• Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Kent Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Coventry University Featured Masters Courses
0 miles
Biological Sciences×

Masters Degrees in Molecular Biology

Masters degrees in Molecular Biology offer advanced study of the structure and function of macromolecules (such as proteins and acids) which are essential in the biological processes of living organisms. Focus is given particularly to the chemical reactions within cells, and the role of DNA in determining biological states.

Courses range from taught MSc degrees, to research-based MRes and MPhil programmes. Entry requirements normally include an undergraduate degree.

Why study a Masters in Molecular Biology?

Read more...

  • Biological Sciences×
  • Molecular Biology×
  • clear all
Showing 1 to 15 of 316
Order by 
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. Read more
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. The structure and function of nucleic acids, genes, proteins and cell-signalling molecules are also analysed by molecular biology. Molecular biology techniques can be used to investigate errors in cellular systems that are fundamental to an advanced understanding of disease aetiology. In addition, innovations in molecular biology permit sophisticated modification of organisms, and manipulation of their functions, to permit the production of novel products and the development of novel therapeutic technologies. The burgeoning global bioscience sector creates a continuing demand for the education of scientists at postgraduate level skilled in molecular biology.

The MSc Molecular Biology with Professional Experience, is an extended full-time Masters programme with a substantive professional experience component. Within the professional experience modules, students have the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience. Internships are subject to a competitive application and selection process and the host organisation may include the University.

Internships may be paid or unpaid, and this will depend on what is being offered and agreed with the host organisation. Students who do not wish to undertake an internship or are not successful in securing an internship will undertake campus-based professional experience, which will deliver similar learning outcomes through supervised projects and activities designed to offer students the opportunity to integrate theory with an understanding of professional practice.

WHY CHOOSE THIS COURSE?

This course is intended for life science graduates from both home and overseas courses who wish to develop their knowledge and skills in biosciences with an emphasis on molecular biology. The aim of the course is to produce scientists who will be able to contribute to a range of careers including academic, commercial, industrial and healthcare applications of molecular biology. This course is also an excellent foundation for those wishing to pursue research in molecular biology at PhD level.

You will have the opportunity to study a broad range of Molecular Biology at a theoretical and a practical level. You will have the opportunity to gain hands-on experience of molecular biology techniques. You will have the opportunity to develop a range of transferrable and research skills that will develop your knowledge and enhance your employment potential.

WHAT WILL I LEARN?

The course is focused on the key elements of molecular biology and comprises modules on the following topics:
-Genomes and DNA Technology
-Cell Culture and Antibody Technology
-Mammalian Cell and Molecular Biology
-Molecular Microbiology
-Molecular Biology of Disease

The course will also comprise a Research Skills module. In addition, a Research Project forms part of the MSc course.

Additionally, the understanding gained from these modules will be demonstrated and applied in either the University-based project (12 months full-time or 24 months part-time, on course HLST104), or the professional experience modules giving students the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Molecular biology is one of the most buoyant sectors of the biosciences jobs market. Indeed, molecular biology is a key area underpinning modern biology in the post-genomic era. Consequently, many different branches of biology in both the academic and industrial sectors make use of molecular biology skills and rely on analyses at the molecular level to drive developments. It is predicted that growth in the Molecular Biology employment market will be above average over the period 2010–20.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. Read more
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. It will allow you to gain new skills and enhance your employability in the pharmaceutical and biotechnology industries or allow you to progress to a research degree.

About the course

The MSc Molecular Biology will give you hands on practical experience of both laboratory and bioinformatics techniques. You will also be trained in molecular biology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you will study two modules:
-Cellular Molecular Biology - This module aims to help you develop a systematic understanding and knowledge of recombinant DNA technology, bioinformatics and associated research methodology.
-Core Genetics and Protein Biology - This module will provide you with an advanced understanding of genetics, proteins, the area of proteomics and the molecular basis of cellular differentiation and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules:
-Molecular Medicine - You will study the areas of protein design, production and engineering, investigating specific examples of products through the use of case studies.
-Molecular Biotechnology - You will gain an in-depth understanding of the application of molecular biological approaches to the characterisation of selected diseases and the design of new drugs for their treatment.

In semester C you will undertake a research project to develop your expertise further. The research project falls into different areas of molecular biology and may include aspects of fermentation biotechnology, cardiovascular molecular biology, cancer, angiogenesis research, diabetes, general cellular molecular biology, bioinformatics, microbial physiology and environmental microbiology.

Why choose this course?

-This course gives in-depth knowledge of molecular biology for biosciences graduates
-It has a strong practical basis giving you training in molecular biology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2016 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

Graduates of the programme will be qualified for research and development positions in the pharmaceutical and biotechnology industries, to progress to a research degree, or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project. All modules are 100% assessed by coursework including in-class tests.
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Molecular Biotechnology
-Molecular Medicine Research
-Biosciences Research Methods for Masters
-Methods and Project

Read less
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. Read more
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. The course will provide you with a truly interdisciplinary educational experience by combining advanced discipline-specific training with core scientific research, technical expertise and business skills.

Visit the website: http://www.ucc.ie/en/ckr44/

Course Details

A distinctive feature of the MSc in Molecular Cell Biology with Bioinnovation is that you will receive formal innovation and technology commercialisation training through modules from the College of Business and Law at UCC.

With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will select projects with internationally-renowned research groups from the Schools of Biochemistry, Microbiology and Department of Anatomy/Neuroscience, following the completion of discipline-specific modules.

You will not only possess excellent research and technical skills on graduation but also the necessary business development and commercialisation skills for life science innovation.

Format

The course will consist of lectures, tutorials, hands-on workshops and a research dissertation based on individual research.

Core Scientific Modules (25 credits)

- Cell and Molecular Biology
- Human Molecular Genetics and Genetic Engineering Techniques
- Biological and Clinical Perspectives of Human Disease

Scientific Skills-Development Modules (10 credits)

- Biotechniques
- Scientific Communication of Current Topics in Molecular Cell Biology Core Business Modules (10 credits)
- Marketing for High Technology Entrepreneurs
- Technology and Business Planning

Elective modules (5 credits)

- Creativity and Opportunity Recognition
- Innovation Finance
- Intellectual Property Law for High-Tech Entrepreneurs

Research Project (40 credits)

You will select a project offered by internationally-renowned research groups from the Schools of Biochemistry and Cell Biology, Microbiology and Anatomy/Neuroscience. With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will complete a six month project based on individual research in one of these themes and compile the results into an MSc dissertation on completion.

You will gain invaluable hands-on, practical experience in experimental design, implementation and data interpretation and develop a wide array of transferable skills, including written and verbal communication; data recording, analysis and presentation; critical evaluation of published material; learning to work collaboratively and independently as well as project and time-management.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page04.html#molecular

Assessment

Taught modules are examined by formal written examination and continuous assessment. The research dissertation for the six-month research project must be submitted by the end of the first academic year of registration for examination by internal and external examiners.

Careers

You will be ideally positioned to enter into a PhD after graduation, but could also pursue a number of career paths including: technology transfer officer within higher education institutions and national agencies, R&D project manager, commercialisation manager within a life science start-up, or development manager within the pharmaceutical sector. The course will also equip you with the skills required to develop your own start-up venture.

A first destination surveys from 2012 - 2014 have revealed that 100% of our graduates are in employment or further education within one-year of completing the MSc in Molecular Cell Biology with Bioinnovation.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. Read more
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. With a vision of creating the next generation of leaders in Molecular Pathology, this programme will provide the state of the art training programme for Molecular Pathology, in order to facilitate the pathologists, clinical scientists, trainees, and to those in the related health professions, to acquire essential knowledge, skills and attributes in the current and future diagnosis that incorporates molecular knowledge.

Why this programme

● In August 2014, MRC published a review of the UK Molecular Pathology Landscape, in which the critical needs and challenges are pin downed in the delivery of improved diagnostics incorporating the molecular approaches.

● With a vision of creating the next generation of leaders, this programme provides state of the art training for Molecular Pathology

● We are one of the few centres where molecular pathology and diagnostic histopathology are amalgamated on one site, permitting the delivery of a clinically relevant molecular pathology course.

● The areas of main focus include diagnostic molecular pathology, clinical trials and translational research in molecular pathology, pathology bioinformatics and digital pathology. The core courses (PgCert) are designed to cover the intended learning outcomes within Royal College of Pathologists curriculum for Specialty Training in Histopathology 2015.

● The programme is led by the national leaders directly engaged in the various molecular pathology initiatives. Students are kept up-to-date with information and the current needs identified by the professional societies, research councils and charity organizations.

● You will be trained at the purpose-built Laboratory Medicine Building at the Queen Elizabeth University Hospital, which provides services to 52% of the Scottish population. This is one of the largest NHS department of pathology in Europe, accommodating about 50 consultant pathologists.

● The courses will be delivered by a range of professionals with expertise from geneticists, pathologists, clinical, lab scientists and academics, informaticians and clinicians provided across hospital practice and primary care. They are experts based in QEUH and those nationally and internationally recognized experts of molecular pathology.

Programme structure

The main aims of the MSc Molecular Pathology programme are to enable students:

• to fully provide a high quality service in molecular pathology diagnosis
• to participate in research in the area of molecular pathology
• to participate in the training of future generations of molecular pathologists

The "Blended Learning" programme offers the maximum flexibility for students who wish to study Molecular Pathology while on clinical duties and pathology training. "Moodle-Based Learning" sessions offer an advantage allowing clinicians to study within their own schedule. "In person review" sessions will enable active interactions with the course contributors and other students. Case-based and "hands-on" sessions facilitate the knowledge and skills acquired in clinical diagnosis as the programme proceeds, so it is easy to keep motivated throughout the course.

Core Courses

– 3 x compulsory, 20-credit courses; 1 per semester

• Fundamentals of Molecular Biology and Genetics for Histopathology (20 credits)
• Molecular Tests and Techniques for Histopathology (20 credits)
• Multidisciplinary Approaches to Molecular Pathology (20 credits)

The first three core components will provide the minimum requirement for students to apply molecular knowledge and skill in pathology diagnosis currently on-going and in the immediate future.

These courses will form the PgCert.

Advanced Courses

- Courses must be selected from the following options to obtain a total of 60 credits.

• Translational Medical Research Approaches (10 credits)
• Medical and Research Ethics (10 credits)
• Molecular Pathology (20 credits)
• Omics technologies for biomedical sciences: from genomics and metabolomics (20 credits)
• Frontiers in Cancer Science (20 credits)
• Disease Screening in Populations (10 credits)
• Governance and ethics in education research (10 credits)

In the advanced component, students will further their training of Molecular Pathology to acquire the knowledge needed to get involved in research, or development and improvement of diagnostics. There are options for learning of advanced technologies, wider disease areas, research methods, in-depth bioinformatics, and health professional education.

Successful completion of core and advanced courses will be awarded with the PgDip.‌

Dissertation

- 1 x 60-credit project-based course assessed by a dissertation of approximately 8,000 words followed by an oral presentation.

The Masters dissertation project gives students the opportunity to conduct research in an area of Molecular Pathology with supervisor(s) assigned to each project. For example, the opportunity to conduct an independent research project, audit or critical review of the literature in selected topics in the area of Molecular Pathology, current and future diagnosis, clinical and scientific research.

Successful completion of all core and advanced courses and the dissertation will lead to the award of the MSc.

Read less
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?. Read more
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?

Molecular Biology and Biotechnology are internationally oriented research and business areas that profit from a strong multidisciplinary knowledge on structural biology, biochemistry, molecular cell biology, genetics, microbiology and systems biology. During this programme, you acquire in-depth knowledge and skills via upperlevel theoretical and practical training. You become highly competent in the field of Molecular Biology and Biotechnology, with excellent perspectives for an independent career in an academic or industrial research environment.

The programme is mainly organized by the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and is closely related to research institute. Research is fundamental and curiosity-driven and contains specialisation in the following areas:
- Molecular Systems Biology
- Molecular Cell Biology of Complex Biological Processes
- Membrane Proteins
- Structure-function Relationships of Proteins
- Microbial Biotechnology and Biocatalysis
- Chemical and Synthetic Biology

Why in Groningen?

- Connected to research institute GBB, which maintains a strong international reputation and covers the field of systems, chemical, and synthetic biology
- Internationally oriented research and business area
- Excellent MSc students from Molecular Biology & Biotechnology may apply during their first year for the selective Top programme Biomolecular Sciences

Job perspectives

Biomolecular scientists, graduates of the Master's degree programme in Molecular Biology and Biotechnology, can pursue a career in:
- PhD in the areas of Biomolecular Sciences, Life Science, Biochemistry, Biomedical Sciences, and Bio(nano-)technology
- R&D position within Life Sciences Industry
- Scientific Advisor within a company

Read less
Overview. Advances in molecular biology have enabled major developments in biotechnology which in turn has lead to huge advances in medicine, molecular biology and industry. Read more
Overview
Advances in molecular biology have enabled major developments in biotechnology which in turn has lead to huge advances in medicine, molecular biology and industry. Students choosing this MSc degree will enjoy a comprehensive course that covers the key aspects of practical and theoretical medically-related molecular biology, developing advanced skills in this area.

Description
The course is composed of a modular 120-credit taught component and a 60-credit research project and dissertation. The taught component covers a broad range of medical molecular topics and techniques and includes thorough laboratory training. The course is run in conjuncture with our School of Medicine to ensure that students gain a broad view of modern molecular biology and laboratory techniques.

Overseas Students
A two-year course aimed at students from non-European Union countries who come to the UK requiring pre-MSc level training in English language and basic pre-MSc molecular biology. The first year of this course will bring students up to a level where they will be capable of studying for a full MSc degree and it will develop English language skills to the minimum level required for MSc level learning. Year one will be run in conjunction with ELCOS (English Language Courses for Overseas Students). Students can obtain the minimal English certification for MSc entry.

Module list (1st year of English-life sciences modules)
The English language content and life sciences teaching are integrated to enable students to undertake MSc level life-sciences modules through the medium of English

Life-sciences for none native English speakers - 50 credits
Academic Writing & Grammar
Speaking & Listening
Ad.Vocabulary Use & Reading
Near Native English 1
Near Native English 2

Modules list: (for first year of 1 year course and 2nd year of 2 year course)

Semester 1
Molecular and Medical Techniques
Techniques of molecular biology and biotechnology
Medical microbes viruses and parasites
Development, cancer and the human body
Genomes and Genetics
IT skills for medical and molecular research

Semester2
Project preparation course
Medical Biotechnology
Cellular causes of disease
Biomarkers in autoimmunity

Summer term
Research Project (Experimental research into a medical/molecular or genetics research topic)

Aims and Objectives
* Provide an excellent grounding in laboratory techniques and a critical approach to research planning and implementation.
* Develop understanding of molecular biology and the molecular basis of disease.
* Develop transferable skills, including their ability to work as a member of a team, and communicate in scientific writing and speech.
* Provide the opportunity for students to gain and enhance skills required by research organisations and biotechnology companies.
*Provide the ability to attain a level required to carry out research for a higher degree (PhD) in medical molecular and related areas.

Read less
This masters programme is designed to prepare you for a career in research in molecular and cellular biology and its applications. Read more
This masters programme is designed to prepare you for a career in research in molecular and cellular biology and its applications.

It comprises a year of intensive training and research experience leading to the award of an MRes degree which will give you a ‘flying start’ to a subsequent PhD programme, if this is your chosen career path.

This programme is designed to prepare you for a career in research in molecular and cellular biology and its applications. It comprises a year of intensive training and research experience leading to the award of an MRes degree which will give you a ‘flying start’ to a subsequent PhD programme, if this is your chosen career path.

The programme aims to provide training in the practical aspects that underlie research science in this field. To achieve this aim the course contains a very high level of hands-on research, as it is our view there is no better training than lab experience.

Programme content

Two-thirds of the programme is taken up by two approximately 18-week research projects, which are undertaken in different laboratories and with different supervisors. A very wide range of research topics falling within the scope of molecular and cellular biology is available within the School; this range extends from structural biology at one extreme to multicellular systems at the other.

In addition to this direct research experience, there are two compulsory taught modules which provide training in:

- Science Funding and Enterprise Skills in Biosciences
- Techniques in Molecular and Cellular Biology
These modules cover the basic principles underlying scientific research methods and the design of biological/biochemical experiments, and discussion of modern techniques in molecular and cellular biology. In addition, the science funding and enterprise module provides the skills required to obtain funding for sciences. This includes grant and business case writing and scientific presentation skills. You can also take courses to develop general research skills arranged through the Biosciences Graduate Research School.

The taught modules consist of a combination of seminars and lectures. The lab work that is carried out during the course is student-led. You will be able to choose areas of molecular and cellular biology that fit with your career aspirations.

Assessment

The two taught modules are assessed via examination, essays and oral presentations. The two research projects are assessed via written thesis and an oral examination.

Skills gained

This programme offers the following advantages:

Broad training in the skills and techniques of contemporary research in molecular and cellular biology
The opportunity to experience research in at least two different areas
Increased breadth and experience, which will enhance subsequent employability
The course will also enable you to:

Conduct and fund independent research
Present research results in an appropriate manner both written and orally
Have an appreciation and knowledge of the use of modern techniques in molecular and cellular biology
Build and develop scientific research projects in the public and private sector
Careers

Those who perform effectively in the MRes often continue at Birmingham to a PhD; however, the MRes also provides a very good qualification to move into research and a wide range of professions.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The two contributing universities of Salford and Keele have considerable complementary research experience in the biology of parasites and the vectors which transmit them. Read more
The two contributing universities of Salford and Keele have considerable complementary research experience in the biology of parasites and the vectors which transmit them.

This has led to the development of this unique, pioneering joint Masters degree focusing on the molecular aspects of parasite infections and vector biology. It aims to give you a sound insight into the biology of parasites and their control. The course provides you with contemporary studies of research on immunological and molecular aspects of selected parasites and vector/parasite relationships. You will gain research experience in parasitology and/or entomology.

Key benefits:

• Innovative, collaborative course taught jointly by the University of Salford and Keele.
• Significant practical training in parasitology including intensive residential field trip to Malham Tarn.
• Excellent platform for a research career.

Suitable for

Graduates who wish to enter research, teaching, scientific laboratory management and careers in parasitology and vector biology including diagnostic centres and overseas fields centres.
Programme details

Course detail

Individual research projects can be based in any of the three institutions, choosing a topical aspect of parasitology, or vector biology.

This course has both full-time and part-time routes, comprising of three 14-week semesters or five 14-week semesters, which you can take within one or up to three years respectively.

Format

Teaching is delivered by research active staff from Salford and Keele Universities. Teaching sessions are primarily based at Salford, though the facilities at Keele are also utilised. Transport is provided for classes based at Keele.

Teaching sessions include lectures, laboratory practicals, field work, tutorials, guest lectures and guided reading.

The Dissertation can be based at Salford or Keele.

Part-time students study Fundamentals of Parasitology and Molecular Biology of Parasites in year 1, Vector Biology and Control, and Research Skills (Parasitology) in year 2. Students may wish to complete the Dissertation in year 2, or year 3 depending upon commitments.

Module titles

• Fundamentals of Parasitology
• Vector Biology and Control
• Molecular Biology of Parasites
• Research Skills (Parasitology)
• Dissertation

Assessment

The Research Skills (Parasitology) and Dissertation modules are assessed by coursework. The remaining modules are assessed by coursework and examination.

Career potential

Graduates from this course have entered employment as research assistants or research laboratory technicians in pharmaceuticals, drug design and pesticide research. Other careers have included pollution microbiologists with water authorities, and work in hospital laboratories investigating the haematology, molecular biology and immunology of infectious diseases.

The MSc equips students for PhD research and former students have gone onto PhD study at prestigious Universities, including Oxford, Glasgow, Liverpool and Manchester and Toledo (USA). The students at Toledo have now completed their PhD studies are have gained employment at US Ivy League Institutes (Harvard Medical School and Cornell). Other students have elected to work in hospital laboratories, or diversify their careers by taking medical sales or enter teacher training posts.

Former overseas students have returned to their home country to take academic, or government positions.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
At the beginning of the 21st century, novel technologies are allowing us to make exciting new discoveries and obtain detailed knowledge of how molecules, cells, tissues, and organisms operate. Read more
At the beginning of the 21st century, novel technologies are allowing us to make exciting new discoveries and obtain detailed knowledge of how molecules, cells, tissues, and organisms operate. Furthermore, these advances are changing the way in which we diagnose and treat human disease. In light of these developments, it is crucial that we educate today’s students about biology at the molecular level. Koç University’s Molecular Biology and Genetics Masters Program succeeds in providing broad and deep education in the biological sciences. The Molecular Biology and Genetics Masters Program offers advanced cell and molecular biology and genetics courses as well as electives in areas, such as cancer biology, neuroscience, and bioinformatics. Students in the Molecular Biology and Genetics program will engage in experimental research by working with faculty members in their cutting-edge research programs. The program will prepare students for careers in areas including: academia, pharmaceutical discovery and development, biotechnology, environmental sciences, food quality control, and forensics.

Current faculty projects and research interests:

• Bioinformatics
• Genomics
• Proteomics
• Cancer
• Mitochondrial Function and Ageing
• Neuroscience
• Cell division/Cell Cycle
• Molecular Biology of Human Diseases
• Circadian Rhythm
• Plant Biotechnology
• Stem Cell Biology

Read less
This programme is designed for professionals in health and related areas, such as pharmaceuticals and biotechnology, who wish to acquire knowledge and understanding of molecular biology and its impact on biomedicine and related disciplines. Read more
This programme is designed for professionals in health and related areas, such as pharmaceuticals and biotechnology, who wish to acquire knowledge and understanding of molecular biology and its impact on biomedicine and related disciplines. It introduces you to recent advances made in the study of disease, with the emphasis on how advanced molecular technologies inform and impact upon clinical practice.

The theory is delivered using the online Blackboard virtual learning environment that provides the flexibility of studying at your own pace and from any location in the world. You will interact with other students on the course through online discussion groups and receive excellent support from your tutors who are only an email or phone call away.

Workshops at our Stoke-on-Trent campus enable you to put your learning into practice by applying molecular techniques to diagnostic and analytical practice in our state-of-the-art laboratory facilities.

The full programme incorporates the PgC Molecular Basis of Disease and PgD Molecular Biology for Health Professionals as qualifications in their own right or as step-off points on the way to achieving the MSc. Undertaking the full-time distance learning route to the MSc should take around 18 months.

Course content

Each of these awards has been designed specifically to meet the needs of professionals in Biomedicine.

The Certificate will introduce you to recent advances made in the study of disease, with the emphasis on how advanced molecular technologies inform and impact on clinical practice.

The Diploma takes theory into practice, with hands-on practical skills developed during two one week residential short courses (in January and June). These workshops will enable you to meet with your cohort, attend seminars and undertake practical work in our excellent laboratory facilities under the guidance of practicing clinical scientists and academics.

The Masters in Molecular Biology incorporates all of the Certificate and Diploma studies and provides you with an opportunity to undertake a masters research project. Projects may be completed in your place of work or at the University.

Graduate destinations

The programme comprises postgraduate certificate, diploma and masters courses and is aimed at professionals in health and related areas such as pharmaceuticals and biotechnology, who wish to acquire knowledge and develop understanding of molecular biology and its impact on biomedicine. The programme explores current understanding of molecular biology and techniques within a clinical context.

Read less
The Top Programme Biomolecular Sciences is part of the Master's degree programme in Molecular Biology and Biotechnology and will educate you at an advanced level. Read more
The Top Programme Biomolecular Sciences is part of the Master's degree programme in Molecular Biology and Biotechnology and will educate you at an advanced level.

The Top Programme in the MSc Molecular Biology & Biotechnology prepares you for conducting top quality research in the field of Molecular Biology and Biotechnology. The research you will be engaged in during the programme is closely connected to the Groningen Biomolecular Sciences and Biotechnology Institute (GBB), This research institute has an international reputation within the covering field of synthetic biology.

During this programme you get the chance to contribute on biobased solutions for societal challenges in chemistry, energy, and health. You will acquire top quality research competences and become highly attractive for a research career in the area of Biomolecular Sciences. Your career will either start with a PhD research or at an R&D institution.

One semester of comprehensive courses must be successfully completed in order to receive the special annotation of the Top Programme on the diploma supplement for Molecular Biology and Biotechnology. Admission is highly selective.

Why in Groningen?

- Highly selective study programme with emphasis on research.
- Prepares you for conducting top quality research in the field of molecular biology and biotechnology.
- Connected to the research institute GBB, which has a strong international reputation and also covers the field of systems, chemical, and of synthetic biology.

Job perspectives

When you have finished the Top Programme in Biomolecular Sciences, you have excellent opportunities to continue your academic career via a subsequent PhD study. Various Top programme students even received offers for PhD positions during their Master's research projects.

You will also have an excellent background to obtain a position in R&D laboratories in Life Sciences industries.

Job examples

- PhD research position
- R&D position in Applied Sciences institutions or Life Sciences industries

Read less
This course provides comprehensive training in molecular cellular and developmental biology, with particular emphasis on animal systems. Read more
This course provides comprehensive training in molecular cellular and developmental biology, with particular emphasis on animal systems. If you're looking to develop new skills for your career, or prepare for a higher degree such as an MSc or PhD, this is an ideal refresher or top-up course.

We’ll also give you practical training in modern molecular cell biology laboratory techniques, including experimental design, analysis and presentation.

You'll gain in-depth knowledge and understanding of the processes that govern embryonic development. You’ll also learn about the molecular and genetic processes that underpin cell biology of body systems.

Lectures and practicals will highlight the relevance of developmental and cell biology to the fields of stem cell and cancer biology, cellular homeostasis and tissue regeneration, and to the process of normal ageing.

Core modules

Advanced Developmental Biology
Advanced Molecular Biology
Practical Molecular Cell Biology

Teaching

Lectures
Laboratory sessions

Assessment

Essays
Practical work
Exams

Read less
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology. Read more
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology.

This MRes has been designed to enhance knowledge of recent advancements in cellular and molecular biology, as well as to develop subject-specific practical and analytical skills. In addition, you will gain experience of undertaking an extended period of research (6-7 months), which will aid your career progression as a molecular bio-scientist.

The programme will involve undertaking two core 20 credit taught modules, followed by an extended period of laboratory research, and submission of a Research report and review, 140 credits.

Why Study Cell and Molecular Biology Pathway with us?

Our lecturers range from enthusiastic early career academics through to internationally acknowledged senior researchers. We are actively involved in undertaking innovative research projects using ‘cutting-edge’ approaches, within the field of molecular and cellular life sciences.

Some of our current projects are listed below:
- Environmental toxicology
- Protection against the ageing
- Calcium signalling
- Biochemistry & pharmacology of intracellular Ca2+ transporters
- Stem cells
- Tissue regeneration
- Pathology of bone disease
- Progression of kidney and bladder cancers
- Novel drug delivery systems via nanoparticles and cell penetrating peptides
- Molecular basis of cancer development
- Novel approaches to cancer therapies
- Molecular immunology
- Development of analytical approaches to detect biomarkers of disease

What will I learn?

The MRes will involve undertaking two core 20 credit taught modules which consists of a mixture of lectures, workshops and practical classes in:
- Advances in Cell and Molecular Biology (BI7144)
- Skills for Molecular and Cellular Bioscientists (BI7145)

Followed by an extended period of laboratory research (140 credits) in an area that allies with the interests of our academic staff.

How will I be taught?

The two taught modules will each comprise of a series of lectures, small group discussion sessions, workshops and practical classes. Nominally each taught module has about 30-40 of contact hours associated with them. The rest of the time allocated for these modules will be for further reading, coursework preparation and revision.

The remainder of the programme will comprise of the 6 to 7 month research project which will involve regular meetings and guidance with your research supervisor. This is followed by the preparation of two reports.

How will I be assessed?

The research dissertation will be assessed by the production of a research report in the format of a scientific paper and a research review (80%).

The taught modules will be assessed by the production of practical and theoretical reports and class tests (20%).

Postgraduate Visit Opportunities

If you are interested in this courses we have a number of opportunities to visit us and our campuses. To find out more about these options and to book a visit, please go to: https://www1.chester.ac.uk/study/postgraduate/postgraduate-visit-opportunities

Request a Prospectus

If you would like to know more about the University please request a prospectus at: http://prospectus.chester.ac.uk/form.php

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

This course is suitable if you:
-Wish to pursue research into molecular and cell biology or disease mechanisms at PhD level.
-Want to improve your knowledge and skills to be competitive in the life science jobs market.
-Are currently employed and seeking to improve your career prospects.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography. In addition many of our research facilities such as flow cytometry, confocal microscopy and mass spectrometry are used in taught modules and research projects and our tutors are experts in these techniques.

You gain:
-A detailed and up-to-date understanding of molecular biology and cell biology.
-Knowledge of how alterations or defects in cellular processes may lead to disease, such as cellular dysfunction leading to degenerative diseases, cell cycle dys-regulation in cancer, and how mutations result in genetic diseases.
-Hands-on expertise in the latest techniques including cell culture, flow cytometry, real-time PCR, immuno-histochemistry and recombinant DNA technology.
-Professional skills to further your career in research or the life science industry.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where students are assigned to a tutor who is an active researcher in the biomedical research centre. Typically, taught modules have a mixture of lectures and tutorials and involve a significant amount of laboratory time. Other modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

Tutors complete research within the Biomolecular Sciences Research Centre into cancer, musculoskeletal diseases, human reproduction, neurological disease, medical microbiology and immunological basis of disease. Their work is regularly published in international peer-reviewed journals, showing that the course is underpinned by relevant quality research.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-molecular-and-cell-biology

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The diploma and certificate are shorter. Starts September and January.

The Masters (MSc) award is achieved by successfully completing 180 credits.
The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits.
The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Biomedical laboratory techniques (15 credits)
-Cell biology (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Molecular biology (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Options (two from)
-Applied biomedical techniques (15 credits)
-Cellular and molecular basis of cancer (15 credits)
-Molecular biotechnology (15 credits)

Assessment
Assessment methods include written examinations and coursework including: problem-solving exercises; case studies; reports from practical work. Research project assessment includes a written report and viva voce.

Read less
This Masters in Bioinformatics, Polyomics and Systems Biology is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Read more
This Masters in Bioinformatics, Polyomics and Systems Biology is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Bioinformatics is a discipline at the interface between biology and computing and is used in organismal biology, molecular biology and biomedicine. ‘Polyomics’ is a new term used to describe the modern integrated approach to biological analysis involving genomics, transcriptomics, proteomics, metabolomics and systems-level datasets. The MSc Bioinformatics programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and display - all of which form a core part of modern biology.

Why this programme

-Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical-based elective courses in Semester 2 and in a summer research project.
-You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
-Bioinformatics and the 'Omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
-Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
-The Semester 2 elective courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organizing and implementing appropriate analysis pipelines.
-You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics; our College has carried out internationally-recognised research in functional genomics and systems biology.
-The new programme reflects the development and activities of 'Glasgow Polyomics'. Glasgow Polyomics is a world-class facility set up in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
-In addition, we have several world-renowned research centres at the University, such as the Wellcome Trust Centre for Molecular Parasitology and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
-You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area: systems biology.

‘Polyomics’ involves the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure
-Core material - 60 credits, Semester 1, made up of 10, 15 and 20 credit courses.
-Elective material - 60 credits, Semester 2, students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
-Project - 60 credits, 14 weeks embedded in a research group over the summer.

Core and optional courses

Core courses include:
-Programming (Java)
-Database Theory and Application
-Foundations of Bioinformatics
-Omics and Systems Approaches in Biology
-These 4 courses are obligatory for those taking the MSc degree and the PgDip; they are also obligatory for those with no prior programming experience taking the PgCert.
-60-credit summer research project lasting 14 weeks - this is also obligatory for those taking the MSc programme; normally this will be with one of the research laboratories in Glasgow associated with the programme, but there is also the opportunity to study in suitable laboratories in other parts of the world

Optional courses include:
-RNA-seq and next generation transcriptomics
-Metagenomics
-Pathogen Polyomics
-Cancer Genomics - NGS and functional analysis methods
-Disease Pathway Analysis - Systems Approaches and De Novo Pathway Mapping
-Using Chemical Structure Databases in Drug Discovery for Protein Targets
-Identification of disease-causing genetic variants
-A range of more general biology and computing biology courses are also available in semester 2

Career prospects

Most of our graduates embark on a research career path here in the UK or abroad using the skills they've acquired on our programme - these skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science. A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - e.g. computing biology jobs in biotechnology/biosciences/neuroinformatics/pharma industry. Some of our graduates have entered science-related careers in scientific publishing or education; others have gone into computing-related jobs in non-bioscience industry or the public sector.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X