• Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Imperial College London Featured Masters Courses
Swansea University Featured Masters Courses
0 miles
Physics×

Masters Degrees in Medical Physics - Radiation

We have 31 Masters Degrees in Medical Physics - Radiation

  • Physics×
  • Medical Physics - Radiation×
  • clear all
Showing 1 to 15 of 31
Order by 
Our Physics MSc is highly flexible, giving you the opportunity to structure your course to meet your individual career aspirations. Read more

Our Physics MSc is highly flexible, giving you the opportunity to structure your course to meet your individual career aspirations.

The course gives you the opportunity to broaden and deepen your knowledge and skills in physics, at the forefront of research in the area. This will help to prepare you to progress to PhD study, or to work in an industrial or other business related area.

A key feature of the course is that you can choose to study a wide range of optional modules or focus on a particular area of research expertise according to your interests and future career aspirations.

Under the umbrella of an MSc in physics, you can specialise in astrophysics, bionanophysics, soft matter physics, condensed matter physics, quantum technology, optical materials or medical imaging. Or you can take a diverse range of modules to suit your interests and keep their options open.

Course content

The course offers you a very wide range of optional modules, giving you the opportunity to specialise in areas such as astrophysics, bionanophysics, soft matter physics, condensed matter physics, quantum technology, optical materials or medical imaging.

Modules studied may include: quantum field theory; superconductivity; general relativity; medical image analysis; cosmology; bionanophysics; magnetism in condensed matter; statistical mechanics; star and planet formation; elementary particle physics; quantum matter; and photonics.

Alongside your optional modules, you will undertake an advanced and extensive research project in one of the School of Physics and Astronomy’s internationally recognised research groups. This will enable you to develop advanced skills in research planning, execution and reporting, possibly leading to publication of your work in an international journal.

Course structure

Compulsory modules

  • MSc Project 75 credits
  • Advanced Literature Review 15 credits
  • Current Research Topics in Physics 15 credits

Optional modules

  • Cardiovascular Medical Imaging 10 credits
  • Digital Radiography and X-ray Computed Tomography 10 credits
  • Magnetic Resonance Imaging 10 credits
  • Ultrasound Imaging 10 credits
  • Radionuclide Imaging 10 credits
  • Medical Image Analysis 10 credits
  • Digital Radiography and X-ray Computed Tomography 15 credits
  • Ultrasound Imaging 15 credits
  • Radionuclide Imaging 15 credits
  • Medical Image Analysis 15 credits
  • Cosmology 15 credits
  • Photonics 15 credits
  • Molecular Simulation: Theory and Practice 15 credits
  • Star and Planet Formation 15 credits
  • Advanced Quantum Mechanics 15 credits
  • Quantum Photonics 15 credits
  • Quantum Matter 15 credits
  • Magnetism in Condensed Matter 15 credits
  • Statistical Mechanics 15 credits
  • Advanced Mechanics 15 credits
  • Bionanophysics 1 15 credits
  • Theoretical Elementary Particle Physics 15 credits
  • Soft Matter Physics: Liquid Crystals 15 credits
  • Quantum Many-Body Physics 15 credits
  • Winds, Bubbles and Explosions 15 credits
  • Bionanophysics 2: Advanced Bionanophysics Research 15 credits
  • Advanced Group Industrial Project 15 credits
  • Superconductivity 15 credits
  • Soft Matter Physics: Polymers, Colloids and Glasses 15 credits
  • Quantum Transport in Nanostructures 15 credits
  • Quantum Field Theory 15 credits
  • General Relativity 15 credits
  • Quantum Information Science 15 credits
  • Advanced Physics in Schools 15 credits

For more information on typical modules, read Physics MSc in the course catalogue

Learning and teaching

Teaching methods include a combination of lectures, seminars, supervisions, problem solving, presentation of work, independent research, and group work (depending on the modules you choose to study).

Assessment

Assessment of modules are by problem solving exams and research assignments. The project is assessed on the ability to plan and conduct research and communicate the results in written and oral format.

Career opportunities

The specialist pathways offered by this course (in astrophysics, bionanophysics, soft matter physics, condensed matter physics, quantum technology, optical materials or medical imaging) allow you to tailor your course and focus on a particular area of research expertise according to your interests and future career aspirations.

Physicists are highly employable due to their high level of numeracy and mathematical competence, their computer skills, and their high level of technical academic scientific knowledge. They are employed by: industry, financial sector, defence, education, and more.

This course is also a clear route to PhD level study.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
The MSc Medical Imaging programme is intended to provide a Masters-level postgraduate education in the knowledge, skills and understanding of engineering design of advanced medical and biotechnology products and systems. Read more
The MSc Medical Imaging programme is intended to provide a Masters-level postgraduate education in the knowledge, skills and understanding of engineering design of advanced medical and biotechnology products and systems. Students will also acquire a working knowledge of the clinical environment to influences their design philosophy.

Why study Medical Imaging at Dundee?

With biotechnology replacing many of the traditional engineering disciplines within the UK, this programme will allow you to develop the skills to apply your engineering or scientific knowledge to technologies that further the developments in this field. As a result, employment opportunities will be excellent for graduates, both in research and in industry.

We have an active research group, and you will be taught by leading researchers in the field.

What's so good about Medical Imaging at Dundee?

The MSc in Medical Imaging at the University of Dundee will:

Provide knowledge, skills and understanding of medical imaging technologies, particularly in modern biomedical, radiological and surgical imaging instrumentation, biomaterials, biomechanics and tissue engineering

Enhance your analytical and critical abilities, competence in multi-disciplinary research & development

Provide broad practical training in biology and biomolecular sciences sufficient for you to understand the biomedical nomenclature and to have an appreciation of the relevance and potential clinical impact of the research projects on offer

Allow you to experience the unique environment of clinical and surgical aspects in medical imaging in order to provide an understanding of the engineering challenges for advanced practice

Provide core training in electrical, microwave, magnetic, acoustic and optical techniques relevant to the life sciences interface and

Provide broad experience of analytical and imaging techniques relevant for biology, biomolecular and clinical sciences
provide core training in acoustic ultrasound technologies.

Who should study this course?

This course is suitable for students who are recent graduates of mechanical engineering courses or other related programmes.

This course has two start dates - January & September, and lasts for 12 months.

How you will be taught

The programme will involve a variety of teaching formats including lectures, tutorials, seminars, hands-on imaging classes, laboratory exercises, case studies, coursework, and an individual research project.

The teaching programme will include visits to and seminars at IMSaT and clinical departments at Ninewells Hospital and Medical School and Tayside University Hospitals Trust, including the Clinical Research Centre, the Departments of Medicine, Surgery, Dentistry and ENT, the Vascular Laboratory and Medical Physics.

A high degree of active student participation will be encouraged throughout. Taught sessions will be supported by individual reading and study. You will be guided to prepare your research project plan and to develop skills and competence in research including project management, critical thinking and problem-solving, project report and presentation.

What you will study

The course is divided into two parts:

Part I has 60 credits:

Biomechanics (20 Credits)
Biomaterials (20 Credits)
Bioinstrumentation (10 Credits)
Introduction to Medical Sciences (10 Credits)

Part II has one taught module and a research project module. It starts at the beginning of the University of Dundee's Semester 2, which is in mid-January:

Taught module: Advanced Biomedical Imaging Technologies (30 Credits).
Research project (30 Credits for diploma or 90 Credits for MSc)

How you will be assessed

The taught modules will be assessed by a combination of written examinations and coursework. The research project will be assessed by a written thesis and oral presentation.

Careers

This Master's programme provides you with the skills to continue into research in areas such as biomedical and biomaterials engineering as well as progression into relevant jobs within the Mechanical Engineering and Mechatronics industries.

Read less
We offer a technology-oriented research Master’s programme that prepares for a career in this strongly multidisciplinary field. Read more

Medical Imaging

We offer a technology-oriented research Master’s programme that prepares for a career in this strongly multidisciplinary field. The programme combines elements from physics, mathematics, computer science, biomedical engineering, biology, and clinical medicine allowing you to attain a high level of knowledge and skills in various areas of medical imaging, such as image acquisition physics, quantitative image analysis, computer-aided diagnosis, and image-guided interventions.

The field of medical imaging is evolving rapidly, since medical diagnosis and treatment are increasingly supported by imaging procedures. The programme is offered in close collaboration between the Imaging Division of the University Medical Center Utrecht and Eindhoven University of Technology (TU/e). This collaboration tops a solid technological basis with strong links to research performed in a clinical setting.

Read less
As a practising therapeutic radiographer, this unique programme allows you to quickly and easily obtain a full masters qualification. Read more
As a practising therapeutic radiographer, this unique programme allows you to quickly and easily obtain a full masters qualification.

Having an MSc Radiotherapy will enable you to meet the standards expected by the profession and greatly enhance your career prospects.

To apply you must already have the Postgraduate Diploma in Radiotherapy from the University of Liverpool, or a pre-registration Postgraduate Diploma from a different UK university that confers eligibility to apply for registration as a therapeutic radiographer with the Health and Care Professions Council (HCPC). You should also have 12 to 18 months clinical work experience.

The MSc consists of one 60 credit dissertation. Your learning starts with a four day block workshop, which runs in September and January each year. You then complete your independent research project under the guidance of an appropriate supervisor. You can liaise with your research supervior to develop a study plan that works for you both e.g. face to face meetings, online meetings or a combination.

The Directorate staff have a very wide range of expertise including medical physics in radiotherapy, computer treatment planning, imaging in radiotherapy, general cancer care and strategic planning of cancer services locally and nationally. The Directorate also has its own CTSim, treatment planning system, a patient management information system and a virtual environment in radiotherapy (VERT) system. These facilities will allow supervisors to support students on the MSc in Radiotherapy in a diverse range of dissertations.

Completion of the MSc must be achievable within 6 years of the start of your pre-registration Postgraduate Diploma programme.

Why Radiotherapy?

Unique programmes

We are the only Russell Group University delivering Radiotherapy education programmes.

Clinical Placement Sites

Our clinical palcement sites are second to none. We have three Internationally renowned cancer centres: The Christie NHS Foundation Trust, the Clatterbridge Cancer Centre and Rosemere Cancer Centre.

Clinical and Academic experience

We use real, 21st century radiotherapy technologies.

State of the art facilities

Our state-of-the-art facilities include a CT scanner, Virtual Reality Radiotherapy Suite, Human Anatomy Resource Centre, Oncology Management System and Eclipse Treatment Planning System.

Successful students present work at national and international conferences

The best poster award at the annual Society and College of Radiographers Conference in 2015 went to a recent graduate of the MSc Radiotherapy. The poster was also accepted for the multi-disciplinary annual conference of the European Society for Radiotherapy and Oncology in 2015.

Read less
This taught Masters is designed to provide you with an advanced programme of study in Medical Physics. It provides an understanding of the application of physics and technology to a range of disciplines within medical physics at a level appropriate for a professional physicist. Read more
This taught Masters is designed to provide you with an advanced programme of study in Medical Physics. It provides an understanding of the application of physics and technology to a range of disciplines within medical physics at a level appropriate for a professional physicist. We have expertise in traditional areas like ionising radiation, but also specialist sections in PET Scanning, Ophthalmology, Urology, Informatics and leading researchers in MRI.

Why this programme

◾A key strength of this programme is that you will be taught mostly by physicists working in the NHS. It will quip you for employment in a clinical environment.
◾Due to the large size of the NHS medical physics department in Glasgow, all mainstream areas of medical physics are covered along with some specialised fields.
◾The programme is accredited with the Institute of Physics & Engineering in Medicine (IPEM), the UK professional body for medical physicists.
◾The department has access to 1.5, 3 and 7 Tesla MRI, Pet Scanning, a cyclotron, dedicated SPECT and has its own radiosotope dispensary.
◾Your lecturers are operating at the forefront of the profession with a balance of research and clinical practice, perfect for studying Medical Science.
◾The research component of this programme allows you to develop valuable skills for practising and interpreting research.
◾We draw on expert resources within the wider university for anatomy, statistics and the two optional courses.

Programme structure

You will attend lectures, seminars and tutorials, take part in e-learning and undertake a research project.

Core courses
◾Radiation physics
◾Anatomy and physiology
◾Statistics and experimental techniques
◾Medical imaging physics
◾Programming
◾Scientific management
◾Clinical medical imaging
◾Radiotherapy
◾Clinical measurement
◾Research dissertation.

Optional courses
◾Advanced data analysis
◾Problem solving.

Career prospects

Career opportunities include positions in the NHS, private healthcare and equipment manufacturers. This is the course followed by the NHS trainees in Scotland so it is highly attuned to preparing the successful student for employment.

Read less
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme. Read more
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/medical-physics-bioengineering-mres

Key Information

- Application dates
All applicants:
Open: 5 October 2015
Close: 29 July 2016

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Standard
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

The programme covers all forms of ionising and non-ionising radiation commonly used in medicine and applies it to the areas of imaging and treatment. The programme involves Master's level modules chosen from a wide range offered by the department and a research project. Good performance in the MRes will lead to entry into the 2nd year of the Doctoral Training Programme where the research project is continued.

Students undertake modules to the value of 180 credits.

The programme consists of four optional modules and a research project.

- Core Modules
There are no core modules for this programme.

- Options
Students choose four optional modules from the following:
Ionising Radiation Physics: Interactions and Dosimetry
Medical Imaging
Clinical Practice
Treatment with Ionising Radiation
Medical Electronics and Control
Bioengineering
Optics in Medicine
Computing in Medicine
Medical Devices and Applications
Foundations and Anatomy and Scientific Computing
Image Processing
Computational Modelling in Biomedical Imaging
Programming Foundations for Medical Image Analysis
Information Processing in Medical Imaging
Image-Directed Analysis and Therapy

- Dissertation/report
All students undertake a research project.

Further information on modules and degree structure available on the department web site Medical Physics and Bioengineering MRes http://www.ucl.ac.uk/medphys/prospective-students/phd/dtp

Funding

Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

Careers

Our graduates typically find work in academia, the NHS, and in industry

Why study this degree at UCL?

The department is one of the largest medical physics and bioengineering departments in Europe, with links to a large number of active teaching hospitals. We have arguably the widest range of research of any similar department, and work closely with other world-leading institutions.

Students on the programme will form part of an interactive network of researchers across many disciplines and will benefit from the strengths of UCL in the healthcare field.

Student / staff ratios › 144 staff including 110 postdocs › 107 taught students › 135 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
The programme is suitable either for students wishing to study for a stand-alone MRes in Medical Physics & Bioengineering or for students planning progression to a Doctoral Training Programme.

What are we looking for?
When we assess your application we would like to learn:
- why you want to study Medical Physics and Bioengineering at graduate level
- why you want to study Medical Physics and Bioengineering at UCL
- what particularly attracts you to this programme
- how your personal, academic and professional background meets the demands of a challenging programme
- where you would like to go professionally with your degree

Together with essential academic requirements, the personal statement is your opportunity to illustrate whether your reasons for applying to this programme match what the programme will deliver.

For more information see the Applications page http://www.ucl.ac.uk/prospective-students/graduate/apply .

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Medical physicists fill a special niche in the health industry. The role includes opportunities for laboratory work, basic and applied research, management and teaching, which offers a uniquely diverse career path. In addition there is satisfaction in contributing directly to patient treatment and care.

This three-year programme in Clinical Science (Medical Physics), hosted by the College of Medicine, builds on an existing collaboration with the NHS in providing the primary route for attaining the professional title of Clinical Scientist in the field of Medical Physics.

Key Features of MSc in Clinical Science (Medical Physics)

The Clinical Science (Medical Physics) programme is accredited by the NHS and provides the academic component of the Scientist Training Programme for medical physics trainees, within the Modernising Scientific Careers framework defined by the UK Department of Health, and offers students the chance to specialise in either radiotherapy physics or radiation safety. This Master’s degree in Clinical Science (Medical Physics) is only suitable for trainees sponsored by an NHS or an equivalent health care provider.

The MSc in Clinical Science (Medical Physics) is modular in structure, supporting integration of the trainee within the workplace. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits of taught-course elements and a project that is worth 60 credits and culminates in a written dissertation.

The Clinical Science (Medical Physics) MSc is accredited by the Department of Health.

Modules

Modules on the Clinical Science (Medical Physics) MSc typically include:

• Introduction to Clinical Science

• Medical Imaging

• Nuclear Medicine and Diagnostic Imaging

• Radiation Protection

• Radiotherapy Physics

• Research Methods

• Advanced Radiotherapy

• Specialist Radiotherapy

• Advanced Radiation Safety

• Specialist Radiation Safety

Careers

The MSc in Clinical Science (Medical Physics) provides the main route for the professional qualification of Clinical Scientist in Medical Physics.

Additionally, the need for specific expertise in the use of medical radiation is enshrined in law. The Ionising Radiation (Medical Exposure) Regulations (IRMER) 2000 defines the role of Medical Physics Expert, required within any clinical context where radiation is being administered, either a diagnostic or therapeutic.

Links with industry

The close working relationship between Swansea University and the NHS in Wales, through the All-Wales Training Consortium for Medical Physics and Clinical Engineering, provides the ideal circumstances for collaborative teaching and research. The Consortium is recognised by the Welsh Government. A significant proportion of the teaching is delivered by NHS Clinical Scientists and other medical staff.

Facilities

The close proximity of Swansea University to Singleton Hospital, belonging to one of the largest health providers in Wales, Abertawe Bro Morgannwg University (ABMU) health board, as well as the Velindre NHS Trust, a strongly academic cancer treatment centre, provide access to modern equipment, and the highest quality teaching and research.

The Institute of Life Science (ILS) Clinical Imaging Suite has recently been completed and overlaps the University and Singleton Hospital campuses. It features adjoined 3T MRI and high-resolution CT imaging. ILS has clinical research of social importance as a focus, through links with NHS and industrial partners.

Research

Swansea University offers a vibrant environment in medically-oriented research. The Colleges of Medicine has strong research links with the NHS, spearheaded by several recent multimillion pound developments, including the Institute of Life Science (ILS) and the Centre for NanoHealth (CNH).

The University provides high-quality support for MSc student research projects. Students in turn make valuable progress in their project area, which has led to publications in the international literature or has instigated further research, including the continuation of research at the doctoral level.

The College of Medicine provides an important focus in clinical research and we have the experience of interacting with medical academics and industry in placing students in a wide variety of research projects.

Medical academics have instigated projects examining and developing bioeffect planning tools for intensity modulated radiotherapy and proton therapy and devices for improving safety in radiotherapy. Industry partners have utilised students in the evaluation of the safety of ventricular-assist devices, intense-pulsed-light epilators and in the development of novel MRI spectroscopic methods. The student join teams that are solving research problems at the cutting-edge of medical science.



Read less
Apply your physics background. A career in medical physics offers you the opportunity to use your physics background to provide people with life-changing options every day. Read more
Apply your physics background
A career in medical physics offers you the opportunity to use your physics background to provide people with life-changing options every day. Medical physicists play a critical role at the cutting-edge of patient healthcare, overseeing effective radiation treatment, ensuring that instruments are working safely, and researching, developing and implementing new therapeutic techniques.

The Medical Physics Programs at the University of Pennsylvania prepare students to bridge physics and clinical medicine, overseeing clinical applications of radiation and creating the cutting-edge medical technologies of tomorrow. The master’s degree and post-graduate certificate programs combine the resources of one of the world’s top research universities and most prestigious medical schools, offering you unmatched opportunities to shape your own path.

Unsurpassed resources and a rich array of options
Access to Penn’s outstanding facilities creates a unique opportunity for you to sample four subspecialties of medical physics, including radiation oncology, diagnostic imaging, nuclear medicine and health physics. Whether you enter a residency, seek employment directly after the program, go on to a PhD, earn an MBA or change career directions with your PhD, you’ll have the resources at your fingertips to build the career most compelling to you.

Our research facilities—all of which are located on campus, within a 10-minute walk—include the state-of-the art Perelman Center for Advanced Medicine; the Roberts Proton Therapy Center, the largest and most advanced facility in the world for this form of cancer radiation; and the Smilow Center for Translational Research, which brings Penn scientists and physicians together to collaborate on research projects.

Preparation for professional success
Our programs, accredited by the Commission on Accreditation of Medical Physics Educational Programs (CAMPEP), are grounded in providing the highest standard of patient care. Our students have numerous opportunities to gain hands-on experience at some of the most advanced medical imaging and therapy facilities in the world, through part-time clinical work, residencies, practicum training and much more. It is for this reason that our degree and certificate programs enjoy a high placement rate for our students, year after year. Faculty from Penn’s CAMPEP-accredited residency program participate in professional development to make our students competitive for medical physics residency programs.

We welcome you to contact a member of our program team to learn more about the possibilities that await you in the Medical Physics Programs at Penn.

Read less
This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

The award in Medical Imaging and Radiation Science is specially designed for professionals in medical imaging and radiotherapy and has the following aims.

A. Advancement in Knowledge and Skill
‌•To provide professionals in Medical Imaging and Radiotherapy, as well as others interested in health technology, with the opportunity to develop advanced levels of knowledge and skills;
‌•To develop specialists in their respective professional disciplines and enhance their career paths;
‌•To broaden students' exposure to a wider field of health science and technology to enable them to cope with the ever-changing demands of work;
‌•To provide a laboratory environment for testing problems encountered at work;
‌•To equip students with an advanced knowledge base in a chosen area of specialisation in medical imaging or radiotherapy to enable them to meet the changing needs of their disciplines and contribute to the development of medical imaging or radiation oncology practice in Hong ‌Kong; and
‌•To develop critical and analytical abilities and skills in the areas of specialisation that are relevant to the professional discipline to improve professional competence.

B. Professional Development
‌•To develop students' ability in critical analysis and evaluation in their professional practices;
‌•To cultivate within healthcare professionals the qualities and attributes that are expected of them;
‌•To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
‌•To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice
‌•To equip students with the necessary skill in research to enable them to perform evidence-based practice in the delivery of healthcare service and industry.

D. Personal Development
‌•To provide channels through which practising professionals can continuously develop themselves while at work; and
‌•To allow graduates to develop themselves further after graduation.

Programme Characteristics

The Medical Imaging and Radiation Science award offers channels for specialization and the broadening of knowledge for professionals in medical imaging and radiotherapy. It will appeal to students who are eager to become specialists or managers in their areas of practice. Clinical experience and practice in medical imaging and radiotherapy are integrated into the curriculum to encourage more reflective observation and active experimentation.

Programme Structure

The Postgraduate Scheme in Health Technology consists of the following awards:
‌•MSc in Medical Imaging and Radiation Science
‌•MSc in Medical Laboratory Science

A range of subjects that are specific to Medical Imaging and Radiation Science, and a variety of subjects of common interest and value to all healthcare professionals, are offered. In general, each subject requires attendance on one evening per week over a 13-week semester.

Award Requirements

Students must complete 1 Compulsory Subject (Research Methods & Biostatistics), 4 Core Specialism Specific Subjects, 2 Elective subjects (from any subjects within the Scheme) and a research-based Dissertation or 3 other subjects from the Scheme. They are encouraged to select a dissertation topic that is relevant to their professional and personal interests. Students who have successfully completed 30 credits, but who have taken fewer than the required 4 Core Specialism Specific Subjects, will be awarded a generic MSc in Health Technology without a specialism award.

Students who have successfully completed 18 credits, but who decide not to continue with the course of MSc study, may request to be awarded a Postgraduate Diploma (PgD) as follows:
PgD in a specialism if 1 Compulsory Subject, 4 Core Subjects and 1 Elective Subject are successfully completed; or
PgD in Health Technology (Generic) if 1 Compulsory Subject and any other 4 subjects within the Scheme are successfully completed.

Core Areas of Study

The following is a list of Core Subjects. Some subjects are offered in alternate years.

‌•Multiplanar Anatomy
‌•Advanced Radiotherapy Planning & Dosimetry
‌•Advanced Technology & Clinical Application in Computed Tomography
‌•Advanced Technology & Clinical Application in Magnetic Resonance Imaging
‌•Advanced Topics in Health Technology
‌•Advanced Ultrasonography
‌•Computed Tomography (CT): Practicum
‌•Digital Imaging & PACS
‌•Imaging Pathology

Having selected the requisite number of subjects from the Core list, students can choose the remaining Core Subjects or other subjects available in this Scheme as Elective Subjects.

The two awards within the Scheme share a similar programme structure, and students can take subjects across disciplines. For subjects offered within the Scheme by the other discipline of study, please refer to the information on the MSc in Medical Laboratory Science.

English Language Requirements

If you are not a native speaker of English, and your Bachelor's degree or equivalent qualification is awarded by institutions where the medium of instruction is not English, you are expected to fulfil the University’s minimum English language requirement for admission purpose. Please refer to the "Admission Requirements" http://www51.polyu.edu.hk/eprospectus/tpg/admissions-requirements section for details.

‌•Additional Document Required
‌•Employer's Recommendation
‌•Personal Statement
‌•Transcript / Certificate

How to Apply

For latest admission, please visit [email protected] http://www51.polyu.edu.hk/eprospectus/tpg and eAdmission http://www.polyu.edu.hk/admission

Enquiries

For further information, please contact:
Telephone: (852) 3400 8653
Fax: (852) 2362 4365
E-mail:

For more details of the programme, please visit [email protected] website http://www51.polyu.edu.hk/eprospectus/tpg/2016/55005-rmf-rmp

Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Diagnostic Imaging pathway gives you the opportunity to demonstrate development of your critical evaluative and problem solving skills in specialised areas of practice such as magnetic resonance imaging (MRI) and computerised tomography (CT).

Why choose this course?

-It gives you the opportunity to share ideas with other health professions in order to develop intellectual abilities and assist in the advancement of health care
-It offers you flexible study options based on a modular structure
-It includes interprofessional learning
-Teaching is done by experienced staff and visiting external specialistsAccredited by the College of Radiographers

Professional Accreditations

Accredited by the College of Radiographers.

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.

Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Modules are assessed by a variety of methods for example essays, presentations, reports, posters and practical examinations.

Structure

Optional
-Research Investigation
-Research Methods
-Research Methods - Distance Learning

Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Diagnostic Ultrasound pathway pathway is for professionals who wish to develop competency in the field of ultrasound.
Clinical modules are offered in the areas of obstetrics, gynaecology, abdominal and vascular ultrasound.

The course is suitable for professionals who want to specialise in this area and are interested in advancing their existing skills or acquiring new ones. It is designed to meet your needs whether you are in full or part-time employment.

Course structure

The MSc Medical imaging and radiation sciences: Diagnostic Ultrasound course is modular in structure. If you wish to collect credits towards and award or a qualification see below the award and credit requirements:
-Postgraduate certificate - 60 credits
-Postgraduate diploma - 120 credits
-Masters degree - 180 credits

Why choose this course?

-It offers opportunity to share ideas with other health professions in order to develop intellectual abilities and assist in the
advancement of health care
-It gives you flexible study options based on a modular structureIt includes interprofessional learning
-Teaching is done by experienced staff and visiting external
specialists
-Accredited by the College of Radiographers

Professional Accreditations

Accredited by the College of Radiographers.

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.

Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Work Placement

A recognised clinical placement which provides access to diagnostic ultrasound scanning is a requirement for the clinical applications modules within the ultrasound pathway. The University cannot offer to provide clinical placements for students.

Structure

Year 1
-Research Investigation
-Research Methods
-Research Methods - Distance Learning

Year 2
-Research Investigation
-Research Methods
-Research Methods - Distance Learning

Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Image Interpretation pathway is designed for students who want to develop competency in the extended role of image interpretation and helps you specialise in this specific area of practice. Clinical modules are offered in musculoskeletal reporting. Other specialist reporting areas can be taken via the independent study modules.

Course structure

The MSc Medical Imaging and Radiation Sciences: image interpretation pathway is modular in structure. If you wish to collect credits towards and award or a qualification see below the award and credit requirements:
-Postgraduate certificate - 60 credits
-Postgraduate diploma - 120 credits
-Masters degree - 180 credits

Why choose this course?

-It gives you the opportunity to share ideas with other health professions in order to develop intellectual abilities and assist in the advancement of health care
-It offers you flexible study options based on a modular structure
-It includes interprofessional learning
-The teaching is done by experienced staff and visiting external specialists
-Accredited by the College of Radiographers

Professional Accreditations

Accredited by the College of Radiographers.

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.

Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Radiotherapy and Oncology pathway specialises in the field of radiotherapeutic practice. Many of the options develop competencies for advanced practice such as in the palliative care and breast localisation modules.

Course structure

The MSc Medical Imaging and Radiation Sciences: radiotherapy and oncology pathway is modular in structure. If you wish to collect credits towards and award or a qualification see below the award and credit requirements:
-Postgraduate certificate - 60 credits
-Postgraduate diploma - 120 credits
-Masters degree - 180 credits

Why choose this course?

-It gives you the opportunity to share ideas with other health professions in order to develop intellectual abilities and assist in the advancement of health care
-It offers you flexible study options based on a modular structure
-It includes interprofessional learning
-The teaching is done by experienced staff and visiting external specialists
-Accredited by the College of Radiographers

Professional Accreditations

Accredited by the College of Radiographers.

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.
Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Read less
The Master of Health Science in Medical Radiation Sc​iences is designed for expert radiation therapy clinicians who wish to expand their academic competence and contributions and advance their clinical, professional, and research skills. Read more
The Master of Health Science in Medical Radiation Sc​iences is designed for expert radiation therapy clinicians who wish to expand their academic competence and contributions and advance their clinical, professional, and research skills. The program is delivered in either a two-year full-time or three-year extended full-time (EFT) curriculum. The program offers three pathways for specialization: a clinical pathway, a leadership pathway, and a research pathwa​y, each comprising coursework (required and elective), experience-based immersive practica, and a master's research project. These elements are designed to provide foundational radiation medicine content, expand clinical and reasoning skills, and further develop the skills of inquiry, innovation, knowledge translation, and evidence-based practice. Courses will run primarily online and adjacent to regular working hours—mornings and early evenings—with the exception of the practica in the final year that may require more dedicated time within the regular work week, depending on the learner's chosen pathway.​

Read less
Our programme will give you a thorough grounding in the radiation and environmental protection aspects of nuclear physics. Read more

Our programme will give you a thorough grounding in the radiation and environmental protection aspects of nuclear physics.

This includes in-depth knowledge of radiation protection and showing you how the technical and organisational procedures of the discipline may be applied to the broader concept of environmental protection.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Research-led teaching

The programme material is taught by a combination of academics from the Department of Physics at Surrey and specialists provided by industrial partners. The Surrey academics are part of the Centre for Nuclear and Radiation Physics which houses the largest academic nuclear physics research group in the UK.

In addition to the formal lectures for taught modules, the programme provides a wide range of experimental hands-on training. This includes a nine-week radiation physics laboratory which takes place in the specialist radiation laboratories within the Department of Physics at the University of Surrey.

These were recently refurbished as part of a £1 million upgrade to the departmental teaching infrastructure. Within the Department, we also have a common room and a departmental library, which contains copies of earlier MSc dissertations.

As well as the laboratory training, you will also undertake a research project at the beginning of the Spring semester as a precursor to the eleven-week research dissertation project which makes up the final part of the MSc.

There are many opportunities for both the spring research project and summer dissertation project to be taken in an external industrial environment.

Careers

The programme has produced over 500 UK and overseas graduates, many of whom have gone on to well-paid positions in companies in the nuclear and radiation sectors. In the UK we need to decommission old reactors and build new ones to provide a low-carbon source of energy.

This, together with, for example, the importance of radioisotopes in fields such as medicine, means that the career prospects of our graduates are excellent.

Educational aims of the programme

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Programme learning outcomes

Knowledge and understanding

  • A systematic understanding of Radiation and Environmental Protection in an academic and professional context together with a critical awareness of current problems and / or new insights
  • A comprehensive understanding of techniques applicable to their own research project in Radiation and / or Environmental Protection
  • Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
  • An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
  • Familiarity with generic issues in management and safety and their application to Radiation and Environmental Protection in a professional context

Intellectual / cognitive skills

  • The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. Graduates should be able to evaluate the significance of their results in this context
  • The ability to evaluate critically current research and advanced scholarship in the discipline of radiation protection
  • The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills

  • The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
  • The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
  • Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills

  • Identify and resolve problems arising from lectures and experimental work
  • Make effective use of resources and interaction with others to enhance and motivate self-study
  • Make use of sources of material for development of learning and research such as journals, books and the internet
  • Take responsibility for personal and professional development

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less

Show 10 15 30 per page



Cookie Policy    X