• University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
Birmingham City University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Ulster University Featured Masters Courses
0 miles
Materials Science×

University of Birmingham Masters Degrees in Metallurgy

We have 4 University of Birmingham Masters Degrees in Metallurgy

  • Materials Science×
  • Metallurgy×
  • University of Birmingham×
  • clear all
Showing 1 to 4 of 4
Order by 
New materials underpin development and progress across a wide variety of sectors. New technologies, from planes to batteries, from hip implants to electronic devices, are made possible, and often limited by, the materials we currently know and use. Read more

New materials underpin development and progress across a wide variety of sectors. New technologies, from planes to batteries, from hip implants to electronic devices, are made possible, and often limited by, the materials we currently know and use.

Materials Scientists and Engineers work hard to understand how and why materials behave the way they do, and exploit this knowledge to develop new materials with amazing properties.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III and summer in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials.

Course details

Studying Materials Science and Engineering, you will develop a fundamental understanding of how the properties of a material, such as strength, electronic properties and biocompatibility, are affected by the material’s structure, such as its crystal structure or microstructure.

This knowledge can then be used to formulate strategies to develop new materials, such as alloys able to operate at higher temperatures for jet engine blades or high-toughness ceramics for armour applications. This programme will equip you with the skills required to join a wide variety of industries in the capacity of materials specialist, or continue your education at a PhD level.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III & summer. In addition to technical modules, the course also provides training for transferable skills such as Communiation Skills and Effective Project Management.

Research projects can be carried out in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials or in industry. The project involves full-time research for one third of the academic year.

Related links

Learning and teaching

All students take twelve modules for a total 120 credits, plus a research project.

The programme is currently delivered through a combination of lectures, seminars, tutorials, project-based and laboratory-based teaching and learning methods.

Employability

Our graduates go on to become engineers and scientists at a wide variety of industrial partners, or opt to continue their studies at PhD level.

Typical employers:

  • BAE Systems
  • Rolls-Royce
  • Royal Air Force
  • British Petroleum

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
This programme comprises a major research project and six taught modules, four compulsory and two optional. The research project can be taken full-time or part-time and can be carried out in the University or by industrial collaboration with a company. Read more

This programme comprises a major research project and six taught modules, four compulsory and two optional.

The research project can be taken full-time or part-time and can be carried out in the University or by industrial collaboration with a company.

Course details

This programme can be taken on a full- or part-time basis. This one-year Course (full-time) comprises a major research project (two-thirds of the year) and six taught modules (one-third of the year), which are taken intermittently throughout the year. 

Students with an appropriate technical background (a Materials Science first degree) can start the course at any time. Students without a background in Materials Science are required to take the Introduction to Materials module (see module section), and must start the MRes Course at the beginning of the academic year, in September. 

Related links 

Learning and teaching

The programme is currently delivered through a combination of lectures, seminars, tutorials, project-based and laboratory-based teaching and learning methods.

Examples of MRes in the Science and Engineering of Materials Research Projects

  • Reliability of optical fibre sensors for smart structures 
  • Mechanical reliability of optical fibres for telecommunications
  • Chemistry and stability of localised corrosion sites
  • High Resolution Synchrotron X-ray studies of pitting corrosion
  • Simultaneous thermal (DSC), spectral (FTIR) and physical (TMA) analyses of polymers
  • Design, fabrication and evaluation of a novel fibre optic acoustic emission sensor 
  • Detection (and modelling) of moisture ingress in composites using optical fibre sensors 
  • Self-sensing glass fibre composites: Chemical process monitoring
  • Self-sensing glass fibre composites: Damage detection
  • Characterisation of photo-curable dental resins using a non-contact probe

Employability

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
Supporting you to capitalise on the recognised skills shortage in this field. In the UK we currently have 17 nuclear sites at various stages of decommissioning, ranging from first generation Magnox reactors, sites at Sellafield, Springfields and Capenhurst, as well as the fast-reactor research facility at Dounreay. Read more

Supporting you to capitalise on the recognised skills shortage in this field.

In the UK we currently have 17 nuclear sites at various stages of decommissioning, ranging from first generation Magnox reactors, sites at Sellafield, Springfields and Capenhurst, as well as the fast-reactor research facility at Dounreay.

This programme effectively prepares you for a career in the nuclear industry, supporting you to develop the scientific understanding and practical skills to address the challenges in this area.

Course details

This programme covers a wide range of the skills required to work in the nuclear industry and is co-taught with world-leading academic staff from different Schools within the University. Learning is via lectures and practical sessions, supported by field trips and industry seminars.

In the autumn and spring semesters, you will study all of your taught modules. In the summer you will work on your own research project chosen from a wide range of topics in the field.

This project may be conducted at the University, but more frequently in recent years we have arranged for projects to be undertaken within industry, giving students an opportunity for direct interaction and enhancing their employment prospects.

Learning and teaching

This programme covers a wide range of the skills required to work in the nuclear industry and is co-taught with world-leading academic staff from different Schools within the University.

Learning is via lectures and practical sessions, supported by field trips and industry seminars. A variety of assessment methods are used, including laboratory exercises, written coursework, case study reports, oral presentations and standard examinations.

Employability

There is currently a significant shortage of skilled graduates in the field of nuclear decommissioning and waste management, both within the UK and globally. This degree course is a response to the skills shortage, and seeks to train high quality graduates for the Nuclear Industry. The sector will grow, and the demand for high quality graduates increase with the decommissioning of the current fleet of reactors.

Typically, two thirds of our students have jobs or PhDs lined up to walk into upon completion of the course before they have even finished the MSc. Most of the remaining one third will have something within a few months of graduating, and with a total eventual recruitment into the nuclear industry of about 90%.

The research skills acquired will also provide a strong foundation for those wishing to undertake further postgraduate study towards the award of a PhD.

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
Postgraduate degree course in Efficient Fossil Energy Technologies Masters/MSc. The University of Birmingham, as a partner in The Midlands Energy Graduate School (MEGS), has launched a new taught Masters in Efficient Fossil Energy Technologies. Read more

Postgraduate degree course in Efficient Fossil Energy Technologies Masters/MSc

The University of Birmingham, as a partner in The Midlands Energy Graduate School (MEGS), has launched a new taught Masters in Efficient Fossil Energy Technologies.

Consisting of core and optional modules, delivered by experts from the universities of Nottingham, Birmingham and Loughborough, this MSc will encourage and embed excellence in fossil energy technologies, carbon capture and efficient combustion. It will prepare future leaders and industrial engineers with knowledge and skills to tackle the major national and international challenges of implementing new fossil-based power plant and processes more efficiently, with near zero emissions and CO2 capture.

This course provides expert teaching from three leading universities in the UK a unique partnership to allow students to benefit from a wide range of expertise. Modules studied represent the academic specialism offered by each university and the research project, taken at the university where you register, will focus on specific aspects of fossil energy technologies: Birmingham specialises in managing chemical reactions, plant design and carbon capture technologies; Loughborough in materials technologies for power generation and high-temperature applications; and Nottingham will focus on combustion technologies, power generation, environmental control and carbon capture. It is therefore important to select your choice of university carefully. Full details of these options and specialisms are in the Modules section of the Course Details tab and all enquiries are welcome.

Chemical Engineering is dynamic and evolving. It provides many solutions to problems facing industries in the pharmaceutical, biotechnological, oil, energy and food and drink sectors. It is vital to many issues affecting our quality of life; such as better and more economical processes to reduce the environmental burden, and more delicious and longer lasting food due to the right combination of chemistry, ingredients and processing.  

Birmingham is a friendly, self-confident, School which has one of the largest concentrations of chemical engineering expertise in the UK. The School is consistently in the top five chemical engineering schools for research in the country. It also has a first-class reputation in learning and teaching, and regularly ranks highly in league tables.

Course details

This programme will encourage and embed excellence in fossil energy technologies, carbon capture and efficient combustion. It includes modules on power generation and technologies, industrial case studies, economics of energy and innovation and allows students to assimilate the contextual issues surrounding fossil-based energy alongside technical aspects. Coupled with the major research project, this core will thus promote enquiry-based learning which will be supplemented by a range of optional technical and contextual/managerial modules.

This course provides expert teaching from three leading universities in the UK a unique partnership to allow students to benefit from a wide range of expertise.

Related links

Learning and teaching

This programme provides a solid basis for a career in fossil fuel-powered energy generation. Comprising lectures, seminars, tutorials, workshops, coursework and group project work, it addresses the management of technical (engineering) activities, the development of personal, interpersonal and project management skills, and provides a fundamental understanding of the wider social and economic aspects of energy generation and use.

Modules available from the universities of Nottingham and Loughborough are available either via state-of-the-art video-conferencing facilities, so students do not usually need to attend the other university, or in person. Should any student wish to travel to partake directly in some lectures, advice can be provided on appropriate travel and accommodation.

Modules taught at Birmingham are delivered in week-long blocks; those from Nottingham and Loughborough may be in blocks or may take place on specific days/times throughout the term. Please contact us (details to the right) about these if you would like more information about this.

Employability

Graduates of this programme will be in demand by power generation companies and partner organisations working on technologies for a near-zero-emission power plant. There is a world-wide demand for engineers and scientists with high-level education and skills in energy technologies, focussing on fossil fuels, as coal-fired power stations continue to be commissioned, built and operated. This programme also provides an entry route to progress to PhD study, upon successful completion (minimum grades apply).

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X