• Ross University School of Veterinary Medicine Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Pennsylvania Featured Masters Courses
Belgium ×
0 miles
Biological Sciences×

Full Time MSc Degrees in Biological Sciences, Belgium

We have 23 Full Time MSc Degrees in Biological Sciences, Belgium

  • Biological Sciences×
  • Belgium ×
  • MSc×
  • Full Time×
  • clear all
Showing 1 to 15 of 23
Order by 
What is the Master of Bioinformatics all about?.  Bioinformaticians are distinguished by their ability to formulate biologically relevant questions, design and implement the appropriate solution by managing and analysing high-throughput molecular biological and sequence data, and interpret the obtained results. Read more

What is the Master of Bioinformatics all about?

 Bioinformaticians are distinguished by their ability to formulate biologically relevant questions, design and implement the appropriate solution by managing and analysing high-throughput molecular biological and sequence data, and interpret the obtained results.

Structure

This interdisciplinary two-year programme focuses on acquiring

  • basic background knowledge in diverse disciplines belonging to the field of bioinformatics, including statistics, molecular biology and computer science
  • expert knowledge in the field of bioinformatics
  • programming skills
  • engineering skills

The 120-credit programme consists of a reorientation package (one semester), a common package (two semesters) and a thesis.

The Master of Bioinformatics is embedded in a strong bioinformatics research community in KU Leuven, who monthly meet at the Bioinformatics Interest Group. Bioinformatics research groups are spread over the Arenberg and Gasthuisberg campus and are located in the research departments of Microbial and Molecular Systems (M2S), Electrical Engineering (ESAT), Human Genetics, Microbiology and Immunology (REGA), Cellular and Molecular Medicine, Chemistry and Biology. Several of these bioinformatics research groups are also associated with the Flemish Institute for Biotechnology (VIB).

Is this the right programme for me? 

Are you a biochemist or molecular biologist with a keen interest in mathematics and programming? Are you a mathematician or statistician and want to apply your knowledge to complex biological questions? Do you want to develop new methods that can be used by doctors, biologists and biotechnology engineers? Then this is the right program for you!

Objectives

The student:

  • Possesses a broad knowledge of the principles of genetics, biochemistry and molecular and cellular biology that underlie the model systems, the experimental techniques, and the generation of data that are analysed and modelled in bioinformatics.
  • Possesses a broad knowledge of the basic mathematical disciplines (linear algebra, calculus, dynamical systems) that underlie mathematical and statistical modelling in bioinformatics.
  • Masters the concepts and techniques from information technology (database management, structured and object-oriented programming, semantic web technology) for the management and analysis of large amounts of complex and distributed biological and biomedical data.
  • Masters the concepts and techniques from machine learning and frequentist and Bayesian statistics that are used to analyse and model complex omics data.
  • Has acquired knowledge of the core methods of computational biology (such as sequence analysis, phylogenetic analysis, quantitative genetics, protein modelling, array analysis).
  • Has advanced interdisciplinary skills to communicate with experts in life sciences, applied mathematics, statistics, and computer science to formalise complex biological problems into appropriate data management and data analysis strategies.
  • Can - in collaboration with these experts - design complex omics experiments and analyse them independently.
  • Can independently collect and manage data from specialised literature and public databases and critically analyse and interpret this data to solve complex research questions, as well as develop tools to support these processes.
  • Investigates and understands interaction with other relevant science domains and integrate them within the context of more advanced ideas and practical applications and problem solving.
  • Demonstrates critical consideration of and reflection on known and new theories, models or interpretation within the specialty; and can efficiently adapt to the rapid evolution the life sciences, and especially in omics techniques, by quickly learning or developing new analysis strategies and incorporating them into the learned competences.
  • Presents personal research, thoughts, ideas, and opinions of proposals within professional activities in a suitable way, both written and orally, to peers and to a general public.
  • Develop and execute original scientific research and/or apply innovative ideas within research units.
  • Understands ethical, social and scientific integrity issues and responsibilities and is able to analyse the local and global impact of bioinformatics and genomics on individuals, organisations and society.

Career paths

Bioinformaticians find careers in the life sciences domain in the broadest sense: industry, the academic world, health care, etc. The expanding need for bioinformatics in biological and medical research ensures a large variety of job opportunities in fundamental and applied research. 60% of our graduates start a PhD after graduation.

 



Read less
This Master is an Interuniversity Programme on Molecular Biology (IPMB), jointly organized by the Katholieke Universiteit Leuven, the Vrije Universiteit Brussel and the Universiteit Antwerpen, and selected and supported by the Flemish Interuniversity Council (VLIR-UOS) as one of its international course programmes. Read more
This Master is an Interuniversity Programme on Molecular Biology (IPMB), jointly organized by the Katholieke Universiteit Leuven, the Vrije Universiteit Brussel and the Universiteit Antwerpen, and selected and supported by the Flemish Interuniversity Council (VLIR-UOS) as one of its international course programmes. Although originally designed to meet the needs of students from developing countries, the programme offers an exquisite opportunity for those who seek re-orientation to enter the fascinating world of molecular biology. Also Erasmus exchange students who visit the organizing universities for one or two semesters are most welcome to attend classes and acquire laboratory skills.

The programme aims at strengthening and updating the theoretical and practical skills of young scientists from developing countries who are already involved in either human or animal health care, or agricultural research. The goal of the programme is not just to transfer technology but rather to train participants to acquire the ability to cope with a wide range of scientific problems and challenges and to provide them with the intellectual tools needed to develop a molecular biological approach to tackle the problems their country is facing.

1st year: in-depth courses in bioscience

In view of the diversity of the background of the students, the first year consists of in depth courses that cover the most important topics in molecular biology and bring the students to the level of knowledge required to successfully follow the advanced and specialization courses of the second year. During intensive laboratory training, students are well prepared to embark for the preparation of their dissertation in the second year.

2nd year: specialization courses

In the second year, all students take four advanced courses followed by three specialization courses in either the field of human health, animal production or plant production. Also much time is devoted to the preparation and writing of the dissertation, which is an original research work made under the supervision of a promoter and defended in public.

Career opportunities

Masters of Molecular Biology find employment in universities, hospitals, private and governmental research laboratories, patenting bureaus, as lecturers, consultants, advisors to policy-makers, etc. Many graduates proceed to PhD-programmes in Belgium or abroad. Students from developing countries can apply for a sandwich PhD-scholarship. Flemish students can apply for a PhD scholarship of VLIR-UOS to make a PhD on developmental relevant topics.

Scholarships

The programme is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS). A limited number of scholarships is available for students coming from certain developing countries.

Read less
Technology for Intergrated Water Management at Ghent. -Advanced master programme. -Interuniversity education offering combined expertise in water-related research and development. Read more
Technology for Intergrated Water Management at Ghent:
-Advanced master programme.
-Interuniversity education offering combined expertise in water-related research and development.
-Multidisciplinary perspective: ecosystem approach / bioscience engineering / civil engineering.
-Providing R&D-based technological answers for integrated water policy & management.

Integrated water management is the challenge of the 21st century. Worldwide, there is a need to train specialists in water technology who have knowledge of and insight in integrated water management and policy, trends and developments in the water sector, worldwide water problems and new techniques for water treatment and water purification. Since 2010, this advanced
master is organized jointly by Ghent University (Centre Environmental Science & Technology) and the University of Antwerp (IMDO), together with the Antwerp Maritime Academy.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses.
-Introduction: compulsory.
-Integration in Water Technology and Water Management: compulsory.
-Specialization in Water Technology: elective courses.
Semester 2 (Feb-June)
-Integration in Water Technology and Water Management: master dissertation.
-Specialization in Water Technology: elective courses.

Learning outcomes

Our programme will prepare you to become professionals in water quality with the appropriate skills for integrated water management, who end up in research institutes, global businesses, consultancies and governmental institutions, trained in state-of-the-art water technology and integrated water management.

Other admission requirements

The following language requirements apply to candidates with a non-Flemish master’s degree only. Candidates with a master’s degree from a Flemish university are nonetheless strongly advised to take a language test to assure they possess the necessary language skills to successfully complete the programme. Applicants can prove their proficiency in English either by submitting proof you have studied at least one academic year (or 60 ECTS credits) in an English-language master programme, or by submitting one of the following language certificates with a test validity of maximum 2 years:
-TOEFL (Test of English as a Foreign Language): paper-based TOEFL level of minimum 550 or an internet-based TOEFL level of minimum 80.
-IELTS (International English Language Testing System): 6,5 overall score with a minimum of 6 for each sub-part.
-OR Knowledge level B2 of the Common European Framework.

Read less
What is the Master of Biophysics, Biochemistry and Biotechnology all about?. The programme provides in-depth training in the multidisciplinary fields of biophysics and biochemistry, with particular emphasis on subfields in which KU Leuven's research expertise is internationally recognised. Read more

What is the Master of Biophysics, Biochemistry and Biotechnology all about?

The programme provides in-depth training in the multidisciplinary fields of biophysics and biochemistry, with particular emphasis on subfields in which KU Leuven's research expertise is internationally recognised: the determination of molecular structures, molecular and supramolecular modelling, the spectroscopy of biomolecules, the physical modelling of complex systems and the study of these models, the transport through ion channels in membranes, and the study of molecular interactions and physical principles in vitro, in complex biological machineries and in the living cell.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

Students may select one of two tracks - Biophysics or Biochemistry and Biotechnology. The track Biochemistry and Biotechnology has three orientations: Physiological, Molecular and Cellular. 

Alternatively, students who are not considering a research career can opt for Applied Biophysics.

Elective Courses 

Students choose courses from an additional list, which are different from their research orientation. Students may select courses from the entire programme offered by the university if they have the approval of the programme director. Students have to make sure that the entire programme of the master contains at least 120 credits.

International

We encourage students to complete part of their Master's training at another European university, preferably during the second year, when they can work on their Master's thesis or take specific subjects at one of the universities in our Erasmus exchange programme.

Department

The Department of Biology is committed to excellence in teaching and research and is comprised of four divisions with diverse research activities ranging from molecular and physiological research at the level of cells and organisms to ecological research on populations, communities, and ecosystems. Although many research groups conduct in-depth analyses on specific model organisms, as a whole the department studies an impressive diversity of lifeforms.

Our research is internationally renowned and embedded in well-established worldwide collaborations with other universities, research institutes, and companies. Our primary goal is to obtain insight into patterns and processes at different levels of biological organisation and to understand the basis and evolution of the mechanisms that allow organisms to adapt to their constantly changing environment. This knowledge often leads to applications with important economic or societal benefits. The department attracts many students and hosts approximately 250 staff members.

Objectives

Upon completing the programme, the graduate will have acquired:

  • thorough understanding of the properties of biomolecules, their functions and interactions with other molecules at a cellular and higher level, and particularly their structure-function relationship;
  • profound knowledge of recent developments in disciplines such as biophysical modelling, bioinformatics, genome and proteome analysis, and ability to integrate this knowledge and to apply it to new problems;
  • abilities to thoroughly familiarise oneself in a reasonably short time with several subject areas of biophysics and biochemistry, and to keep oneself informed of relevant developments in the field of study; this implies the abilities to consult and understand relevant literature, to acquire new insights and to formulate new hypothesis based on these sources;
  • abilities to independently identify and analyse physical and molecular aspects of a biophysical problem, to plan a strategy for the solution and to propose and perform appropriate experiments;
  • appropriate attitudes to work in a team environment and to make a constructive contribution to scientific research at an international level, at the university, in the biotechnological and pharmaceutical industries, at research institutions or public services;
  • abilities to make a systematic and critical report of personal biophysical or (applied) biochemical research and to present this to an audience of specialists;
  • attitudes of continued attention to the risks associated with the conducted experiments, with respect to safety and the environment, and to thoroughly analyse these risks.

Career perspectives

A range of career options are available in the pharmaceutical and bioscience industries, where structure determination, modelling and the direct study of molecular interactions in the living cell play a major role. Because of the growing importance of the bioscience industry in today's society and the increasing need for sophisticated high-tech instruments and research methods, the demand for biophysicists and biochemists is expected to exceed supply in the near future.

Graduates may also pursue a career in medical sciences research or academic research. A considerable number of graduates, particularly those who choose for a research route, go on to undertake a PhD at one of our associated research laboratories.



Read less
What is the Master of Molecular Biology all about?.  This programme, commonly referred to as the Internuniversity Programme in Molecular Biology (IPMB), is jointly organised by. Read more

What is the Master of Molecular Biology all about?

 This programme, commonly referred to as the Internuniversity Programme in Molecular Biology (IPMB), is jointly organised by

  • KU Leuven
  • Vrije Universiteit Brussel
  • Universiteit Antwerpen

IPMB is endorsed and supported as an international programme by the Flemish Interuniversity Council (VLIR-UDC). Although originally designed to meet the needs of students from developing countries, the programme also welcomes non-traditional and reorienting student seeking to enter the fascinating world of molecular biology. Erasmus-Socrates students studying at one of the organising universities for one or two semesters are also most welcome to attend classes and acquire laboratory skills.

Students are awarded a joint degree from the participating institutions. 

Structure

The IPMB is organised over two academic years. In view of the diverse background of its students, the first year consists of in-depth courses covering the most important topics in molecular biology. By the end of the first year, you will have obtained the level of knowledge required to take succesfully part in the advanced, specialisation courses of the second year.

Intensive laboratory training will prepare you to embark on the preparation of your thesis, which you will complete in the second year along with four advanced courses followed by three specialisation courses in the field of either human health, animal production or plant production. Much attention is also paid to the preparation and writing of the thesis, which is an original research project completed under the guidance of a supervisor and defended in public.

Objectives

The Master of Molecular Biology (Interuniversity Molecular Biology - IPMB) programme is intended to offer theoretical and practical training to young scientists from developing countries, who are involved in education/research in human medicine, animal production or plant production.

This programme is designed to train these students to become capable, critical and self-reliant scientists who are able to apply the knowledge acquired to contribute to the further development of their country through their involvement in education, research and policymaking.

IPMB graduates will be able to ensure that the potential offered by molecular biology and biotechnology in terms of human and veterinary medicine and animal and plant production, find due application in their country.

Although originally conceived to meet the needs of students from developing countries, the programme offers an excellent opportunity for all students, including non-traditional and reorienting students, to study molecular biology in an international context.

Students are expected to:

  • have developed an advanced knowledge of fundamental sciences;
  • have developed an in-depth insight into biological processes;
  • have developed an in-depth insight into the functioning of living organisms in all their forms;
  • have developed a critical mind allowing them to appraise scientific and social aspects of applied molecular biology;
  • be capable of analysing and/or summarising and critically reflecting on scientific literature;
  • be capable of detecting and analysing problems and of proposing solutions to solve them;
  • be able to contribute, through molecular biological research, to solving problems faced by developing countries;
  • be able to operate as a member of a team;
  • be able to report, both orally and in writing;
  • be able to contribute to efforts to set up nationwide and international cooperation (South-South, South-North);
  • be able to operate in nationwide and international networks;
  • be able to disseminate the acquired knowledge in their country and region through their activities in education and research and through peer reviewed publications;
  • have developed skills to act as reliable advisors for local policymakers by making proposals for the further development of molecular biology in education and research, and, as such, to contribute to the further development of their country and improve the living conditions of the populations in the South;
  • be trained to a level sufficient to beginning a doctoral programme (PhD).

Career path

IPMB graduates find employment in universities, hospitals, private and governmental research laboratories and patenting bureaus, as lecturers, consultants and advisors to policy makers, among other careers. Many graduates go on to begin PhD programmes in Belgium or abroad. Students from developing countries can apply for a VLIR-UOS sandwich PhD scholarship. Flemish students can apply for a PhD scholarship of VLIR-UOS to make a PhD on developmental relevant topics.



Read less
The programme includes the following profiles. This profile introduces students into the study of animal and plant development, microbiology, cell signaling pathways, cytoskeleton dynamics, cancer biology, virology and immunology. Read more
The programme includes the following profiles:

Genetics, Cell and Developmental Biology

This profile introduces students into the study of animal and plant development, microbiology, cell signaling pathways, cytoskeleton dynamics, cancer biology, virology and immunology. Courses of this profile span multiple levels of biological organization, from whole organisms down to the molecular level. Students choosing this profile not only receive up-to-date knowledge on these topics but also acquire the laboratory skills required to engage in cutting-edge research.

Environment, Biodiversity and Ecosystems

This profile allows students to gain experience in the research methods used to study the evolution and ecology of organisms found in terrestrial, freshwater and coastal ecosystems. A staff of experts teaches up-to-date knowledge on individual organisms, populations, species communities and ecosystems, backed up by their active research experience in taxonomy and phylogeny, vertebrate and invertebrate ecology, evolutionary ecology, biogeography, plant ecology, plant-animal interactions, and nature management. In addition, students are introduced into ecological research by means of practical field training and excursions in Belgium and abroad.

Herpetology

This unique profile addresses biology students with a passion for amphibians and reptiles. An international team of visiting scientists organizes lectures on diversity, ecology, physiology, behavior, evolution and conservation biology and prepares students for a professional career in herpetology. Ecological and herpetological field courses in European and tropical countries form an important part of this programme. As a student, you will be in a stimulating environment, with fellow students and top-experts sharing your passion. For more information, have a look at http://www.herpetology.be.

Human Ecology

This profile focuses on the interaction between humans and their natural environment. The increasing impact of the human population on ecosystems worldwide stresses the urgent need for researchers with a multidisciplinary background, that engage in developmental plans for a durable use and management of natural resources. The profile Human Ecology addresses an international audience of students and offers a course programme that, besides scientific topics, also addresses technological, socio-economical and political aspects. For more information, have a look at http://www.humanecology.be.

EMMC Tropical Biodiversity and Ecosystems

The world faces a crisis risking extinction of species through global warming. Due to impact of e.g., changes in land use and destruction of habitats, tropical rain forests, mangrove forests and coral reefs are disappearing and with them ecosystem functions, goods and services on which human populations are dependent. In order to conserve nature, to manage or even to restore tropical biodiversity and ecosystems, we must understand patterns of tropical biodiversity, study how organisms interact with their environment and how they respond to perturbations and change. Next to research, this is dealt with in this unique masters programme. http://www.tropimundo.eu

Read less
The Master is conceived as a multidisciplinary and research-oriented programme. The programme also aims to develop the state of mind to perform and manage research in a multidisciplinary and international context. Read more

Developing a state of mind

The Master is conceived as a multidisciplinary and research-oriented programme. The programme also aims to develop the state of mind to perform and manage research in a multidisciplinary and international context. Therefore, our students will also be trained in different aspects of research communication and research management.

Discovery-based laboratory

The two-year programme has a strong emphasis on performing research. Its concept will require full-time attendance and will involve active participation in lectures and discovery-based laboratory work to develop the state of mind that drives the progress of science.
The program of the first year is composed of 4 modules, all of which have to be followed. The courses within each module are at advanced level and consist of 26 class hours and 6 days of practical training. The practical trainings link up with the advanced courses and will take place in the research labs under the guidance of experienced postdocs.
Protein structure and function (3x5 ECTS)
Applied Immunology (3x5 ECTS)
Advanced Molecular Biology (4x5 ECTS)
Bioinformatics (2x5 ECTS)
The program of the second year pays much attention to the acquisition of research competences. The program consists of three modules:
Elective courses (4x5 ECTS)
Master Proof (30 ECTS)
Research Communication and Management (10 ECTS)

Master Proof/Thesis

To obtain a Master degree, a student must carry out, under the direction and supervision of a promoter, an independent research project and prepare a dissertation, that is, a written account of the research and its results.

Research Communication and Management

This part of the program includes the writing of the results of the dissertation in a publication format, seminars on intellectual property rights, scientific writing, project development and the writing of a research proposal.
The latter can be a proposal for a continuation of the topic of the Master Proof, a proposal for a PhD project, or a proposal for another research project in Biomolecular Sciences, and is intended to help the students to continue their career in biomolecular research.

Read less
Bodies of water, including oceans, large lakes, seas and estuaries, make up the largest part of the earth's surface. Well above 70% of the earth´s surface consists of water, which is essential for all life. Read more
Bodies of water, including oceans, large lakes, seas and estuaries, make up the largest part of the earth's surface. Well above 70% of the earth´s surface consists of water, which is essential for all life. Humans extract both directly and indirectly a major part of their food from the seas, photosynthesis in the oceans is responsible for approximately half of the global oxygen production, the oceans continue to yield unknown life forms at an astonishing rate. In spite of the importance of the water bodies of this earth, much of them remains unknown.

If you are interested in gaining more in-depth knowledge of this world, of the ecosystems associated with water, in a scientific manner, the Master of Science in Marine and Lacustrine Science and Management offers you what you need. This combination of disciplines makes the programme unique, not only in Flanders, but also in Europe. Students with most scientifically oriented bachelor diplomas can start the programme directly.

Career opportunities

This multidisciplinary Master´s diploma is your admission ticket to a fascinating professional world and can be the start of an international career. As a scientist with a broad education, you are the right person for functions that require an integrated approach. The integration of knowledge from across various disciplines is valuable, and you can contribute significantly in various jobs that are concerned with marine and lacustrine domains, wherever they are in the world. The programme is broad and deep and can complement a wide range of scientific professions.

Contents

This 2-year master programme addresses students with a background in sciences. It provides you with strong fundamental and applied knowledge and prepares you for an active role in the scientific research and management of marine ecosystems. The programme adopts a multidisciplinary approach integrating physical, chemical geological, ecological and societal aspects and including nature conservation and sustainable development.

This programma trains students in:
1. playing a key role in high quality scientific marine research
2. providing advice in marine management based on sound scientific knowledge
3. becoming critically minded, problem-solving and communicative scientists

You can major in one of four specialisations:
• Biodiversity and Ecology
• Conservation Biology and Ecosystem Management
• Environmental Impact and Remediation
• Earth System Sciences

The programme is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS). A limited number of scholarships is available for students coming from certain developing countries.

The diversity of professional, disciplinary and cultural backgrounds of both students and lecturers ensures that the programme has a truly unique international character.

Visit the Marine and Lacustrine Science and Management (Oceans & Lakes) page on the Vrije Universiteit Brussel website for more details!

Read less
What is the Master of Biology all about?. The Master of Science in Biology emphasises problem-solving, independent thinking, and communication. Read more

What is the Master of Biology all about?

The Master of Science in Biology emphasises problem-solving, independent thinking, and communication. You will be trained in the theory and techniques of fundamental and applied research in one of two areas of specialisation: Ecology, Evolution and Conservation Biologyor Molecular Biology and Physiology.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

 Structure

The 120 ECTS programme compromises four mandatory modules:

  • Common Core (18 ECTS)
  • You will obtain the necessary training in analysing and processing complex biological data, in basic programming, and in discussing biological topics in a societal context.
  • Advanced Biology (54 ECTS)
  • You can follow two modules: ‘Ecology, Evolution and Conservation Biology’ and ‘Molecular Biology and Physiology’. Throughout advanced and specialised courses, you will obtain the necessary knowledge and insights in a specific area of Biology.
  • You can specialise in one module or combine courses from both modules to design a programme that fits your needs and interests.
  • Elective courses (18 ECTS)
  • You can select additional courses in Advanced Biology, courses on Entrepreneurship, take remedial courses to fill in knowledge gaps and/or follow courses from other master’s programmes.
  • Master’s Thesis (30 ECTS). 
  • You will conduct your own original scientific research in the field of biology in an academic setting with the help of a supervisor. You will defend your master’s thesis publicly.

Department

The Department of Biology is committed to excellence in teaching and research and is comprised of four divisions with diverse research activities ranging from molecular and physiological research at the level of cells and organisms to ecological research on populations, communities, and ecosystems. Although many research groups conduct in-depth analyses on specific model organisms, as a whole the department studies an impressive diversity of lifeforms.

Our research is internationally renowned and embedded in well-established worldwide collaborations with other universities, research institutes, and companies. Our primary goal is to obtain insight into patterns and processes at different levels of biological organisation and to understand the basis and evolution of the mechanisms that allow organisms to adapt to their constantly changing environment. This knowledge often leads to applications with important economic or societal benefits. The department attracts many students and hosts approximately 250 staff members.

Career perspectives

As a graduate of the programme, you will be in a position to pursue a career as a scientific researcher at universitiesagro-industries, pharmaceutical and biotech companies, environmental conservation organisations and NGO's

You will also be an excellent candidate for employment as a scientific advisor in banks and private investment foundations, a policy officer in governmental and public administration, a scientific communications advisor, scientific journalist, or a science teacher.



Read less
What's the Master of Nanoscience, Nanotechnology and Nanoengineering all about? . Nanoscience is the study of phenomena and manipulation on the atomic and molecular scales (nanometers. Read more

What's the Master of Nanoscience, Nanotechnology and Nanoengineering all about? 

Nanoscience is the study of phenomena and manipulation on the atomic and molecular scales (nanometers: i.e., one billionth of a meter). Important material properties such as the electrical, optical and mechanical are determined by the way molecules and atoms assemble into larger structures on the nanoscale. Nanotechnology is the application of this science in new nanomaterials and nano-concepts to create new components, systems and products. Nanotechnology is the key to unlocking the ability to design custom-made materials which possess any property we require. These newborn scientific disciplines are situated at the interface of physics, chemistry, material science, microelectronics, biochemistry and biotechnology. Consequently, control of the discipline requires an academic and multidisciplinary scientific education.

In the Master of Science in Nanoscience, Nanotechnology and Nanoengineering, you will learn the basics of physics, biology and chemistry on the nanometer scale; these courses will be complemented by courses in technology and engineering to ensure practical know-how. The programme is strongly research oriented, and is largely based on the research of centres like imec (Interuniversity Microelectronics Center), the Leuven Nanocenter and INPAC (Institute for Nanoscale Physics and Chemistry) at the Faculty of Science, all global research leaders in nanoscience, nanotechnology and nanoengineering. In your Master’s thesis, you will have the opportunity to work in the exciting research programmes of these institutes.

The objective of the Master of Science in Nanoscience, Nanotechnology and Nano engineering is to provide top quality multidisciplinary tertiary education in nanoscience as well as in the use of nanotechnologies for systems and sensors on the macro-scale.

Structure

Students follow a set of introductory courses to give them a common starting basis, a compulsory common block of core programme courses to give them the necessary multidisciplinary background of nanoscience, nanotechnology and nanoengineering, and a selection of programme courses to provide some non-technical skills. The students also select their specialisation option for which they choose a set of compulsory specific programme courses, a number of elective broadening programme courses and do their Master’s thesis research project.

  1. The fundamental courses (max 15 credits, 6 courses) introduce the students to relevant disciplines in which they have had no or little training during their Bachelor’s education. These are necessary in order to prepare students from different backgrounds for the core programme courses and the specialisation programme courses of the Master’s.
  2. The general interest courses (9-12 credits) are imparting non-technical skills to the students in domains such as management, economics, languages, quality management, ethics, psychology, etc.
  3. The core courses (39 credits, 8 courses) contain first of all 6 compulsory courses focusing on the thorough basic education within the main disciplines of the Master’s: nanophysics, nanochemistry, nanoelectronics and nanobiochemistry. These core programme courses deliver the basic competences (knowledge, skills and attitudes) to prepare the students for their specialisation in one of the subdisciplines of the Master. Next all students also have to follow one out of two available practical courses where they learn to carry out some practical experimental work, which takes place in small teams. Also part of the core courses is the Lecture Series on Nanoscience, Nanotechnology and Nanoengineering, which is a series of seminars (14-18 per year) on various topics related to nanoscience, nanotechnology and nanoengineering, given by national and international guest speakers.
  4. The specific courses (21 credits) are compulsory programme courses of the specialisation option. These programme courses are deepening the student’s competences in one of the specialising disciplines of the Master’s programme and prepare them also for the thesis work.
  5. The broadening courses (9-27 credits) allow the students to choose additional progamme courses, either from their own or from the other options of the Master’s, which allow them to broaden their scope beyond the chosen specialisation. They can also choose to do an industrial internship on a nanoscience, nanotechnology or nanoengineering related topic at a nanotechnology company or research institute.
  6. The Master’s thesis (24 credits) is intended to bring the students in close and active contact with a multidisciplinary research environment. The student is assigned a relevant research project and work in close collaboration with PhD students, postdocs and professors. The research project is spread over the two semesters of the second Master’s year, and is finalised with a written Master’s thesis report, a publishable summary paper and a public presentation.

 You can also follow a similar programme in the frame of an interuniversity programme, the Erasmus Mundus Master of Science in Nanoscience and Nanotechnology.

Career perspectives

In the coming decades, nanoscience and nanotechnology will undoubtedly become the driving force for a new set of products, systems, and applications. These disciplines are even expected to form the basis for a new industrial revolution.

Within a few years, nanoscience applications are expected to impact virtually every technological sector and ultimately many aspects of our daily life. In the coming five-to-ten years, many new products and companies will emerge based on nanotechnology and nanosciences. These new products will stem from the knowledge developed at the interface of the various scientific disciplines offered in this Master's programme.

Thus, graduates will find a wealth of career opportunities in the sectors and industries developing these new technologies: electronics, new and smart materials, chemical technology, biotechnology, R&D, independent consultancies and more. Graduates have an ideal background to become the invaluable interface between these areas and will be able to apply their broad perspective on nanoscience and nanotechnology to the development and creation of new products and even new companies.



Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
. What is the Master in Biochemical Engineering Technology all about?. This master's programme incorporates knowledge from various sectors (food, biomedical, pharmaceutical, environmental, etc.) to provide a well-rounded graduate-level curriculum in biomechanical engineering. Read more

What is the Master in Biochemical Engineering Technology all about?

This master's programme incorporates knowledge from various sectors (food, biomedical, pharmaceutical, environmental, etc.) to provide a well-rounded graduate-level curriculum in biomechanical engineering. In addition to fundamental (bio)chemical-scientific course units, you will take courses in socio-economics (company management, economics) and biotechnology (engineering, separation techniques, fermentation technology, molecular biology techniques, industrial biochemistry and microbiology, environmental technology, bioreactor design, etc.). A flexible cross-campus elective package and a master's thesis conducted in either a research-specific or industrial context enable you to focus your studies according to your specific interests and career goals.

Medical Bioengineering option

This option relates to biotechnological developments in the medical sector. Knowledge of human physiological systems (the cardiovascular system, neurophysiology, etc.) and medical engineering techniques form the foundation of developments in the area of artificial organs, tissue engineering, biomaterials, bioelectronics and new diagnostic techniques (microarray technology, PCR technology).

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.#

This is an initial master's programme and can be followed on a full-time or part-time basis.

Objectives

This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to biochemistry. The programme seeks to offer a broad academic training in biochemistry and biochemical technology, with a distinct emphasis on production, quality management and research in the food industry and related sectors.

Degree holders are able to apply the acquired scientific knowledge independently in a broad social context. Furthermore, they have the necessary organisational skills to hold executive positions.

Career paths

Our graduates find broad employment opportunities in the food and biotechnology sector, the environmental sector, the pharmaceutical industry and in the life sciences. On completion of the programme, you will be equipped with the skills to lead and coordinate industrial production units and research, analysis and screening laboratories in technical-commercial, administrative and educational environments.



Read less
What is the Master of Biomedical Sciences all about?. Biomedical sciences underwent a spectacular evolution during the past decades. Read more

What is the Master of Biomedical Sciences all about?

Biomedical sciences underwent a spectacular evolution during the past decades. New diseases such as bird flu arose, whereas others such as AIDS and diabetes have expanded. At the same time, researchers are discovering new ways to fight these diseases. The human genome has been decoded, gene technology is steadily growing, immunotherapy has been introduced for the treatment of several cancers and the first steps in the direction of stem cell therapy have been made. The laboratories at KU Leuven and University Hospital Gasthuisberg deliver cutting edge work in the field of disease and development of new therapies, stretching from bench to bedside. The Master of Biomedical Sciences at KU Leuven allows students to live this journey themselves, hands on.

Do you dream of working on the frontline of the ongoing battle for a better understanding of human health and diseases? Are dedicated to applying this knowledge to better prevention and treatment options? Then this programme is for you. During the two master's years you will be truly immersed in scientific biomedical research. By doing scientific research in a domestic or foreign laboratory, you will gain thorough know-how, strengthen your scientific skills and learn the newest scientific methods. All of these skills and accumulated knowledge will be applied in the most important part of the master's programme: your master's thesis.

Objectives

The main goal of the curriculum is to train researchers in biomedical sciences by providing a rigorous scientific training based on the acquisition of knowledge, the collection and interpretation of information and the use of modern research techniques. This is expected to stimulate the critical thinking and independence required to address a specific research question related to (dys)function of the human body and its interaction with the environment. Furthermore, the curriculum provides broad, intellectually rigorous training allowing for a wide array of job opportunities in industry, research centres and society.

The aims of the curriculum follow the educational principles of KU Leuven, important among which is the independence of the student. For the acquisition of knowledge, the university uses its own high-quality interdisciplinary scientific research. KU Leuven aims to be a centre of critical thinking where, in addition to factual knowledge, people are stimulated to identify, define and solve problems.

The quality of the curriculum is guaranteed due to the strong interconnection between education and research in the Biomedical Sciences in the broadest sense. The faculty commits itself to a future-oriented educational project in an academic setting that is at once intellectually stimulating, socially supportive and student friendly.

Career perspectives

Internationalisation has become an integral part of the profile of researchers in biomedical sciences. International exchange is the key to opening mindsets to global solutions in health and disease. Graduates can expect to embark on international-level careers in very diverse areas touching on human health.

First and foremost, biomedical scientists are prepared for a personal career full of exciting scientific research in academic or pharmaceutical laboratories dedicated to improving knowledge in human health and finding prevention strategies and cures for diseases. Beyond this, there are many different directions open to you.

Many graduates go on to careers in consultancy, policy, sales and marketing, communication and management in areas related to human health, such as the pharmaceutical industry, scientific writing agencies, regulatory agencies and government administration. Graduates find rewarding work in a wide variety of sectors: the pharmaceutical industry, the academic or educational world, healthcare, the environmental sector and food inspection, among others.

Programme graduates are in high demand in the pharmaceutical and medical industry. As a biomedical scientist, for example, you provide thoroughly prepared research, which is a crucial phase in the development of new drugs and other medical products. It is also possible to cooperate with the set-up and follow-up of preclinical trials in the pharmaceutical industry. The programme gives you the perfect profile for clinical trial design, as well as the monitoring and conducting of these trials, on both the business and clinical sides of the process.

You can also work for service companies that deliver or develop products or equipment to the medical sector. Positions in government are also open to you, especially in the area of public health. Some biomedical scientists choose to specialise in the legislation around patents and the protection of biomedical discoveries, and others begin careers as biology, chemistry or biotechnology teachers. Additionally, there is a current need for experts who can clearly communicate scientific information and research results to non-specialists and the general public.



Read less
What is the Master of Bioethics all about?. The Master of Bioethics is a one year advanced master's programme which is coordinated by the . Read more

What is the Master of Bioethics all about?

The Master of Bioethics is a one year advanced master's programme which is coordinated by the Centre for Biomedical Ethics and Law (CBMER) at KU Leuven.

Lectures, small-group discussions, case studies, and research activities characterise this programme, which is capped with a publishable research paper. Then, return to your workplace with a better understanding of today's ethical issues. Or perhaps your future is on an institutional review board, a clinical ethics committee, or within a government agency, regulatory body, or medical association. Then again, perhaps you'll take up a teaching or research career. Or you may pursue a career as a clinical ethicist at a hospital or health care facility.

Structure

The programme (60 ECTS) consists of a series of core bioethics courses, a research component and a series of electives.

Truncus communis of Core Bioethics Courses (22 ECTS)

  • Ethics and Law in Biomedical Research
  • Public Health Ethics and Ethics in Health Policy
  • Ethical Issues in End-of-life Care
  • The Foundations of Bioethics and Principles of Clinical Ethics
  • Human Genetics, Ethics and Policy
  • Law and Healthcare

A Research component (23 ECTS): a Seminar Interdisciplinary Research in Bioethics (5 ECTS) and a Master’s thesis Research Project (18 ECTS)

Elective specialisation courses (15 ECTS): In function of their background, expertise and research project, students can select from a number of courses that are offered at KU Leuven from the fields of Medicine, Theology, Philosophy, Social Sciences, Anthropology and Psychology. These elective courses allow for the development of more personal trajectories.

Objectives

The program aims at dealing with the most important traditions in bioethics together with major contemporary movements, as well as the conceptual, methodological and practical issues in different areas of bioethics. The programme wants to pay specifically attention to European traditions in philosophy, theology and ethics.

Further the program supports the students in developing academic and professional competences needed to conduct research in bioethics independently. They are encouraged to participate in the scientific debate in the domain of bioethics. It intends to support students in critically analysing the literature, writing scientific articles and submitting papers to (inter)national conferences and journals. The program also intends to prepare the students to integrate their theoretical knowledge with requisite attitudes and skills, in order to be able to apply these in a professional and clinical context. The students will be able to participate in clinical ethics committees (CECs) and research ethics committees (RECs), to deal autonomously with complex ethical problems in the field of health care and/or research, to analyse these problems and to reflect on them, and to discuss ethical issues within a cross-cultural context.

Finally the program stimulates the students to develop a critical attitude towards ethical problems and the scientific bioethical literature. It stimulates student to adapt a life-long learning attitude that is essential when one is professionally active in health care. Students are stimulated to develop openness towards different positions and teaches them to work in a multidisciplinary way. The program intends to increase moral sensibility and to develop a continuous awareness for ethical issues in clinical practice.

Career Options

Graduates are presented with a diverse spectrum of professional possibilities.

At least one in three of the students thas has graduated from the programme have gone on to work on a research project or undertake a doctoral degree.

Many graduates return to their workplace with a better understanding of the ethical issues involved there. Some serve on institutional review boards or clinical ethics committees or find positions at government agencies, regulatory bodies and medical associations.

Others are employed as professors at universities or researchers at independent research institutes. Some graduates pursue careers as clinical ethicists at hospitals and other healthcare facilities.



Read less
The Master in Chemistry is a two-year (120 ECTS) advanced study in chemistry organised by the Vrije Universiteit Brussel, a Flemish university located in Brussels, Belgium. Read more
The Master in Chemistry is a two-year (120 ECTS) advanced study in chemistry organised by the Vrije Universiteit Brussel, a Flemish university located in Brussels, Belgium. This MSc programme combines the expertise in the different research domains of both the Vrije Universiteit Brussel (VUB) and Ghent University (UGent).

About the programme

Apart from a mandatory set of core competences, the programme offers a wide variety of classes within four current trends in Chemistry (clusters composed of a course package of 30 ECTS credits):

• Molecular and Macromolecular Design offers a thorough education in the design and synthesis of organic molecules and polymers, in which medicinal chemistry, computational chemistry and structural analysis feature prominently.
• Materials Chemistry focuses on the properties of materials, such as polymers, for example surface analysis, X-rays and laser spectroscopy and computational chemistry.
• Analysis and Characterisation covers a whole range of analytical techniques, including new electrochemical methods, advanced chromatography and elemental and isotope analyses.
• Environmental Chemistry studies natural and disturbed processes in water, soil and atmosphere. A variety of analytical techniques are used here, and new sampling and measuring techniques are designed, refined and optimised.

Additionally three main orientations exist, allowing you to select a profile composed of an additional course package of 30 ECTS in Research, Industry or Education (the profile ‘Education’ is taught in Dutch).

Approach

Practicals in small groups:
Chemistry is a real experimental science. Consequently, a lot of attention is given to practical experience and laboratory training. Practical sessions are designed to precisely perform experiments in small groups, and to handle chemicals in a safe and environmentally friendly manner. Writing lab reports and oral presentation skills are emphasised, as they constitute an integral part of the preparation for your future career. During these practical sessions, you are exposed to the different research areas and you become familiar with both theoretical and practical aspects of the different branches of chemistry. You will be introduced to the world of nucleic acids, proteins, biochemical processes and their applications, the design and synthesis of new molecules, molecular properties and reactivity studies, as well as the detection of organic pollutants, or the precise measurements of very low metal concentrations in the environment (water, soil, air).

Everyday applications:
Chemistry gives insight into a broad range of phenomena with everyday applications, and teaches you the theoretical basis of molecular properties. You also learn how you can elucidate the structure of complex organic molecules, and how you can build these molecules in the lab. The air you breathe or the water you drink must comply with international quality standards. You will be taught how to monitor that quality. The focus is clearly towards a discipline-based education, with a lot of time for experimental work.

International opportunities

During your master years, you have the opportunity to do an internship and gain experience in a professional environment, such as an international company or research lab. Or you can decide to study abroad for a semester.
Within this programme you can go on exchange to:

Denmark:
- University of Copenhagen
France:
- Université Claude Bernard Lyon I
- Université Pierre et Marie Curie
- Université Montpellier I
Portugal:
- Universidade de Lisboa
Spain:
- Universitat de Girona

Student profile:

Do you want to discover new molecules or develop advanced materials with specific properties, at a university, a public or industrial research lab?
Do you want to work on energy-efficient and environmentally friendly materials and processes?
Do you want to specialise in molecular and macromolecular design, with applications in various field such as medicine, materials, etc.?
Do you want to study the impact of chemical products on the environment?
Do you want to share your knowledge and are you considering a career in education?
Do you already have a professional Bachelor’s degree and are you looking to pursue your education and increase your opportunities on the job market?

Read less

Show 10 15 30 per page



Cookie Policy    X