic behaviour of structures, steel and concrete structures and finite element modelling. A particular highlight of the taught component of the course is studying the behaviour and design of structures against extreme loading including fire and earthquake, which is taught by internationally leading researchers and engineers. As a large multi-disciplinary engineering school, MACE has academic staff who are experts in a broad range of research areas and have a wide spread of professional experience in industry.

Teaching and learning

Traditional lecture and tutorial-based teaching is supported by well-equipped laboratories for demonstrations and for experimental work and all taught units are also supported within a modern e-learning environment. Dissertation research provides our students with training in research by investigating a novel and complex problem under the personal supervision of a MACE academic experienced in supervision for higher research degrees. Our teaching and learning philosophy involves teaching our students advanced techniques and supporting them to apply their knowledge to solve problems both in a research context and in industry when they graduate from The University of Manchester.

Career opportunities

We have been running a one year Master's course in Structural Engineering for over half a century and our graduates are in demand to work in many countries around the world as well as in the UK, in all sectors of the construction industry.

Our past students are working all over the world in some of the best multinational companies including Mott Macdonald, EDF, BP and many others.

Accrediting organisations

The programme is accredited by the Joint Board of Moderators (JBM) as an Approved Further Learning Scheme meaning that that the qualification can be used to support an application to become a professional Charted Engineer.

Read less
The masters course in Polymer Materials Science and Engineering, offered in partnership with the School of Chemistry, is multi-disciplinary. Read more
The masters course in Polymer Materials Science and Engineering, offered in partnership with the School of Chemistry, is multi-disciplinary: it provides Chemists, Materials Scientists and Engineers with a rich understanding of both traditional commodity plastics and speciality polymers with increasing applications in the biomedical and pharmaceutical fields, and in electronics and nanotechnology. The full range of issues, from fundamental polymer science, through polymer processing, to manufacturing are all covered.

Career opportunities

The majority of graduates of this programme go on to fill key posts as materials scientists, engineers, managers and consultants in academia, industry and research and development. Some advance to PhD programmes within the School.

Read less

Show 10 15 30 per page



Cookie Policy    X