• University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Leeds Featured Masters Courses
University of Bradford Featured Masters Courses
FindA University Ltd Featured Masters Courses
0 miles
Biological Sciences×

Sheffield Hallam University, Full Time MSc Degrees in Biological Sciences

  • Biological Sciences×
  • Sheffield Hallam University×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 6 of 6
Order by 
Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses. Read more
Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses. The course is taught by researchers with an international reputation in advanced analytical techniques, such as the application of mass spectrometry to the analysis of biological matrices. Tutors also have expertise in production and detection of nanoparticles and detection of pollutants, particularly in soil.

This course is suitable if you wish to increase your knowledge and skills and increase your competitiveness in the job market or pursue a PhD. It will also suit you if you work in a chemistry-related profession and are seeking to further your career prospects.
You gain experience and understanding of:
-Key techniques in separation sciences, including liquid and gas chromatography.
-Atomic and molecular spectroscopy, such as atomic absorption and emission, NMR and IR.
-Analytical technologies applied in process control and solving complex biological problems.

This is a multi-disciplinary course where you learn about various topics including statistics, laboratory quality assurance and control, environmental analysis and fundamentals of analytical instrumentation.

You also gain the transferable skills needed to continue developing your knowledge in science, such as data interpretation and analysis, experimental design and communication and presentation skills.

You complete a research project to develop your research skills and their application to real world situations. You are supported by a tutor who is an expert in analytical chemistry.

Your laboratory work is carried out in our teaching laboratories which are extensively equipped with the latest models of analytical instruments such as HPLCs and GCs. This is supplemented by access to our research facilities where you have access to more sophisticated equipment, such as NMR and a suite of various types of mass spectrometers.

Professional recognition

This course is accredited by the Royal Society of Chemistry (RSC). Applicants should normally have a degree (bachelors or equivalent) in chemistry that is accredited by the RSC. Applicants whose first degree is not accredited by the RSC, or with overseas degrees or degrees in which chemistry is a minor component will be considered on a case by case basis on submission of their first degree transcript.

Candidates who do not meet the RSC criteria for accreditation will be awarded a non-accredited masters qualification on successful completion of the programme.

Applicants will be informed in writing at the start of the programme whether or not they possess an acceptable qualification and, if successful on the masters programme, will receive an RSC accredited degree. If you do not meet the RSC criteria for accreditation, you will be awarded a non-accredited masters after successfully completing the programme.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-analytical-chemistry

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The diploma and certificate are shorter. Starts September.

Course structure
The Masters (MSc) award is achieved by successfully completing 180 credits.

Core modules
-Quality issues, laboratory accreditation and the analytical approach (15 credits)
-Separation, detection and online techniques (15 credits)
-Surface analysis and related techniques (15 credits)
-Drug detection and analysis (15 credits)
-Methods for analysis of molecular structure (15 credits)
-Process analytical technology (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits.
The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Assessment
Assessment methods include written examinations and coursework including:
-Problem-solving exercises.
-Case studies.
-Reports from practical work.
-Research project assessment includes a written report and viva voce.

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

This course is suitable if you:
-Wish to pursue research into molecular and cell biology or disease mechanisms at PhD level.
-Want to improve your knowledge and skills to be competitive in the life science jobs market.
-Are currently employed and seeking to improve your career prospects.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography. In addition many of our research facilities such as flow cytometry, confocal microscopy and mass spectrometry are used in taught modules and research projects and our tutors are experts in these techniques.

You gain:
-A detailed and up-to-date understanding of molecular biology and cell biology.
-Knowledge of how alterations or defects in cellular processes may lead to disease, such as cellular dysfunction leading to degenerative diseases, cell cycle dys-regulation in cancer, and how mutations result in genetic diseases.
-Hands-on expertise in the latest techniques including cell culture, flow cytometry, real-time PCR, immuno-histochemistry and recombinant DNA technology.
-Professional skills to further your career in research or the life science industry.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where students are assigned to a tutor who is an active researcher in the biomedical research centre. Typically, taught modules have a mixture of lectures and tutorials and involve a significant amount of laboratory time. Other modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

Tutors complete research within the Biomolecular Sciences Research Centre into cancer, musculoskeletal diseases, human reproduction, neurological disease, medical microbiology and immunological basis of disease. Their work is regularly published in international peer-reviewed journals, showing that the course is underpinned by relevant quality research.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-molecular-and-cell-biology

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The diploma and certificate are shorter. Starts September and January.

The Masters (MSc) award is achieved by successfully completing 180 credits.
The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits.
The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Biomedical laboratory techniques (15 credits)
-Cell biology (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Molecular biology (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Options (two from)
-Applied biomedical techniques (15 credits)
-Cellular and molecular basis of cancer (15 credits)
-Molecular biotechnology (15 credits)

Assessment
Assessment methods include written examinations and coursework including: problem-solving exercises; case studies; reports from practical work. Research project assessment includes a written report and viva voce.

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

This course increases your knowledge and skills in pharmacology and biotechnology to increase your competitiveness in the job market or complete research at PhD level. If you are already employed, this course can help you to further your career prospects.

The course is delivered by internationally recognised academics who are involved in biotechnology and pharmacology research. Research projects include studying the manipulation of proteins and their application to Alzheimer's disease, epilepsy, ion channels and the development of novel drugs from natural products.

You learn in detail how drugs act at the molecular and cellular level and then how biotechnological techniques are used to produce new drugs. Examples include developing new and effective treatments for diseases, such as Alzheimer’s and rheumatoid arthritis.
You also gain experience of the latest techniques used by the pharmaceutical industry to produce and study the effects of novel drugs.

The course gives you:
-Up-to-date knowledge of cellular and molecular pathology of various human diseases.
-The basis of therapeutic rationales for treating diseases and their development.
-An advanced understanding of recombinant DNA technology and how it is used to produce drugs.
-Experience of the latest practical techniques, such as cell culture, quantitative PCR analysis, cloning, western blotting, and analytical techniques such as HPLC and mass spectrometry.
-The transferable and research skills to enable you to continue developing your knowledge and improve your employment potential.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-pharmacology-and-biotechnology

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The certificate and diploma are shorter. Starts September and January.

The Masters (MSc) award is achieved by successfully completing 180 credits. The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Cell biology (15 credits)
-Fundamentals of pharmacology (15 credits)
-Molecular biology (15 credits)
-Biotechnology (15 credits)
-Professional development (15 credits)
-New approaches to pharmacology (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Optional modules (one from)
-Applied biomedical techniques (15 credits)
-Cellular and molecular basis of cancer (15 credits)
-Pharmaceutical drug development (15 credits)
-Human genomics and proteomics (15 credits)

Assessment
Assessment is mostly by written examination and coursework including problem solving exercises, case studies and input from practical laboratory work. Research project assessment includes a written report and viva voce.

Read less
On this established and well respected course, you gain the knowledge, skills and attributes needed to be an effective sport and exercise science practitioner. Read more
On this established and well respected course, you gain the knowledge, skills and attributes needed to be an effective sport and exercise science practitioner. You develop strong technical, analytical, practical and professional skills, alongside specialist skills in biomechanics and performance analysis, physiology and nutrition, and strength and conditioning.

The course enables you to:
-Develop your understanding of science.
-Develop your ability to apply theory to practice in sport and exercise.
-Work towards British Association of Sport and Exercise Science (BASES) accreditation, (at the discretion of BASES, graduates are able to apply for exemption from some elements of the BASES supervised experience accreditation scheme).
-Conduct independent research.
-Gain experience as a sport or exercise science consultant.

We offer a first-class suite of research and teaching laboratories alongside excellent facilities offered by our partnership venue at the English Institute of Sport, Sheffield. Our laboratories are all British Association of Sport and Exercise Science (BASES) accredited.
The four overarching study themes are:
-Analysis of performance.
-Improving performance.
-Research methods and data analysis in both research and applied practice.
-Professional practice.

Many of the teaching staff support elite athletes as part of their work in the Centre for Sport and Exercise Science (CSES). The team for sport performance have worked successfully with athletes competing at the Olympics, Paralympics, and Winter Olympics. They have provided, or are currently providing, sport science research and consultancy services at elite level for the
-Amateur Boxing Association
-Amateur Swimming Association (diving and swimming)
-British Cycling
-British Speed Skating Association
-British Skeleton-Bob Team
-English Bowls Association
-English Golf Union
-Royal Yachting Association
-GB table tennis
-GB volleyball

You benefit from CSES' activities as they allow us to keep course content at the cutting edge, based on our knowledge and experience of sport and exercise science delivery. You can also benefit from a work-based learning programme to help develop your experience of working in multidisciplinary teams, supporting athletes and coaches.

During the course you use a mix of traditional and online learning resources to ensure the course is flexible and can fit in with your existing commitments. The quality of our provision was rated 24/24 by the Higher Education Council.

Sheffield Hallam are a Skills Development Partner of the Chartered Institute for Managing Sport and Physical Activity.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-applied-sport-and-exercise-science

Course structure

Full time – 1 year
Part time – typically 2 years
Starts September

The masters award is achieved by successfully completing 180 credits.

Core modules
-Analysis and evaluation of performance: technical and tactical (15 credits)
-Analysis and evaluation of performance: functional and metabolic (15 credits)
-Inter-professional practice in sport and exercise science (15 credits)
-Work-based learning in sport and exercise science (15 credits)
-Research methods (15 credits)
-Data analysis (15 credits)
-Project (60 credits)

Optional modules
30 credits from:
-Improving performance: strength and conditioning (15 credits)
-Improving performance: physiology and nutrition (15 credits)
-Applied performance analysis (15 credits)
-Applied movement analysis (15 credits)
-Human factors in sports engineering (15 credits)

Assessment
Assessments may include:
-Laboratory reports
-Project/ethics proposal
-Needs analysis
-Qualitative data analysis
-Managing projects
-Problem solving exercises
-Group work
-Oral presentations
-Poster presentations
-Case study defence or report
-Quantitative data analysis examination
-Project file
-Abstract writing
-Article prepared for publication (MSc only)
-Action plan
-Organisational report
-Technology-based communication package

Other admission requirements

We designed this course to continue specialist studies at masters level for students who already possess a relevant first degree. You may also have an appropriate combination of other subject specific qualifications and relevant practical experience.

The course leader interviews applicants with non-standard qualifications.

If English is not your first language you will need an IELTS score of 6.0 with a minimum of 5.5 in all skills, or a recognised equivalent. If your level of English language is currently below IELTS 6.0 we recommend you consider an appropriate Sheffield Hallam University Pre-sessional English course which will enable you to achieve the required level of English.

Read less
Study at the cutting edge of sports engineering and learn how to apply advanced engineering techniques to the research and development of sports technologies. Read more
Study at the cutting edge of sports engineering and learn how to apply advanced engineering techniques to the research and development of sports technologies. This course is taught by the Centre for Sports Engineering Research, one of the largest hubs of sports engineering research in the world.

If you are a high-achieving graduate in engineering and the physical sciences, learn to develop and apply your technical knowledge to the world of sport. The course gives you the skills and knowledge to work at the cutting edge of research and development in the sports equipment industry.

More than ever, the world of sport is intimately connected to new technologies. The global sports equipment industry is valued at £200 billion annually and is driven by new research and innovation. In addition professional and national teams are increasingly reliant on technological solutions to monitor and assess the performance of their elite athletes.

Throughout this course you enhance your technical, problem solving and engineering skills and learn to apply them to the sporting environment. You also develop a biomechanical and physiological understanding of athletes, enabling you to analyse the athlete-equipment interactions in sport.

You complete a major industry linked research project to develop your practical understanding of sports engineering, to gain vital real world experience as well as improve your employability. Recent student projects have been partnered to organisations such as:
-Adidas
-Ping
-Prince Sports
-Mitre
-Gunn and Moore
-Eley
-International Tennis Federation
-International Rugby Board
-D3o
-English Institute of Sport
-UK Sport

The course is delivered by the Centre for Sports Engineering Research an internationally renowned centre of excellence for research and consultancy with over 200 years of cumulative experience. The Centre for Sports Engineering Research has 35 research staff and PhD students making it one of the world’s largest centres for sports engineering research. The group has close ties to many different sports companies and organisations and works extensively to enhance elite performance across many sports through its role as an English Institute of Sport research and innovation partner.

We assign you an academic and professional advisor, whose role is to support your academic and professional development, and career planning. You can also attend a free four day leadership award, that explores different perspectives on leadership.

The course is led by Dr Simon Choppin, a fellow of the research centre and an associate editor of the Sports Engineering Journal.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-sports-engineering

Course structure

Full time – 1 year
Part time – 2 years (the part-time route is only available to home and EU students)
Starts September

The course is made up of nine taught modules, plus a major industry linked research project. All modules are mandatory and have been tailored to match the previous experience of a graduate engineer/ physical scientist. The vast majority of teaching is in small groups (typically less than 20) allowing for bespoke delivery.

Modules
-Industry linked research project (45 credits)
-Mechanics of sports equipment (15 credits)
-Measurement techniques in sports engineering and biomechanics (15 credits)
-Computer simulation of sports equipment (15 credits)
-Numerical programming in sports engineering (15 credits)
-Innovation and enterprise in sports engineering (15 credits)
-Human factors in sports engineering (15 credits)
-Physiology of sport and exercise (15 credits)
-Research methods (15 credits)

Assessment: examinations, coursework, presentations, research project thesis.

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

Enhance your knowledge and skills in biosciences with an emphasis on biotechnology and increase your competitiveness in the job market. Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. You can also choose this course if you wish to pursue research in biotechnology at PhD level.

Biotechnology is the application of biological processes and is underpinned by:
-Cell biology
-Molecular biology
-Bioinformatics
-Structural biology.

It encompasses a wide range of technologies for modifying living organisms or their products according to human needs.

Applications of biotechnology span medicine, technology and engineering. Important biotechnological advances including:
-The production of therapeutic proteins using cloned DNA, for example insulin and clotting factors.
-The application of stem cells to treat human disease.
-The enhancement of crop yields and plants with increased nutritional value.
-Herbicide and insect resistant plants.
-Production of recombinant antibodies for the treatment of disease.
-Edible vaccines, in the form of modified plants.
-Development of biosensors for the detection of biological and inorganic analytes.

You gain:
-Up-to-date knowledge of the cellular and molecular basis of biological processes.
-An advanced understanding of DNA technology and molecular biotechnology.
-Knowledge of developing and applying biotechnology to diagnosis and treatment of human diseases.
-Practical skills applicable in a range of bioscience laboratories.
-The transferable and research skills to enable you to continue developing your knowledge and improving your employment potential.

The course is led by internationally recognised academics who are actively involved in biotechnology research and its application to the manipulation of proteins, DNA, mammalian cells and plants. Staff also have expertise in the use of nanoparticles in drug delivery and the manipulation of microbes in industrial and environmental biotechnology.

You are supported throughout your studies by a personal tutor.

You begin your studies focusing on the fundamentals of advanced cell biology and molecular biology before specialising in both molecular and plant biotechnology. Practical skills are developed throughout the course and you gain experience in molecular biology techniques such as PCR and sub cloning alongside tissue culture.

Core to the program is the practical module where you gain experience in a range of techniques used in the determination of transcription and translational levels, for example.

All practicals are supported by experienced academic staff, skilled in the latest biotechnological techniques.

Research and statistical skills are developed throughout the program. Towards the end of the program you apply your skills on a two month research project into a current biotechnological application. Employability skills are developed throughout the course in two modules.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-biotechnology

What is biotechnology

Biotechnology is the basis for the production of current leading biopharmaceuticals and has already provided us with the 'clot-busting' drug, tissue plasminogen activator for the treatment of thrombosis and myocardial infarction. It also holds the promise of new treatments for neurodegeneration and cancer through recombinant antibodies. Recombinant proteins are also found throughout everyday life from washing powders to cheese as well as many industrial applications.

Genetically modified plants have improved crop yields and are able to grow in a changing environment. Manipulation of cellular organisms through gene editing methods have also yielded a greater understanding of many disease states and have allowed us to understand how life itself functions.

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The Diploma and Certificate are shorter. Starts September and January.

The masters (MSc) award is achieved by successfully completing 180 credits. The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Cell biology (15 credits)
-Biotechnology (15 credits)
-Plant biotechnology (15 credits)
-Molecular biology (15 credits)
-Applied biomedical techniques (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Options (choose one from)
-Human genomics and proteomics (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Cellular and molecular basis of cancer (15 credits)

Assessment
Assessment methods include written examinations and coursework including: problem-solving exercises; case studies; reports from practical work; in-depth critical analysis; oral presentations. Research project assessment includes a written report and viva.

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X