• Goldsmiths, University of London Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Cass Business School Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Coventry University Featured Masters Courses
FindA University Ltd Featured Masters Courses
United Kingdom
Bristol×
0 miles
Engineering×

Full Time MSc Degrees in Engineering, Bristol, United Kingdom

  • Engineering×
  • United Kingdom
  • Bristol×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 15 of 20
Order by 
Professional engineering institutions now require engineers to have at least an MEng or MSc qualification for Chartered Engineer status. Read more
Professional engineering institutions now require engineers to have at least an MEng or MSc qualification for Chartered Engineer status. And with many high-tech engineering companies now operating pan-European and globally, Master's level qualifications are often considered essential for career development.

Key benefits

This course is accredited by the Institution of Mechanical Engineers (IMechE) , which confirms it meets standards set by the Engineering Council for Professional Engineering Competence (UK-SPEC).

Course detail

The MSc Mechanical Engineering is designed to allow BEng and BSc (Hons) Mechanical Engineering graduates, and those from related disciplines, to top up qualifications through the MSc-route equivalent of an MEng Mechanical Engineering. The Department of Engineering Design and Mathematics has a longstanding reputation for offering IMechE-accredited BEng (Hons) and MEng Mechanical Engineering degrees, alongside a range of MSc programmes in related specialised subjects.

Graduates with an in-depth understanding of engineering design and analysis, and the ability to appreciate the challenges of managing complex operations, are in high demand. This course is designed to meet that demand, and to bridge the skills and knowledge gaps for BEng or BSc graduates, and make them more employable. With its foundations in mechanical engineering, this course is a great opportunity to learn how to develop advanced solutions to engineering problems using the latest computer tools and simulations. It also addresses a need for people who work well in project teams, and an extended piece of independent research is a significant part of the course.

Modules

Core modules include:

• Modelling and Simulation
• Computer Vision and Modern Control
• Innovations in Operations Management
• Masters Group Project

Optional modules include:

• Design of Fluid Systems
• Structural Integrity in Design
• Industrial Applications of Vision and Automation
• Robotics Fundamentals
• Intelligent and Adaptive Systems

Assessment

Assessment is through a combination of examinations and coursework, and your dissertation project.

Careers / Further study

An accredited Master's degree in Mechanical Engineering provides an essential stepping stone for any mechanical engineer aspiring to take their career to the highest level. Mechanical engineers are vital to society and the economy. For example, they're often involved in making maximum use of high-capital plants and operations such as power stations, oil refineries, chemical plants and hospitals.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
University of Bristol Faculty of Engineering
Distance from Bristol: 0 miles
Our aim is to produce the next generation of leaders in earthquake engineering and natural disaster risk management who want to make an impact on the design of the built environment, the mitigation of seismic loss and the protection of human life. Read more
Our aim is to produce the next generation of leaders in earthquake engineering and natural disaster risk management who want to make an impact on the design of the built environment, the mitigation of seismic loss and the protection of human life. This specialist MSc combines the training of earthquake, structural and geotechnical engineering with design, assessment and management of infrastructure.

This discipline demands world-class facilities and at Bristol you will benefit from studying in the UK’s flagship centre for earthquake engineering. Here, you will have access to the state-of-the-art BLADE/EQUALS laboratory, including one of the most advanced earthquake shaking tables in Europe.

Throughout the programme you will work together with expert staff and international partners, exposing you to real-world challenges engineers face. Industry links are integral to the programme and our graduates are highly sought after by major UK and international employers.

One of the many highlights of the year is a field trip to an earthquake affected area in south-east Europe. You will have the opportunity to visit structures designed with innovative methods to resist earthquake forces or inspect the damage of a recent aftermath by using modern tools for non-destructive material testing and remote imaging.

Programme structure

Subject areas are aligned with two main strands relevant to structural/geotechnical earthquake engineering and disaster risk reduction. A strong set of core units (structural dynamics, earthquake engineering, reliability for engineers, soil-structure interaction and engineering seismology) is followed by 10-credit specialist units, depending on the strand chosen.

Students following the structural/geotechnical earthquake engineering strand will take units relevant to the analysis and design to Eurocode 8, laboratory testing of structures and soils, foundation engineering and soil dynamics. Students who choose to pursue the disaster risk management strand will focus on engineering for international development, disaster risk reduction, hazards and infrastructure and environmental modelling.

Cross references are carefully designed among the units of the two strands to make sure that all graduates obtain a uniform level of background knowledge and appropriate specialisation.

You are also required, as part of your course, to attend a field trip to an earthquake affected region, typically in a Mediterranean country. You may visit recently damaged areas and/or major engineering projects designed to resist earthquake forces. A series of seminars will also give you the opportunity to learn, as part of a distinct unit, the most recent advances in earthquake engineering innovation from distinguished invited experts.

Having successfully completed these units, you will prepare a 60-credit MSc thesis during the summer term, to be submitted at the end of the academic year.

Read less
A dual pathway conversion course that gives STEM students the opportunity to gain the knowledge and skills needed for a career in building services engineering. Read more
A dual pathway conversion course that gives STEM students the opportunity to gain the knowledge and skills needed for a career in building services engineering.

Building services engineers are responsible for the mechanical and electrical systems that contribute to people's comfort, health and productivity. They provide analytic and design skills to buildings of all scales and levels of complexity, from residential and commercial, to industrial and cultural.

With greater efficiency constantly being sought in the use of energy and materials (for environmental and economic reasons) there is a growing demand for a new generation of environmentally responsible buildings. Currently however, the field of architecture and engineering is facing a deficit of people with the right type of expertise. In response, this full time Masters course has been created to provide a route through which STEM graduates (or people with relevant experience) can align their skills with the needs of the profession.

Course detail

The MSc Building Services Engineering is suitable for graduates with degrees in technological subjects (such as mechanical, aeronautical, civil and automotive engineering), or maths or science graduates. Graduates of the pure sciences will be recommended to enter the MSc course through the pathway offering some preparatory grounding in relevant technical subjects.

In developing the skills to practice as a building services professional, you will learn about the relevant technologies and methods of the discipline, and will be introduced to themes related to management and professional conduct within an engineering context.

Modules

Over the course of one year, you will study the following compulsory modules:

• Mechanical Services
• Construction Procurement
• Low Carbon Building Services
• Building Services Design Project
• Building Engineering Research
• Dissertation

Format

Input from industry practitioners as well as other interdisciplinary professionals is a key part of the course. Along with field trips to working sites, this will help you develop an understanding of how to apply the concepts and principles to real world situations and projects.

Through project work, group work, hands-on practice and theory, you will gain the skills needed to make a positive impact on the places where people live, study and work.

Much of the teaching will focus around a studio-based engineering design project under the guidance and critique of your tutor. There will also be traditional teacher-led classroom delivery supported by online materials.

Assessment

We use a range of assessment tools throughout the course, including exams, coursework, presentations, lab reports and portfolio development.

Careers / Further study

A career in building services engineering is likely to be varied, analytical and inventive. This Masters will equip you with the knowledge and experience needed to step into a wide range of roles, including Building Services Consulting Engineer, Mechanical Building Services Design Engineer, Sustainability Engineer and MEP Construction Engineer.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
University of Bristol Faculty of Engineering
Distance from Bristol: 0 miles
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability. Read more
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability.

With this MSc, students are fully embedded within an engineering faculty, benefiting from unrivalled access to a broad range of industrial collaborations and pioneering research.

Spanning engineering, mathematics and computer science, this programme would suit graduates from any related discipline who would like to become versatile at solving multi-disciplinary challenges.

Upon completion, you will meet the increasing demand from the industrial, government and service sectors for maths-savvy graduates who can work across traditional boundaries and drive high-tech innovation. From designing formula one cars, to biomedicine and development of renewable energy technologies, our engineering graduates go on to a wide range of exciting careers.

Programme structure

The units are organised around three key strands: engineering, computational science and mathematical and statistical training.

In order to tailor to the needs of the student, each strand is agreed based on previous experience and prior learning. Based on taught content, appropriate units are aligned with each strand.

Cross-references are carefully designed throughout the three stands to ensure that all graduates obtain a uniform level of background knowledge and appropriate specialisation.

Teaching consists of core units on:

- Applied statistics
- Artificial intelligence
- Engineering mathematics
- Nonlinear dynamics and chaos
- Numerical methods
- Optimisation theory and applications
- Partial differential equations

Real-world problem solving is integral to each unit and spans many different application areas - from robotics and social media to medicine and environmental modelling. Problems come from our industrial collaborators or address challenges in current research.

Having successfully completed the taught units, you will prepare a 60-credit MSc thesis during the summer term, to be submitted at the end of the academic year.

Careers

This programme provides a highly creative, challenging and enjoyable experience, which will be excellent preparation for your future career. It will give you the tools to be successful in a variety of careers, many of which enable you to apply your knowledge and skills.

Our extensive connections with industry, through collaborative research and consultancy, makes the MSc in Engineering Mathematics very relevant professionally. Many graduates from this department have gone on to work for companies that recruit mathematicians as well as engineers, such as Airbus, Goldman Sachs and Red Bull Racing.

Read less
University of Bristol Faculty of Engineering
Distance from Bristol: 0 miles
Biomedical engineering is an emerging field in the UK that involves applying physical, chemical, mathematical, computer science and engineering principles to the analysis of biological, medical, behavioural and health-related problems. Read more
Biomedical engineering is an emerging field in the UK that involves applying physical, chemical, mathematical, computer science and engineering principles to the analysis of biological, medical, behavioural and health-related problems. Biomedical engineers develop innovative devices and procedures to help prevent, diagnose and treat diseases. It relies on an in-depth understanding of science and engineering fundamentals, combined with a broad knowledge of physiological and anatomical systems.

This programme allows you to gain expertise in this exciting field and covers both theory and practical applications. You will acquire the analytical tools and broad physical knowledge of modern engineering and science, as well as a fundamental understanding of the anatomical and physiological systems, and familiarity with recent technological breakthroughs.

Programme structure

Your course will cover the following core subjects:
-Physiology for biomedical engineering
-Biosensors
-Computational genomics and bioinformatics algorithms
-Anatomical science for engineering
-Computational neuroscience
-Biomedical imaging
-Research skills

You will be able to choose three optional subjects from the following:
-Mathematical modelling in physiology and medicine
-Digital filters and spectral analysis
-Biomechanics
-Wireless networking and sensing in e-healthcare

Project
You will carry out a substantial research project, which you will start during the second teaching block and complete during the summer.

Careers

Employment opportunities in the sector are excellent and varied. Biomedical engineers can be employed by companies working in the design, development and manufacture of medical devices; within the NHS, for example in hospitals to collaborate with clinicians in offering non-clinical services; in research institutes or academia; in governmental regulatory agencies; or as technical consultants within marketing departments.

Read less
University of Bristol Faculty of Engineering
Distance from Bristol: 0 miles
The main objective of this programme is to produce graduates with the ability to plan, execute and produce reports on technical projects for industry and academia. Read more
The main objective of this programme is to produce graduates with the ability to plan, execute and produce reports on technical projects for industry and academia. The programme is composed of taught units, assessed by examination and coursework submission, and a major research project supervised by academic staff in the department.

The facilities and expertise in the Department of Mechanical Engineering have earned us consistently high rankings in university league tables and an internationally excellent rating for research.

Programme structure

Core units

Four mandatory units, each worth 10 credits, are designed to develop your skills of investigation, system analysis and project planning.

- Finite Element Analysis
- Literature Review
- Power Generation for the 22nd Century
- Research Project Proposal

You will be able to choose eight optional 10-credit units from the list below at the start of the programme. The current options list is as follows:

Design and Manufacture

- Virtual Product Development
- Robotic Systems
- Biomechanics

Engineering and the Environment

- Environmental Thermalhydraulics

Materials

- Ultrasonic Non-Destructive Testing
- Non-linear Behaviour of Materials
- Advanced Composites Analysis

Dynamics

- Advanced Dynamics
- Systems and Control Engineering 4
- Nonlinear Structural Dynamics
- Generic Propulsion

Research project (60 credits)

Each student is allocated an individual project, worth 60 credits, which is supported from within the department through the three main research groups:

- Dynamics and Control
- Design and Process Engineering
- Solid Mechanics

Provided that the content is academically rigorous, industrially-related projects are possible, through either your own contacts or the department's strong links with major companies such as Airbus UK, BAE Systems, Bechtel, British Energy, Nestlé, Qinetiq Ltd, Renishaw, Renold Chain and Rolls-Royce.

Careers

Several of our recent students have gone into research, including two recent PhD graduates from Bristol.

One further student is currently working towards an Engineering doctorate with the Systems Centre in Bristol and has been working closely with a local company, Vestas Wind Systems (his industrial sponsor). His research title is "Expanding the life cycle of wind turbine components through reverse engineering and repairing solutions".

Read less
University of Bristol Faculty of Science
Distance from Bristol: 0 miles
This MSc delivers a solid grounding in the science and engineering principles that underpin the global nuclear industry. Throughout the programme you will benefit from a connection, via the South West Nuclear Hub, to the University of Bristol’s UK-leading industrial research. Read more
This MSc delivers a solid grounding in the science and engineering principles that underpin the global nuclear industry. Throughout the programme you will benefit from a connection, via the South West Nuclear Hub, to the University of Bristol’s UK-leading industrial research. This environment of collaboration with key industrial partners enriches your learning experience and exposes you to the scientific and engineering challenges facing nuclear energy today.

The programme offers you the opportunity to gain skills and experience highly sought after by the nuclear industry. As you learn about five key themes of nuclear science and engineering from experts in the field you will develop skills in problem-solving, team-building, communication and scientific writing.

During the challenge project element of the programme you will join a multi-disciplinary team in approaching a genuine industry problem. The challenge is set by industry partners, who will act as your industrial supervisors, provide guidance on your work and attend your final presentation. Previous industry partners include Sellafield, EDF Energy and the Culham Centre for Fusion Energy.

This area of scientific study demands state-of-the-art facilities, and the programme gives you access to a suite of multi-million pound, cutting-edge analytical equipment, supported by dedicated technicians. Facilities include profiling systems, x-ray microscopes, a 200-acre site focused on robotics and device sensor development, and the largest earthquake simulator in the UK.

Programme structure

The five key themes that run through the programme are: the nuclear cycle; nuclear reactor materials and design; nuclear structural integrity; nuclear professionalism and nuclear systems; infrastructure, hazards and risk.

Teaching consists of core lecture-based units in science and engineering:
-Fundamentals of Nuclear Science
-Nuclear Reactor Engineering
-Nuclear Material Behaviour
-Nuclear Reactor Physics
-Nuclear Fuel Cycle

The Research Skills and Group Project units help develop the skills needed to work in this area, including industry-focused workshops, an industry-set challenge and a major individual research project, for which the practical work takes place over the summer.

Careers

Graduates will leave equipped with a familiarity with the nuclear industry and its unique safety culture, and they will be prepared to enter the industry or continue towards further research in academia.

Read less
This course is an excellent route to a wide range of career opportunities. Estimating transport needs, providing systems and infrastructure to meet those needs, and addressing the impacts of transport on society and the environment all require the understanding and skills this course offers. Read more
This course is an excellent route to a wide range of career opportunities. Estimating transport needs, providing systems and infrastructure to meet those needs, and addressing the impacts of transport on society and the environment all require the understanding and skills this course offers. The module content draws on our strong industry links, our research and our local and national project-based work.

MSc Transport Engineering and Planning is run by UWE Bristol's Centre for Transport and Society. All the teaching staff are engaged in research and consultancy, and often advise national and local government.

Key benefits

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Course detail

Bristol is the home of Isambard Kingdom Brunel, and an exciting place to study transport and engineering. The city has some interesting and complex transport problems of its own, and plans to tackle them include a bus rapid transit network, continuing developments to cycling networks as the country's first Cycling City, and experimental closures of the city centre to motor traffic on Sundays. Our close links with local authorities in the area means we were commissioned to evaluate Bristol's Local Sustainable Transport Fund project.

Why do most Park and Ride schemes cause an increase in traffic? Why do people living in high-density housing make fewer journeys than people in suburbs, yet cause more traffic congestion? Does an increase in traffic inevitably increase collision and injury rates? These are just some of the questions posed by our researchers in the Centre for Transport and Society at UWE Bristol.

This course draws on the latest research and practice, and attracts students from a wide range of countries, and from employers around the region. We welcome applicants from all over the world.

Modules

The course modules cover the following topics:

• Transport Infrastructure Engineering
• Traffic Engineering
• Transport Economics and Appraisal
• Travel Demand Analysis
• Transport Policy and Finance
• Changing Travel Behaviour
• Sustainable Transport Management and Operations

You will also study:

• Introduction to Geographical Information Systems
• Dissertation - including research training and the potential for a work placement

Format

We use a variety of teaching methods, including lectures, seminars, workshops, fieldwork and laboratory work, debates and discussion, teamwork, presentations and external visits. Teaching staff are mainly active researchers in the Centre for Transport and Society, but, where appropriate, we include contribution from UWE Bristol experts working and teaching in other related fields.

We also have guest lectures from professional practitioners, who give you valuable insights into the latest developments in practice.

Transport engineers must be numerate. If you lack confidence in this area, we can provide help for the mathematical content of the course.

Placements

A feature of this course is the potential for a work placement. This gives you the chance to gain valuable experience in practice and gain a competitive edge over graduates from other courses. If you choose to, we will help you find a suitable placement with an employer based in the area, for a few weeks in the summer after the end of teaching and assessment. The placement (which may be unpaid) will involve a project designed to address an employer's genuine needs. Your experience and findings will contribute to your project-based dissertation.

Assessment

Assessment is mainly through coursework, presentations, and exams.

Careers / Further study

Opportunities in transport engineering and planning are growing. UWE Bristol's transport graduates have an excellent reputation in the marketplace, and several have since secured senior positions around the region and further afield.

Every year, employers ask the programme leader to circulate details of vacancies with them. Several of our students have been hired as a direct result by employers such as Arup, Halcrow, ITP, WSP, Matrix, Parsons Brinkerhoff and Bristol City Council.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
University of Bristol Faculty of Engineering
Distance from Bristol: 0 miles
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. Read more
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. The Microelectronics group at the University of Bristol has many collaborative links with multinational companies in the microelectronics industry that have identified a shortfall in graduates with the necessary qualifications and professional skills to work in the sector. This programme has been designed to meet this need.

A range of taught subjects cover core topics such as advanced architectures and system design using FPGA and DSP platforms, before progressing into more specialised areas such as digital and analogue ASIC design, integrated sensors and actuators and mixed-signal design. Changes are made periodically to reflect important emerging disciplines, such as electronics for internet of things, bio-medical applications and neuromorphic computing.

The programme offers you the opportunity to learn from experts in micro- and nanoelectronics and computer science, to allow you to start working straight after your degree or continue your studies via a PhD. Special emphasis is put on providing you with a range of contemporary design skills to supplement theoretical knowledge. Lectures are accompanied by lab exercises in state-of-the-art industrial EDA software to give you experience of a professional environment.

Programme structure

The course consists of 120 credits of taught units and an individual research project worth 60 credits. The following core subjects, each worth 10 credit points (100 learning hours), are taken over autumn and spring:
-Design Verification
-Analogue Integrated Circuit Design
-Integrated Circuit Electronics
-Digital Filters and Spectral Analysis (M)
-Advanced DSP & FPGA Implementation
-VLSI Design M
-Embedded and Real-Time Systems
-Wireless Networking and Sensing in e-Healthcare

Additionally students are able to choose any two out of the following four 10-credit units (some combinations may not be possible due to timetabling constraints).

-Device Interconnect - Principles and Practice
-Advanced Computer Architecture
-Sustainability, Technology and Business
-Computational Neuroscience
-Bio Sensors

In the spring term, students also take Engineering Research Skills, a 20-credit unit designed to introduce the fundamental skills necessary to carry out the MSc project.

After completing the taught units satisfactorily, all students undertake a final project which involves researching, planning and implementing a major piece of work relating to microelectronics systems design. The project must have a significant scientific or technical component and may involve on-site collaboration with an industrial partner. The thesis is normally submitted by the end of September.

The programme structure is under continual discussion with the National Microelectronics Institute and our industrial advisory board in order that it remains at the cutting edge of the semiconductor industry. It is therefore subject to small changes on an ongoing basis to generally improve the programme and recognise important emerging disciplines.

Careers

This course gives graduating students the background to go on to a career in a variety of disciplines in the IT sector, due to the core and specialist units that cover key foundational concepts as well as advanced topics related to hardware design, programming and embedded systems and system-level integration.

Typical careers are in soft fabrication facilities and design houses in the semiconductor industry, electronic-design automation tool vendors, embedded systems specialists and software houses. The course also covers concepts and technologies related to emerging paradigms such as neuromorphic computing and the Internet of Things and prepares you for a career in academic research.

Read less
University of Bristol Faculty of Engineering
Distance from Bristol: 0 miles
Composite materials are increasingly replacing traditional metallic components in several industrial applications, such as aerospace engineering, wind turbine blades and the automotive industry. Read more
Composite materials are increasingly replacing traditional metallic components in several industrial applications, such as aerospace engineering, wind turbine blades and the automotive industry. This MSc provides you with an in-depth theoretical understanding and practical knowledge of advanced composite materials.

The programme is based in the Advanced Composites Centre for Innovation and Science (ACCIS), one of the world's leading centres in composite materials, which houses a number of state-of-the-art composites manufacturing facilities.

ACCIS has strong industrial and research links with companies like Rolls-Royce, Airbus, BAE Systems and GE Aviation as well as government research labs such as the UK's Defence Science and Technology Laboratory, the European Space Agency and the US Army International Technology Centre.

Programme structure

Core subjects
-Composites Design and Manufacture
-Smart Materials
-Nanocomposites and Nano engineering
-Research Skills
-Elements of Polymer Composites

And either:
-Advanced Composites Analysis or
-Structures and Materials

after discussion with the programme director.

Optional units
You will select from a list of options which will include the following:
-Engineering Design for Wind and Marine Power
-Nonlinear Structural Dynamics
-Ultrasonic Non-Destructive Testing
-Structural Engineering 4
-Advanced Techniques in Multi-Disciplinary Design
-Nonlinear Behaviour of Materials
-Nature's Materials - Biomimetics, Biomaterials and Sustainability

Project
To complete the programme you will carry out a research project, which may be either academically or industrially led.

Careers

Graduates from this programme could enter a career in one of the rapidly growing composites-related industries, such as aerospace, marine, automotive and wind turbine, materials testing/manufacturing or in engineering consultancy sectors. Some of our MSc graduates continue to PhD study, either at Bristol or other relevant PhD programmes.

Read less
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Read more
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Embedded systems are the backbone of the digital revolution.

As the complexity of embedded systems increases, the industry needs skilled graduates to fill the talent shortage.

Course detail

With the MSc Embedded Systems and Wireless Networks you'll develop a sound technical knowledge of the fundamentals of electronics, embedded systems, software and hardware, and become an embedded system designer with a multidisciplinary background. You'll develop software programming and hardware design skills, and a broad knowledge of electronics fundamentals.

Graduates of electronic engineering, systems engineering or other appropriate sciences can develop, deepen or update their skills and knowledge in advanced electronic engineering technology and cutting-edge research fields.

This course is ideal for graduate engineers interested in electronics, embedded systems, signal processing, mobile communications and wireless technology.

Modules

• Embedded Real-time Control Systems
• Safety Critical Embedded Systems
• Wireless and Mobile Communications
• Advanced Control and Dynamics
• System Design using HDLs
• Wireless Sensor Networks
• Group Project Challenge
• Dissertation

Format

You'll be taught by experienced specialist academic staff who are experts in basic and advanced electronics, control systems, basic and advanced robotics, mobile communications, wireless sensor networks, embedded systems, power systems, power electronics, signal processing and sensor technology. Many of them are involved in cutting-edge research.

You'll attend lectures, then apply what you've learned to real life through tutorial sessions, case studies, classroom discussions, project work, laboratory exercises and visits to or guest lectures from professionals working in engineering organisations.

Assessment

You are assessed through examinations, coursework, lab-based assessment and oral presentations. An independent examiner assesses your dissertation.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The MSc Aerospace is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). It's aimed at Engineers looking to increase their professional skills and capabilities in the industry through a strategic understanding of major technical, business and environmental factors. Read more
The MSc Aerospace is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). It's aimed at Engineers looking to increase their professional skills and capabilities in the industry through a strategic understanding of major technical, business and environmental factors. It's designed to help develop and broaden technical and business skills in the industry. It is also aimed at enhancing the industry's competitiveness and creating, developing and implementing flexible and innovative research and development opportunities.

Key benefits

The range of optional modules, and flexibility of formats and learning, make this course unique. You can also apply for the Government funded Aerospace MSc Bursary Scheme, created in partnership with employers, to study it.

This course is affiliated to, and accredited by, the Royal Aeronautical Society (RAeS), and has been developed further in conjunction with other awards in the ECCDF.

Course detail

Students on the course come are either full time students completing the award in one year, or industrially based students that from a wide range of different companies within the sector, including primes and throughout the supply chain. This mix of people from different backgrounds, companies and with different roles adds a unique perspective of peer learning, as you network and learn from each other.

However you approach the course, we're here to help support your long-term career professional development, including helping you develop a 'portfolio of evidence' to support your application to become a Chartered Engineer.

Modules

Full-time students will study the following modules:

• Advanced Manufacturing
• Airworthiness
• Aerospace Design Process
• Aerospace Business Context and Environment
• Lean Engineering
• Professional Development Appraisal and Review
• Aircraft Structural Design and Stress Analysis
• Foundations of Systems Engineering
• Dissertation

For students studying on a flexible basis, whilst there is flexibility to your studies, the course has four core modules:

• Professional Development Appraisal and Continuous Review
• Advanced Manufacture
• Aerospace Design Process
• Airworthiness

Structure

The full Master's course comprises 180 credits divided into three 60 credits stages: Postgraduate Certificate, Postgraduate Diploma, and Masters. Students work incrementally through the three stages and must pass all modules at each stage in order to progress to the next.

Format

We usually hold taught modules over three to five consecutive days. In some cases we use other teaching methods, including distance and work-based learning. You'll organise your work-based learning with your module leader, this ensures it's tailored to your needs and the learning outcomes are achievable.

Assessment

Assessment is normally by assignment. At this level, we do not need to test your understanding, but rather your ability to implement your newfound skills and knowledge. Assignments will normally be about a real industrial case study, or a live project in your workplace.

Careers / Further study

The MSc Aerospace is excellent for developing technical and business knowledge and skills for the Aerospace sector. The breadth of optional learning allows you to steer your own academic progress, develop personal career objectives and show competencies required for professional recognition.

This makes the course ideal for engineers who want to mix technical and business learning with one customisable course. Successful graduates are suited to work across a range of roles.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
University of Bristol Faculty of Engineering
Distance from Bristol: 0 miles
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Read more
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Video accounts for around 80 per cent of all internet traffic and some mobile network operators have predicted that wireless traffic will double every year for the next 10 years - driven primarily by video. Visual information processing also plays a major role underpinning other industries such as healthcare, security, robotics and autonomous systems.

This challenging, one-year taught Master’s degree covers a range of advanced topics drawn from the field of multimedia signal processing and communications. The programme covers the properties and limitations of modern communication channels and networks, alongside the coding and compression methods required for efficient and reliable wired and wireless audio-visual transmission. It provides students with an excellent opportunity to acquire the necessary skills to enter careers in one of the most dynamic and exciting fields in ICT.

The programme builds on the research strengths of the Visual Information Laboratory and the Communication Systems and Networks Group within the Faculty of Engineering at Bristol. Both groups are highly regarded for combining fundamental research with strong industrial collaboration and their innovative research has resulted in ground-breaking technology in the areas of image and video analysis, coding and communications. Both groups also offer extensive, state-of-the-art research facilities.

This MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the communication networks industry. The programme is accredited by the Institution of Engineering and Technology until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (50 credits)
-Coding theory
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (70 credits)
-Digital signal processing systems
-Speech and audio processing
-Optimum signal processing
-Biomedical imaging
-Image and video coding
-Engineering research skills

Research project
You will complete a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme covers all aspects of current and future image and video communications and associated signal processing technologies. It will prepare you for a diverse range of exciting careers, not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
University of Bristol Faculty of Engineering
Distance from Bristol: 0 miles
This MSc covers a range of advanced topics drawn from wireless communications and communications-related signal processing, including associated enabling technologies. Read more
This MSc covers a range of advanced topics drawn from wireless communications and communications-related signal processing, including associated enabling technologies. It provides an excellent opportunity to develop the skills required for careers in some of the most dynamic fields in wireless communications.

This programme builds on the internationally recognised research strengths of the Communications Systems and Networks group within the Smart Internet Lab. This group conducts pioneering research in a number of key fundamental and experimental work areas, including spatial channel measurements and predictions, information theory, advanced wireless access (cellular and WLAN) and RF technologies. The group has well-equipped laboratories with state-of-the-art test and measurement equipment and first-class computational facilities.

The MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the wireless communications industry. This degree is accredited by the Institute of Engineering and Technology (IET) until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (60 credits)
-Coding theory
-Radio frequency engineering
-Communication systems
-Mobile communications
-Networking protocol principles
-Digital filters and spectral analysis

Semester Two (60 credits)
-Advanced mobile radio techniques
-Antennas and electromagnetic compatibility
-Broadband wireless communications
-Digital signal processing systems
-Engineering research skills
-Research project (60 credits)

You will carry out a substantial research project, starting during Semester Two and completing during the summer. This may be based at the University or with industrial partners.

Careers

This is a challenging one-year taught Master’s degree, covering all aspects of current and future wireless communication systems and associated signal processing technologies. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path, with a number of students going on to study for PhDs at leading universities.

Read less
University of Bristol Faculty of Engineering
Distance from Bristol: 0 miles
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Read more
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Robotics is increasingly prominent in a variety of sectors, from manufacturing and health to remote exploration of hostile environments such as space and the deep sea, and as autonomous and semi-autonomous systems that interact with people physically and socially.

This programme exposes you to a wide range of advanced engineering and computer science concepts, with the opportunity to carry out a practical robot project at the Bristol Robotics Laboratory, one of the UK's most comprehensive robotics innovation facilities and a leading centre of robotics research.

The programme is jointly awarded and jointly delivered by the University of Bristol and the University of the West of England, both based in Bristol, and therefore draws on the combined expertise, facilities and resources of the two universities. The Bristol Robotics Laboratory is a collaborative research partnership between the two universities with a vision to transform robotics by pioneering advances in autonomous robot systems that can behave intelligently with minimal human supervision.

Programme structure

Your course will cover the following core subjects:
-Robotics systems
-Robotic fundamentals
-Intelligent adaptive systems
-Robotics research preparation
-Image processing and computer vision
-Technology and context of robotics and autonomous systems
-Bio-inspired artificial intelligence

Typically you will be able to select from the following optional subjects:
-Computational neuroscience
-Uncertainty modelling for intelligent systems
-Introduction to artificial intelligence
-Learning in autonomous systems
-Design verification
-Animation production
-Advanced DSP and FPGA implementation
-Statistical pattern recognition
-Control theory
-Advanced techniques in multidisciplinary design
-Advanced dynamics
-Virtual product development
-Biomechanics
-Sensory ecology
-Transport modelling
-Electromechanical systems integration
-Advanced control and dynamics

Please note that your choice of optional units will be dependent on your academic background, agreement with the programme director and timetable availability.

Dissertation
During your second semester, you will start working on a substantial piece of research work that will make up one third of the overall MSc. It is possible to work on this project at Bristol Robotics Laboratory or in conjunction with one of our many industrial partners. Within the Bristol Robotics Laboratory, there are a number of themes from which projects may be chosen, including:
-Aerial robots
-Assisted living
-Bioenergy and self-sustainable systems
-Biomimetics and neuro-robotics
-Medical robotics
-Nonlinear robotics
-Robot vision
-Safe human-robot interaction
-Self-reparing robotic systems
-Smart automation
-Soft robotics
-Swarm robotics
-Tactile robotics
-Unconventional computation in robots
-Verification and validation for safety in robots

Further information is available from the Faculty of Engineering.

NB: Teaching for this programme is delivered at both the University of Bristol and the University of the West of England campuses. Students attending the programme will be given free transport passes to travel between the two universities.

Careers

Robotics is a huge field spanning areas such as electronics, mechanics, software engineering, mathematics, physics, chemistry, psychology and biology. Career opportunities include: automotive industry, aerospace industry, advanced manufacturing, deep sea exploration, space exploration, food manufacture, pharmaceutical production and industrial quality control.

Read less

Show 10 15 30 per page



Cookie Policy    X