• University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Pennsylvania Featured Masters Courses
United Kingdom
Cardiff×
0 miles
Engineering×

Full Time MSc Degrees in Engineering, Cardiff, United Kingdom

We have 25 Full Time MSc Degrees in Engineering, Cardiff, United Kingdom

  • Engineering×
  • United Kingdom
  • Cardiff×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 15 of 25
Order by 
Cardiff University Cardiff School of Engineering
Distance from Cardiff: 0 miles
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. Read more
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. In addressing these and other environmental challenges, engineers and environmental managers are using sophisticated numerical models for predicting complex hydrodynamic, water quality and sediment transport processes. These models are increasingly complemented with decision support software systems and a wide range of related hydroinformatics software tools.

The MSc in Civil and Water Engineering will offer you the knowledge and expertise that you need for a career as a consulting water engineer within this specialist professional area of civil engineering. The course aims to complement a relevant undergraduate degree by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicators and sediment transport processes in coastal, estuarine and inland waters.

The MSc is aimed at graduates in Civil Engineering, Earth Sciences, Environmental Sciences and Bio-Sciences. Good mathematical skills are an advantage. The degree programme is also aimed at engineers/scientists working in relevant areas wishing to upgrade or refresh their qualifications.

Distinctive features

• The School of Engineering received the highest rating in the UK for its research and its research impact in the Government’s latest Research Excellence Framework (REF 2014).

• The course lecturers have considerable experience of working on a wide range of practical environmental hydraulics project and their models have been mounted by over 35 companies for over 80 world-wide EIA projects and by over 45 universities in 17 countries.

• The MSc in Civil and Water Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The MSc in Civil and Water Engineering is run by the School of Engineering and is designed to provide specialised, postgraduate training in environmental water engineering whilst having a measure of flexibility to permit some study of related subjects in Civil and Geoenvironmental Engineering.

The aim of the programme is to enhance your engineering skills and the completion of an extended project within one of the water engineering fields forms a major part of the programme. Thus, the MSc in Civil and Water Engineering aims to complement an undergraduate degree in Civil Engineering, or similar, by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicator and sediment transport processes in coastal, estuarine and inland waters. You will have the opportunity to work with some of these models in an extended project. The degree programme is available on a one-year full-time basis or on a three-year part-time basis.

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. You must complete 120 credits in Stage 1 in order to progress to the dissertation, for which you will be allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you will be encouraged to put forward your own project ideas.

Assessment

Assessment is conducted via coursework and examinations.

You will be required to undertake an individual research project in a specialist area of Water Engineering, leading to the preparation of a dissertation. Project work is undertaken under the direct supervision of a member of staff in one of the three participating departments.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Water Engineering is excellent, with the majority of graduates joining engineering consultancies. A small number of graduates each year go on to further study, typically a PhD.

Read less
Cardiff University Cardiff School of Engineering
Distance from Cardiff: 0 miles
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. Read more
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. The course is designed to provide specialist postgraduate professional development in this emerging discipline, encompassing areas traditionally within civil engineering, earth sciences and biology.

Geoenvironmental engineering is an inclusive discipline which recognises that many environmental challenges cannot be solved by one traditional discipline alone. The solutions to environmental challenges relating to human interaction with soil, groundwater and surface water require engineers to possess a broad range of knowledge and expertise. Cardiff University's MSc in Civil and Geoenvironmental Engineering prepares you to meet these challenges.

Civil engineering, earth sciences and the life sciences are all part of the discipline of geoenvironmental engineering. As a geoenvironmental engineer you could be involved in a wide range of activities, including contaminated land management, hydrogeology, water resource management, geochemical analysis, groundwater and surface water contamination fate and transport prediction, environmental impact assessment, environmental risk assessment, and habitat management. Geoenvironmental engineers frequently work in multidisciplinary project teams and developments.

Distinctive features

• Professional practice issues are integrated with the scientific and engineering foundation of the MSc through a series of short, workshop-style training courses covering practical aspects. These short courses are delivered by recognised professional practitioners in the industry.

• The course involves an innovative partnership between the Cardiff School of Engineering, the School of Earth, Ocean and Planetary Sciences and the Cardiff School of Biosciences.

• The MSc in Civil and Geoenvironmental Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The degree programme is available on a one year full-time basis or on a three year part-time basis. The full-time programme is delivered over two taught semesters followed by a research period and preparation of a dissertation. The part-time course is taught over three years. On successful completion of Part 1, the taught part of the course, you will proceed to the research project and dissertation stage.

This MSc is a partnership between the School of Engineering, the School of Earth, Ocean and Planetary Science and the School of Biosciences, and is administered by the School of Engineering.

For a list of the modules taught on the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc

For a list of the modules taught on the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc-part-time

Teaching

Part 1 of your course involves taught classes such as lectures, laboratory sessions and tutorials. You will be taught by leading international researchers in the fields of civil and geoenvironmental engineering.

A feature of the MSc in Civil and Geoenvironmental Engineering is the series of short, workshop style training courses covering practical applications, integrating professional practice issues with the scientific and engineering foundation of the course. These workshops are delivered by recognised professional practitioners in the industry.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Geoenvironmental Engineering is excellent, with the majority of graduates joining engineering consultants. A small number of graduates each year go on to further study, typically a PhD.

Substantial industrial involvement with the design and delivery of the course ensures the continuing relevance of the MSc as preparation for professional employment work in this area.

Read less
Cardiff University Cardiff School of Engineering
Distance from Cardiff: 0 miles
The MSc in Civil Engineering aims to build on the knowledge and skills that you have obtained as an undergraduate and to help prepare you for a career as a consulting civil engineer across the broad spectrum of the professional discipline. Read more
The MSc in Civil Engineering aims to build on the knowledge and skills that you have obtained as an undergraduate and to help prepare you for a career as a consulting civil engineer across the broad spectrum of the professional discipline. The overall aim of this well-established course is to provide a sound scientific, technical and commercial understanding of civil engineering issues and practice. You will be introduced to the broad nature of civil engineering through the integration of knowledge from structural engineering, geotechnical engineering and water engineering. The course will also provide training in engineering research methods and will develop a range of related transferable skills. You will also develop an appreciation of the principles and activities involved in the day-to-day management of engineering business units, typical of those within which civil engineering is practised.

Graduates of this course will be able to work as professional and highly proficient engineers with the skills and expertise necessary to work in a range of careers across the field of civil engineering.

Distinctive features

• The employment record of graduates is excellent, with the majority of graduates joining engineering consultancies.

• The MSc in Civil Engineering is accredited by the ICE, IStructE, IHT and the IHIE. It meets the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng-accredited BEng (Hons) undergraduate first degree or an IEng-accredited BSc (Hons) undergraduate first degree.

• You have the opportunity to study in a research-led department taught by staff rated in the highest possible category by independent Government assessment, and with facilities commensurate with a top-class research unit.

• We encourage an open and engaging culture between students and staff.

Structure

The programme is presented as a one-year full-time Master's level programme, and is also available in part-time mode over three years.

The programme is presented in two stages:

• The taught material is delivered during the Autumn and Spring semesters. An extended project within one of the Civil Engineering fields forms a major part of the course. In Stage 1 students follow taught modules to the value of 120 credits, with a limited amount of choice between optional modules.

• Stage 2 consists of a project and dissertation module worth 60 credits.

Summative assessment is undertaken at the end of each stage (or each year if part-time).

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. All students must complete 120 credits in Stage 1 in order to progress to the dissertation, for which they are allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although students are encouraged to put forward their own project ideas.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

The award of an MSc requires successful completion of Stage 2, the dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

This course's graduate employment record is excellent, with the majority of graduates joining engineering consultancies.

Read less
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Read more
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Our MSc Aviation Engineering and Management course will provide you with the skills, knowledge and expertise to succeed in the aviation industry.
You’ll develop key problem-solving skills within the field of aviation including airlines, corporate aviation, general aviation, component manufacturing organisations, and related industries, and civil aviation governmental agencies.

You’ll gain an understanding of the various complexities facing aviation businesses through a breadth of industry related modules. Your studies will also cover a wide variety of tools, techniques, and research methods, and how they may be applied to research and solve real-life problems within the aviation industry.

See the website http://courses.southwales.ac.uk/courses/1878-msc-aviation-engineering-and-management

What you will study

The course consists of nine modules with a key theme throughout your studies including the ethical dimensions of decision-making and interpersonal relations. This means you can be confident that you will develop personally and professionally as part of the course, ultimately making yourself more employable. You’ll study the following modules:

- Aircraft Systems Design and Optimization (10 Credits)
This module will give you a comprehensive knowledge of the systems of the aircraft, including preliminary designing of systems primary and secondary systems, operation and maintenance concepts. You will be introduced to novel engineering design methods such as Multi Objective Design (MOD) and multi-disciplinary design optimisation. Part of the module will be delivered with the support of industrial partners and experts, which will bring real scale industrial experience and interaction with the industry.

- Aviation Sustainable Engineering
This module will explore the historical and contemporary perspectives in international aviation framework while looking at the socio-economic benefits of aviation since the Chicago Convention of 1944. You will analyse current and future design and manufacturing trends in the aerospace industry.

- Condition Monitoring and Non-Destructive Testing
This module analyses condition monitoring and non-destructive testing, giving you an appreciation for the key concepts and tools in this subject. You will evaluate the use of these tools in different situations within industry and make recommendations on necessary adjustments.

- Advanced Materials and Manufacture
You will look at a range of modern engineering materials and develop an awareness of the selection criteria for aeronautical and mechanical engineering applications. You will also look at a range of “standard” and modern manufacturing processes, methods and techniques.

- Lean Maintenance Operations & Certification
This module will help you develop and understand concepts in Six Sigma, lean maintenance, operational research, reliability centred maintenance and maintenance planning. You will evaluate and critically analyse processes within highly regulated industries.

- Safety, Health and Environmental Engineering Management
Covering the principles and implementation of the safety, health and environmental management within the workplace, you will look at key concepts in human cognition and other human factors in risk management and accident/incident investigation. You will also gain an understanding of the role of stakeholder involvement in sustainable development.

- Strategic Leadership and Management for Engineers
This module will explore a range of purposes and issues surrounding successful strategic management and leadership as well as appraising a range of leadership behaviours and processes that may inspire innovation, change and continuous transformation within different organisational areas including logistics and supply chain management.

- Research Methods for Engineers
The aim of this module is to provide you with the ability to determine the most appropriate methods to collect, analyse and interpret information relevant to an area of engineering research. To provide you with the ability to critically reflect on your own and others work.

- Individual Project
You will undertake a substantial piece of investigative research work on an appropriate engineering topic and further develop your skills in research, critical analysis and development of solutions using appropriate techniques.

Learning and teaching methods

You will be taught through a variety of lectures, tutorials and practical laboratory work.

You will have 10 contact hours per week, you will also need to devote around 30 hours per week to self-study, such as conducting research and preparing for your assessments and lectures.

Work Experience and Employment Prospects

Aerospace engineering is an area where demand exceeds supply. As a highly skilled professional in aircraft maintenance engineering, you will be well placed to gain employment in this challenging industry. The aircraft industry is truly international, so there is demand not only in the UK, but throughout the world.

Careers available after graduation include aircraft maintenance planning, engineering, materials, quality assurance or compliance, technical services, logistics, NDT, method and process technical engineering, aircraft or engine leasing, aviation sales, aviation safety, reliability and maintainability, operations and planning, airworthiness, technical support, aircraft surveying, lean maintenance, certification, production planning and control.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aviation engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The aerospace industry has become increasingly competitive and in recognising this, the University has recently invested £1.8m into its aerospace facilities.

Facilities available to our students have been fully approved by the Civil Aviation Authority (CAA). With access to an EASA-approved suite of practical training facilities, our students can use a range of industry-standard facilities.

Our Aerospace Centre is home to a Jetstream 31 Twin Turboprop aircraft, assembled with Honeywell TPE331 Engines and Rockwell-Collins Proline II Avionics. It has a 19-passenger configuration.

The EASA-approved suite contains training and practical workshops and laboratories. Each area contains the tools and equipment required to facilitate the instruction of either mechanical or avionic practical tasks as required by the CAA.

Students use the TQ two-shaft gas turbine rig to investigate the inner workings of a gas turbine engine by collecting real data and subsequently analysing them for engine performance.

Our sub-sonic wind tunnel is used for basic aerodynamic instruction, testing and demonstrations on various aerofoil shapes and configurations.

The single-seater, full motion, three axes Merlin MP521 flight simulator can be programmed for several aircraft types that include the Airbus A320 and the Cessna 150.

Read less
Cardiff University Cardiff School of Dentistry
Distance from Cardiff: 0 miles
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. Read more
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. The Cardiff Institute of Tissue Engineering & Repair (CITER) MSc in Tissue Engineering aims to provide graduates from life sciences and clinical backgrounds with an advanced knowledge, understanding and skills in the science and practice of tissue engineering; from theoretical science, through to research translation and clinical application. The Programme provides in-depth training in this branch of biomedical science, including stem cell biology, biomaterials and tissue/organ engineering. The MSc offers a balanced combination of theory and practice; and can serve either as preparation for a PhD or as a self-contained advanced qualification in its own right. The MSc in Tissue Engineering is both lecture- and laboratory-based, and includes a number of opportunities to visit relevant clinical settings and local industrial partners. Graduates from this Programme will have a broad spectrum of knowledge and a variety of skills, making them highly attractive both to potential employers and research establishments.

Distinctive features of this course include:

• The first course of its kind in the UK, created in response to demand in the field of tissue engineering for interdisciplinary teaching.

• Excellent clinical, academic and research facilities.

• High probability of further research study and careers in tissue engineering and repair, relevant to the CITER MSc remit.

• Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.

• Opportunity to join a vibrant postgraduate community.

Structure

The CITER MSc Programme commences in September each year with Stage 1, a 6-month, taught component.

Stage 1 is taught almost entirely at a small group teaching level, supported by laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics and local companies involved in producing tissue engineering and repair therapies. Modules are assessed by various written assignments, presentations and formal examinations.

On completing Stage 1, students undertake a 5-month, laboratory-based research project within the CITER network, between April-September (Stage 2). Projects are chosen by students from topics supplied by academic supervisors within CITER. Previous student projects have been in research areas such as embryonic or mesenchymal stem cell biology; cartilage, bone, skin or oral tissue repair; fibrosis; and biomaterials and drug delivery. Stage 2 culminates in the submission of an MSc Dissertation, based on MSc Project findings.

Core modules:

Cellular & Molecular Biology
Tissue Engineering From Concept To Clinical Practice
Research Methods
Stem Cells and Regenerative Medicine
Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics, such as orthopaedics, nephrology and dermatology, and local companies involved in producing tissue engineering and repair therapies.

This Programme is based within the School of Dentistry and taught by academic staff from across Cardiff University and by external speakers.

All taught modules within the Programme are compulsory and students are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study. Dissertation topics are normally chosen by the students from a list of options proposed by CITER academic staff in areas relevant to the MSc in Tissue Engineering.

Assessment

The 4 taught Modules within the Programme are assessed through in-course assessments, including:

Extended essays.
Oral presentations.
Poster presentations.
Statistical assignments.
Critical appraisals.
Dissertation (no more than 20,000 words).

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments.

Since its introduction in 2006, 95% of our MSc graduates have progressed onto career paths highly relevant to the CITER MSc remit. These include PhDs within CITER and at other UK, EU and USA Universities, Graduate-Entry Medicine, Specialist Registrar Training, Teaching, and positions in Industry and Clinical Laboratory settings.

Placements

You will have the opportunity to attend clinical attachments, in areas such as orthopaedics, nephrology and dermatology. Furthermore, you will also have the opportunity to visit local companies involved in producing tissue engineering and repair therapies for clinical use. These include Cell Therapy Ltd., Reneuron plc, Biomonde Ltd., and MBI Wales Ltd.

Read less
Cardiff University Cardiff School of Biosciences
Distance from Cardiff: 0 miles
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. Read more
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. The Cardiff Institute of Tissue Engineering & Repair (CITER) MSc in Tissue Engineering aims to provide graduates from life sciences and clinical backgrounds with an advanced knowledge, understanding and skills in the science and practice of tissue engineering; from theoretical science, through to research translation and clinical application. The Programme provides in-depth training in this branch of biomedical science, including stem cell biology, biomaterials and tissue/organ engineering. The MSc offers a balanced combination of theory and practice; and can serve either as preparation for a PhD or as a self-contained advanced qualification in its own right. The MSc in Tissue Engineering is both lecture- and laboratory-based, and includes a number of opportunities to visit relevant clinical settings and local industrial partners. Graduates from this Programme will have a broad spectrum of knowledge and a variety of skills, making them highly attractive both to potential employers and research establishments.

Distinctive features of this course include:

• The first course of its kind in the UK, created in response to demand in the field of tissue engineering for interdisciplinary teaching.

• Excellent clinical, academic and research facilities.

• High probability of further research study and careers in tissue engineering and repair, relevant to the CITER MSc remit.

• Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.

• Opportunity to join a vibrant postgraduate community.

Course structure

The CITER MSc Programme commences in September each year with Stage 1, a 6-month, taught component.

Stage 1 is taught almost entirely at a small group teaching level, supported by laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics and local companies involved in producing tissue engineering and repair therapies. Modules are assessed by various written assignments, presentations and formal examinations.

On completing Stage 1, students undertake a 5-month, laboratory-based research project within the CITER network, between April-September (Stage 2). Projects are chosen by students from topics supplied by academic supervisors within CITER. Previous student projects have been in research areas such as embryonic or mesenchymal stem cell biology; cartilage, bone, skin or oral tissue repair; fibrosis; and biomaterials and drug delivery. Stage 2 culminates in the submission of an MSc Dissertation, based on MSc Project findings.

Core modules:

Cellular & Molecular Biology
Tissue Engineering From Concept To Clinical Practice
Research Methods
Stem Cells and Regenerative Medicine
Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics, such as orthopaedics, nephrology and dermatology, and local companies involved in producing tissue engineering and repair therapies.

This Programme is based within the School of Dentistry and taught by academic staff from across Cardiff University and by external speakers.

All taught modules within the Programme are compulsory and students are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study. Dissertation topics are normally chosen by the students from a list of options proposed by CITER academic staff in areas relevant to the MSc in Tissue Engineering.

Support

All Modules within the Programme make extensive use of Cardiff University’s Virtual Learning Environment (VLE) Blackboard, on which students will find course materials and links to related materials. Students will be supervised when undertaking their dissertation. Supervision will include scheduled regular meetings to discuss progress, provide advice and guidance; and provide written feedback on draft dissertation contents.

Feedback:

Students will receive written feedback on all assessments, in addition to oral feedback on assessed oral/poster presentations.

Assessment

The 4 taught Modules within the Programme are assessed through in-course assessments, including:

Extended essays.
Oral presentations.
Poster presentations.
Statistical assignments.
Critical appraisals.
Dissertation (no more than 20,000 words).

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments.

Since its introduction in 2006, 95% of our MSc graduates have progressed onto career paths highly relevant to the CITER MSc remit. These include PhDs within CITER and at other UK, EU and USA Universities, Graduate-Entry Medicine, Specialist Registrar Training, Teaching, and positions in Industry and Clinical Laboratory settings.

Read less
Cardiff University Cardiff School of Engineering
Distance from Cardiff: 0 miles
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. Read more
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. It is designed to provide specialist postgraduate professional development across the areas of steel, concrete and timber design, structural dynamics, and structural mechanics. It will provide you with a sound scientific, technical and commercial understanding of structural engineering issues and practice, while training you in engineering research methods in order to develop a range of related transferable skills. It will cover the diverse nature of structural engineering through the integration of knowledge from mechanics, materials, structural analysis and structural design. You will gain new advanced level skills in engineering theory and practice related to the management of structural engineering challenges.

Distinctive features:

• The employment record of graduates is excellent, with the majority of graduates joining engineering consultancies.

• The MSc in Structural Engineering is accredited by the ICE, IStructE, IHT and IHIE as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

• You will be learning in a research-led teaching institution taught by staff rated in the highest possible category by independent Government assessment.

• It will give you the opportunity to work in facilities commensurate with a top-class research unit.

• Available as 1 year full-time study or 3 years part-time study which provides the flexibility for you to continue working and study at the same time.

Structure

The programme is presented as a one-year full-time Master's level programme, and is also available in part-time mode over three years.

The programme is presented in two stages:

• In Stage 1 you will follow taught modules to the value of 120 credits, with a limited amount of choice between option modules.
• Stage 2 consists of a Dissertation module worth 60 credits.

Summative assessment is undertaken at the end of each stage (or each year if part-time).

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/structural-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/structural-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. All students must complete 120 credits in Stage 1 in order to progress to the dissertation, for which they are allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you are encouraged to put forward your own project ideas.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

This course's graduate employment record is excellent, with the majority of graduates joining engineering consultancies.

Read less
Cardiff University Cardiff School of Engineering
Distance from Cardiff: 0 miles
As a graduate mechanical engineer, this MSc course will provide you with an advanced qualification which will enhance your career prospects and extend and update your skills and knowledge. Read more
As a graduate mechanical engineer, this MSc course will provide you with an advanced qualification which will enhance your career prospects and extend and update your skills and knowledge. The course actively encourages the understanding and practice of inter-disciplinary systems engineering thinking that brings together mechanical engineering subjects in a way that reflects the needs of industrial and academic problem solving.

The close integration of the case study and project will allow you to explore, in-depth, a chosen topic related to the course. This provides you with an individually tailored programme to meet your needs in a flexible yet focused manner, with the project seen as being the key opportunity to acquire and exercise leading edge mechanical engineering knowledge. You will be given the opportunity to show originality in applying the knowledge you acquire, and will develop an appreciation of how the boundaries of knowledge are advanced through research. You will be trained to deal with complex issues both systematically and creatively, and will be given the opportunity and encouragement to demonstrate initiative and innovation in solving challenging problems and in designing new components and systems.

The close involvement with industry, particularly at the project stage, ensures that the experience the course provides has both relevance and meaning. Lecturers delivering the modules are working with some of the world's most renowned engineering companies. Partners include Airbus, BAe Systems, Bosch, Tata Steel, Daimler, EADS, Fiat, Hewlett-Packard, IBM, Messier-Dowty, Network Rail, TWI, Parametric Technology, Physical Acoustics Ltd, Renault, Renishaw, Rolls-Royce, SAP, Siemens, Silicon Graphics, Stile Bertone, The Highways Agency, TRL, Microchip, and WS Atkins.

This degree course will prepare you for entry into careers in research or industry. In addition to technical skills, you will acquire professional skills such effective communication with technical, management and non-technical audiences, project planning, evaluation and prioritisation.

Structure

This is a one year full time MSc course beginning with a taught section worth 120 credits. The Autumn and Spring semesters utilise taught and research project based material to enable you to progress from a typical bachelor graduate standard at entry to the master’s level. The eight taught optional modules are split between these semesters to provide eighty credits of masters level study. Two twenty credit Case Study modules form both group (semester 1) and individual (semester 2) activities. This prepares you for the third section of the course where you will use your advanced skills to complete an in-depth project and prepare a dissertation in the field of Advanced Mechanical Engineering. The project and dissertation stage of your course are worth a further 60 credits.

A 10-credit module typically represents 100 hours of study in total. This may involve 24–36 hours of contact time with teaching staff. The remaining hours are intended to be for private study, coursework, revision and assessment: all students are expected to spend a significant amount of time (typically 20 hours each week) studying independently. You must keep your personal tutor, project supervisor and the Teaching Office informed of any circumstances or illnesses that might affect your capacity to attend teaching or undertake assessment.

Core modules:

Advanced Mechanical Engineering Group Research Study
Advanced Mechanical Engineering Case Study
Advanced Mechanical Engineering Project

Optional modules:

Measurement Systems
Manufacturing Informatics
Fundamentals of Nanomechanics
Tribology
Artificial Intelligence
Control
Quality and Reliability
Risk and Hazard Management in the Energy Sector
Condition Monitoring, Systems Modelling and Forecasting
Management in Industry
Thermodynamics and Heat Transfer 2
Energy Management
Advanced Robotics

Teaching

A wide range of teaching styles and mechanisms will be used to deliver the diverse material forming the curriculum of the programme. You will be expected to attend lectures and participate in tutorial classes. All students must complete 120 credits in Stage 1 in order to progress to the dissertation, for which they are allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you are encouraged to put forward your own project ideas.

Assessment

Achievement of learning outcomes in the classroom based modules is assessed by University examinations set in January and May/June. Predominantly examination-based assessment will be deployed in eight modules (80 credits) taken in Stage 1 of the programme. The balance between examination and coursework depends upon the modules selected, with the equivalent of up to six credits being available in coursework elements in individual modules, in addition to two double module (40-credit) case studies.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma of Higher Education for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate of Higher Education for the achievement of at least 60 credits.

Career prospects

The course provides master’s level training to the standard necessary to practice as a chartered professional mechanical engineer. When you graduate you will be equipped to apply for management level roles across a broad spectrum of mechanical and related engineering fields. The material presented during the course will provide an excellent foundation for any career in mechanical engineering or related discipline.

Read less
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills. Read more
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills.

Progression to management is key to the careers of postgraduate engineers, so as part of the course you will develop relevant managerial skills, as well as an awareness of the wider issues that affect the aeronautical industry, such as safety and the environment. The course meets the academic requirements for Chartered Engineer (CEng) status with the Institution of Mechanical Engineering (IMechE) and the Royal Aeronautical Society (RAeS).

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

We have comprehensive links with industry through our Industrial Panel, which contains representatives from major companies, including BAMC, Storm, GE Aviation Systems, Nordam Europe, TES and BA Avionics.

See the website http://courses.southwales.ac.uk/courses/641-msc-aeronautical-engineering

What you will study

Modules include:
- Further Engineering Materials
- Aircraft Propulsion
- Finite Element Analysis
- Computational Fluid Dynamics
- Aircraft Structures
- Non-destructive Testing
- Safety, Health and Environment
- Integrated Project Planning and
- Management
- Dissertation

Learning and teaching methods

The course is delivered in two major blocks to offer an intensive but flexible learning pattern, with two start points each year – February and September. Modules involve lectures, tutorials and practical laboratory work, with continually assessed coursework or a mixture of coursework and exams.

Work Experience and Employment Prospects

Employment prospects are strong in this dynamic and diverse industry. Those with an MSc Aeronautical Engineering degree enhance their career opportunities in commercial and military aircraft engineering, the air transportation industry, teaching or research. The highly technical nature of this course also equips you for careers in many related, technology-intensive fields. Graduates are likely to progress to senior positions in the aeronautical engineering industry and related sectors.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aeronautical engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

Read less
Environmental management in civil engineering projects is of increasing importance throughout the world. This interdisciplinary Masters qualification is ideal if you want to establish or consolidate a career in this field. Read more
Environmental management in civil engineering projects is of increasing importance throughout the world. This interdisciplinary Masters qualification is ideal if you want to establish or consolidate a career in this field.

The course is accredited for the Further Learning Programme (formerly Matching Sections) at Chartered Engineer (CEng) level by the Institution of Civil Engineers (ICE), The Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and The Chartered Institution of Highways and Transportation (CIHT).

There is also an opportunity for working professionals to progress towards CEng status through a tailor-made route. This will help you accelerate to the remaining steps of CEng status by working with your employer in the process. This is a unique feature for a Masters course, and significantly reduces the period required to achieve Chartered status.

Your studies are designed to develop the critical and analytical skills, and management expertise needed to manage civil engineering projects and implement environmentally sustainable solutions. A distinctive feature of this course is its strength in relevant research, namely sustainability.

See the website http://courses.southwales.ac.uk/courses/576-msc-civil-engineering-and-environmental-management

What you will study

You will study the following modules:

*Dissertation

- Advanced Civil Engineering Materials
- Integrative Project Planning and Management
- Geo-environmental Engineering
- Low Carbon Technologies and Sustainability
- Safety, Health and Environmental Engineering

Optional modules include:
- Environmental Management
- ArcGIS Principles and Practice

Learning and teaching methods

The course is delivered in three major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year – February and September. You will learn through lectures, tutorials and seminars, as well as guest lectures and seminars with prominent industry experts. You will complete a research project using our excellent laboratory facilities and a dissertation on a chosen topic of interest.

Work Experience and Employment Prospects

Whether you are a graduate or a professional with industrial experience, this course offers excellent opportunities for career progression. You can develop a career as a civil engineer, engineering project manager, or work in the environmental management or health and safety sectors, with leading international consultancies, contractors, or national and local civil engineering companies. Alternatively, you can work as a technical or research and development manager in research, regulatory authorities, local government or non-governmental organisations (NGOs).

Assessment methods

Some modules are assessed through coursework, others by a combination of design projects and a formal examination.

If you want to continue working in industry, you can apply to study individual modules as short courses on a day-release or block-delivery basis.

Facilities

The University of South Wales has excellent facilities, and is committed to investment and refurbishment. We’ve just completed a £130m investment programme in new buildings and facilities, including significant investment in the Faculty of Computing, Engineering and Science. The University has also announced a further investment of £28m ensure that you’re using equipment and software that is state-of-the-art and industry-standard, we continually evaluate our labs and teaching spaces and regularly re-fit and re-equip them. A recent refurbishment of a number of our Civil and Mechanical Engineering labs is part of this programme of continuous enhancement of our facilities.

Read less
There is strong demand for engineers with a postgraduate qualification and a good range of mechanical engineering skills. This MSc in Mechanical Engineering has been designed to help you achieve Chartered Engineer (CEng) status and will develop the technical and non-technical skills needed to succeed in this industry. Read more
There is strong demand for engineers with a postgraduate qualification and a good range of mechanical engineering skills. This MSc in Mechanical Engineering has been designed to help you achieve Chartered Engineer (CEng) status and will develop the technical and non-technical skills needed to succeed in this industry.

The range of modules will enhance the depth of your knowledge, while developing the skills to manage people and projects. You will use state-of-the-art engineering analysis software, and employ appropriate analytical and computerbased techniques. Additionally, you will gain an awareness of wider issues such as environmental management and safety. Completion of a dissertation allows you to research a specific topic based on real issues that organisations face.

Staff are active in research and/or consultancy, which brings relevant case studies and context to the subjects you will study.

See the website http://courses.southwales.ac.uk/courses/583-msc-mechanical-engineering

What you will study

Modules include:
- Applied Thermodynamics
- Finite Element Analysis
- Computational Fluid Dynamics
- Heat Transfer and Combustion
- Fatigue and Fracture
- Safety, Health and Environment
- Integrated Project Planning and Management
- Dissertation

Learning and teaching methods

MSc Mechanical Engineering is delivered in two major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year (February and September). Modules are taught through lectures, tutorials and practical laboratory work.

Work Experience and Employment Prospects

Mechanical engineers work in areas as diverse as design, research and development, environmental engineering, numerical analysis, computer modelling, use of materials, and control systems. In such a competitive industry, this MSc will improve your career prospects and graduates are likely to progress to occupy senior positions in the engineering industry and related sectors.

Assessment methods

You will be continually assessed by coursework or a mixture of coursework and exams. The
dissertation has three assessment elements: a thesis, a poster presentation and an oral examination (viva voce).

Facilities

The University of South Wales has excellent facilities, and is committed to investment and refurbishment. We’ve just completed a £130m investment programme in new buildings and facilities, including significant investment in the Faculty of Computing, Engineering and Science. The University has also announced a further investment of £28m ensure that you’re using equipment and software that is state-of-the-art and industry-standard, we continually evaluate our labs and teaching spaces and regularly re-fit and re-equip them. A recent refurbishment of a number of our Civil and Mechanical Engineering labs is part of this programme of continuous enhancement of our facilities.

Read less
Cardiff University Cardiff School of Engineering
Distance from Cardiff: 0 miles
This newly developed MSc programme aims to take well qualified students (typically those having a good bachelor's degree in Manufacturing Engineering or an equivalent qualification) and to equip them with the skills they need to be employed as professional engineers across a wide range of the Manufacturing Engineering industry. Read more
This newly developed MSc programme aims to take well qualified students (typically those having a good bachelor's degree in Manufacturing Engineering or an equivalent qualification) and to equip them with the skills they need to be employed as professional engineers across a wide range of the Manufacturing Engineering industry.

The distinctive features of this programme include:

• The opportunity to learn within a vibrant research environment which has benefited from major strategic investment via directed SRIF funds of £2.4M into the Cardiff University Structural Performance (CUSP) laboratory, and collaborative industrial partnerships.

• The application of measurement techniques within the recently installed Renishaw Metrology Laboratory, part of a strategic partnership between the School and Renishaw.

• A close involvement with industry ensures that the research has both relevance and meaning, working with some of the world’s most renowned engineering companies.

• Significant inputs into teaching and project work will also be made by members of Cardiff Business School, providing the latest in business and management knowledge and skills.

• A programme which will be informed by up-to-date internationally renowned research expertise undertaken within the School’s Mechanics, Materials and Advanced Manufacturing research theme. These will include the modules in the subject areas of robotics, metrology, manufacturing, informatics, innovation and artificial intelligence/image processing.

Structure

This course is presented as a one-year, full time Masters level programme which will comprise two stages and give a total duration of one calendar year.

Stage 1 which will extend for two semesters and consist of predominantly taught modules and a case study as a forerunner to the research project and dissertation in the field of Manufacturing Engineering, Innovation, and Management to the value of 120 credits, and Stage 2, which consists of a Dissertation module worth 60 credits.

Core modules:

Lean Operations
Manufacturing Engineering Innovation and Management Case Study
Manufacturing Engineering Innovation and Management Project
Advanced Mechanical Engineering Project

Optional modules:

Measurement Systems
Manufacturing Informatics
Commercialising Innovation
Artificial Intelligence
Quality and Reliability
Condition Monitoring, Systems Modelling and Forecasting
Management in Industry
Advanced Robotics

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme, and you will be required to attend lectures and participate in examples classes.

A 10-credit module represents approximately 100 hours of study in total, which includes 24–36 hours of contact time with teaching staff. The remaining hours are intended to be for private study, coursework, revision and assessment. Therefore you are expected to spend a significant amount of time (typically 20 hours each week) studying independently.

At the dissertation stage, you will be allocated a supervisor in the relevant field of research whom you should expect to meet with regularly.

Learning Central, the Cardiff University virtual learning environment (VLE), will be used extensively to communicate, support lectures and provide general programme materials such as reading lists and module descriptions. It may also be used to provide self-testing assessment and give feedback.

Assessment

Achievement of learning outcomes in the classroom based modules is assessed by University examinations set in January and May/June. The balance between examination and coursework depends upon the modules selected, in addition to a triple module (30-credit) case study.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher.

Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma of Higher Education for 120 credits in Stage 1. Candidates failing to complete the 120 credits equired for Stage 1 may still be eligible for the award of a Postgraduate Certificate of Higher Education for the achievement of at least 60 credits.

Career prospects

Employment opportunities for students undertaking the proposed programme will be largely with national and international companies in the manufacturing engineering sector.

You may wish to use the MSc platform to go on to study for a PhD which can lead to an industrial or academic career.

Read less
The University of South Wales Civil & Structural Engineering MSc is a taught postgraduate course offering full-time and part-time pathways. Read more

The University of South Wales Civil & Structural Engineering MSc is a taught postgraduate course offering full-time and part-time pathways.

Students complete a sequence of optional and compulsory modules, plus a final dissertation, before graduating with the 180 credit Master of Science degree.

This degree is your opportunity to establish or consolidate your career as a civil or structural design engineer. The course is accredited for the Further Learning Programme (formerly ‘Matching Sections’) at Chartered Engineer (CEng) level by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

There is also an opportunity for working professionals to progress towards CEng status through a tailor-made route. This will help you accelerate to the remaining steps of CEng status by working with your employer in the process. This is a unique feature of a Masters course and significantly reduces the period required to achieve Chartered status.

To provide the latest specialist knowledge and technical competence, all design-related modules are taught in accordance with the new structural Eurocodes. As well as developing your analytical and problem-solving skills, tuition covers project planning and contract management. The course is also underpinned by research into areas such as the use of novel and sustainable environmentally-friendly materials, geotechnics and structural modelling.

See the website http://courses.southwales.ac.uk/courses/577-msc-civil-and-structural-engineering

What you will study

You will study the following modules:

- Advanced Civil Engineering Materials

- Integrative Project Planning and Management

- Geo-environmental Engineering

- Advanced Structural Analysis and Structural Concrete Design

- Further Advanced Structural Analysis and Steel/Composite Design

- Dissertation

Optional modules include:

- Seismic Analysis and Design to Eurocodes*

- Structural Timber and Masonry Design to Eurocodes*

- Further Finite Element Analysis*

- Non-Destructive Testing*

*10 credit module

Learning and teaching methods

The course is delivered in three major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year – February and September. You will learn through lectures, tutorials and seminars, as well as guest lectures and seminars with prominent industry experts. You will complete a research project using our excellent laboratory facilities and a dissertation on a chosen topic of interest.

Work Experience and Employment Prospects

On completion of this course, you will be able to develop a career as a structural engineer, technical manager, or research and development manager. These roles can be with leading international consultancies, contractors, national and local consulting companies, as well as international research and government organisations.

Assessment methods

Some modules are assessed through coursework, others by a combination of design projects and a formal examination. If you want to continue working in industry, you can apply to study individual modules as short courses on a day-release or block-delivery basis.

Facilities

The University of South Wales has excellent facilities, and is committed to investment and refurbishment. We’ve just completed a £130m investment programme in new buildings and facilities, including significant investment in the Faculty of Computing, Engineering and Science. The University has also announced a further investment of £28m ensure that you’re using equipment and software that is state-of-the-art and industry-standard, we continually evaluate our labs and teaching spaces and regularly re-fit and re-equip them. A recent refurbishment of a number of our Civil and Mechanical Engineering labs is part of this programme of continuous enhancement of our facilities.

Accreditations

The MSc Civil and Structural Engineering is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree*. See http://www.jbm.org.uk for further information.

* It should be noted that candidates completing the MSc who hold an underpinning accredited IEng degree or a non-accredited bachelor degree will need to apply for an academic assessment to determine whether they will meet the educational base for CEng registration.

Applications

Apply directly to the University if you are applying for a part-time, professional or postgraduate course, an Erasmus/Exchange programme, the Legal Practice (part-time) course, to top up your Foundation Degree or HND, or to transfer to USW from another institution.  

Funding

The following postgraduate funding may be available to study the Civil & Structural Engineering MSc at The University of South Wales.

UK postgraduate loans:

Erasmus funding:

Funding from FindAMasters:

Fees

Full Time (UK / EU): £6,000

Full Time (international): £12,600

Part Time (UK /EU): £670 per 20 credit 



Read less
​This course provides for advanced study in the field of Production and Engineering Management. It aims to provide managers, engineers and business specialists with key insights in to production systems which operate in a wide range of organisations. Read more

Course Overview

​This course provides for advanced study in the field of Production and Engineering Management. It aims to provide managers, engineers and business specialists with key insights in to production systems which operate in a wide range of organisations. Specifically the objectives of this course are:

1. To develop production and engineering management theory at a professional level where it will also provide for a sound preparation for research or further study in the area

2. To develop and apply key knowledge and understanding of production and engineering management theory to complex systems, both systematically and creatively, to improve production management practice

3. To enhance independent and high level learning skills and personal development so that learners are able to work with self-direction and originality and to contribute to the discipline of Production and Engineering Management.

*This programme is subject to validation for September 2017 entry and the information provided may be subject to change. All new programmes at the University must undergo validation, the purpose of which is to ensure that the proposed programme is aligned to the University's Mission and its content reflects appropriate levels of academic standards and quality.

Read less
Cardiff University Cardiff School of Engineering
Distance from Cardiff: 0 miles
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. Read more
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. You will also develop research skills and other related abilities, enhancing your general engineering competency, employability, and providing you with an excellent platform for career development, whether that be within industry or academic research.

The distinctive features of this course include:

• The opportunity to learn in a research-led teaching institution, taught by staff in one of the highest ranked university units in the 2014 Research Excellence Framework (REF), ranked 7th in the UK for research and 1st in the UK for the research impact.

• The opportunity to work in modern facilities and commensurate with a top-class research university.

• The participation of research-active staff in programme design and delivery.

• MSc teaching complemented by guest lectures given by industrial professionals.

• Formal accreditation by the Institution of Engineering and Technology (IET).

Structure

The course is presented as a one-year full time Masters level programme, and is also available as a part-time scheme run over two years. The programme is presented in two stages: In Part 1 students follow two semesters of taught modules to the value of 120 credits. Part 2 consists of a Dissertation or research project module worth 60 credits.

Core modules:

RF Circuits Design & CAD
RESEARCH STUDY
Advanced Communication Systems
Fundamentals of Micro- and Nanotechnology
Management in Industry
Software Tools and Simulation
High Frequency Electronic Materials
HF and RF Engineering
Optoelectronics
Non-Linear RF Design and Concepts
Advanced CAD, Fabrication and Test
Dissertation (Electronic)

Teaching

A wide range of teaching styles are used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and take part in lab and tutorial based study during the Autumn and Spring semesters. During the summer you will undertake an individual research project.

At the beginning of Stage 2, you will be allocated a project supervisor. Dissertation topics are normally chosen from a range of project titles proposed by academic staff in consultation with industrial partners, usually in areas of current research or industrial interest. You will also be encouraged to put forward your own project ideas.

Assessment

The course is assessed through examinations, written coursework, and a final individual project report.

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January and May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and elements of coursework.

Career prospects

Career prospects are generally excellent with graduating students following paths either into research or related industry.

If you are interested in working in industry, many of our graduating MSc students achieve excellent employment opportunities in organisations including Infineon, Huawei, Cambridge Silicon Radio, Vodafone and International Rectifier.

In terms of research, Cardiff University has many electrical, electronic and microwave related research areas that require PhD students, and this MSc will provide you with an excellent platform if this is your chosen career path.

Read less

Show 10 15 30 per page



Cookie Policy    X