• University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
London Metropolitan University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University College Cork Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Bath Featured Masters Courses
0 miles
Engineering×

Masters Degrees in Medical Devices & Instrumentation

We have 30 Masters Degrees in Medical Devices & Instrumentation

Masters degrees in Medical Devices & Instrumentation offer advanced training in the design and development of devices used to diagnose, monitor, treat and prevent diseases.

Courses range from taught MSc degrees, to research oriented MRes and MPhil programmes. Entry requirements normally include an undergraduate degree in a relevant medical or technology-based subject.

Why study a Masters in Medical Devices & Instrumentation?

Read more...

  • Engineering×
  • Medical Devices & Instrumentation×
  • clear all
Showing 1 to 15 of 30
Order by 
Your programme of study. If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Read more

Your programme of study

If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Did you know the first MRI (Magnetic Resonance Imaging) scanner was invented at Aberdeen over 30 years ago? Major innovations to this technology are still being researched at Aberdeen today. You learn everything you need to know as an advanced grounding in medical physics such as understanding anatomy and how cells are altered by disease. You look at the engineering behind MRI and other visual scanning techniques to understand how applications are made in areas such as nuclear, Positron, Tomography, Radio diagnosis (X-ray), MRI and Ultrasound. You understand radiation and you apply electronics and computing to medical physics. The degree ensures plenty of practical understanding and application and you learn MRI within the department that built it.

If you want to work within imaging and medical physics to pursue a medical career in hospitals, industry and healthcare and diagnose disease by different methods of imaging the degree in Medical Physics will help you towards this goal. You can also develop your own research portfolio and PhD from this MSc and work within academia to pursue innovation in the discipline.

You receive a thorough academic grounding in Medical Physics, are exposed to its practice in a hospital environment, and complete a short research project. Many graduates take up careers in health service medical physics, either in the UK or their home country. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. You can also work as a researcher, risk manager, radiation physics specialist and within the medical device industry in product development and innovation.

Courses listed for the programme

Semester 1

  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Radiation in Medicine
  • Computing and Electronics in Medicine
  • Generic Skills

Semester 2

  • Radiation and Radiation Physics
  • Nuclear Medicine and Post Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Electronics and Instrumentation
  • Medical Image Processing and Analysis
  • Diagnostic Radiology and Radiation Protection

Semester 3

  • Project Programmes in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You are taught by renowned researchers with opportunity to contribute to the expanding research portfolio
  • You learn in a cutting edge medical facility adjacent to the teaching hospital including a PET-CT scanner, radiotherapy centre and linac treatment machines, plus MRI scanners
  • The MRI scanner was invented and developed at University of Aberdeen

Where you study

  • University of Aberdeen
  • 12 months or 24 months
  • Full time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
Your programme of study. If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Read more

Your programme of study

If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Did you know researchers at Aberdeen invented the first MRI scanner (Magnetic Resonance Imaging) for instance? Since this time much has been done to further work on the MRI scanner and deliver some of the most advanced forms of body visualisation tools available to the health area. If you have ever wondered how X rays work or you are interested in the latest radiotherapy techniques to provide therapeutic tools from radiographic equipment and advances this programme not only gives you the theory and practice in applying imaging in a health setting, it also gives you opportunities to think about the technologies involved and the applications. There is a lot of Physics and Maths required behind the different technologies involved in medical imaging so if you have these subjects and a life science background plus engineering or similar science disciplines this will make the programme more accessible.

By the end of the MSc programme you will have received a thorough academic grounding in Medical Imaging, been exposed to the practice of Medical Imaging in a hospital Department, and carried out a short research project. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. There are wide ranging career possibilities after graduation. You may wish to go straight into clinic settings to apply your skills within diagnostics or you may wish to study further for a PhD towards teaching or researching. There have also been spin out companies as a result of understanding and applying imaging technologies towards innovative applications. This subject also aligns with some major innovations in Photonics and other areas of medical science which you may like to explore further if you are interested in invention and innovation at the Scottish Innovation Centres: http://www.innovationcentres.scot/

Courses listed for the programme

Semester 1

  • Radiation in Imaging
  • Introduction to Computing and Image Processing
  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Generic Skills

Semester 2

  • Nuclear Medicine and Positron Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Image Processing and Analysis
  • Diagnostic and Radiation Protection

Semester 3

  • MSc Project for Programme in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You have the opportunity to contribute research within the department, expanding the knowledge of medical imaging technology within the largest teaching hospital and Medical School in Europe
  • You have access to a PET-CT scanner, new radiotherapy centre and linac treatment machines.
  • The university won the Queens Anniversary Prize in recognition of achievements in new medical imaging techniques
  • The MRI scanner was invented at the University over 30 years ago - a major innovation which has been global in impact

Where you study

  • University of Aberdeen
  • 12 or 24 months
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
The MSc Design for Medical Technologies is aimed at providing the key knowledge and experience to allow you to pursue a career in bioengineering, healthcare or biotechnology. Read more
The MSc Design for Medical Technologies is aimed at providing the key knowledge and experience to allow you to pursue a career in bioengineering, healthcare or biotechnology. The course will expose you to the leading edge of modern medical and surgical technologies, as well as exploring the role of entrepreneurship, business development and intellectual property exploitation.

Why study Design for Medical Technologies at Dundee?

The unique environments of medicine and biotechnology offer exacting challenges in the design of high technology products for use in these fields. Engineers and product designers involved in the development of new biomedical instrumentation, surgical tools or biotechnology products must understand the constrictions placed on them by this environment. As a result, bioengineering has been established as the fusion of engineering and ergonomics with a deep understanding of medical science.

Benefits of the programme include:
Knowledge and understanding of medical and surgical engineering and technology
Skills in research methods, communications, teamwork and management
Appreciation of entrepreneurship and the global 'Medtech' industry
Participation in research activities of world renowned research groups
Preparation for careers in industry, academia and commerce

What's great about Design for Medical Technologies at Dundee?

The University of Dundee is one of the top UK universities, with a powerful research reputation, particularly in the medical and biomedical sciences. It has previously been named Scottish University of the Year and short-listed for the Sunday Times UK University of the year.

The Mechanical Engineering group has a high international research standing with expertise in medical instrumentation, signal processing, biomaterials, tissue engineering, advanced design in minimally invasive surgery and rehabilitation engineering.

Links and research partnerships:

We have extensive links and research partnerships with clinicians at Ninewells Hospital (largest teaching hospital in Europe) and with world renowned scientists from the University's College of Life Sciences.

The new Institute of Medical Science and Technology (IMSaT) at the University has been established as a multidisciplinary research 'hothouse' which seeks to commercialise and exploit advanced medical technologies leading to business opportunities.

The start date is September each year, and lasts for 12 months.

How you will be taught

The structure of the MSc course is divided into two parts. The taught modules expose students to the leading edge of modern medical and surgical technologies. The course gives concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.

The research project allows students to work in a research area of their own particular interest, learning skills in presentation, critical thinking and problem-solving. Project topics are offered to students during the first semester of the course.

What you will study

The three taught modules are:
Imaging and Instrumentation for Medicine and Surgery (30 Credits)
Biomechanics and Biomedical (30 Credits)
Advanced Medical and Surgical Instrumentation (30 Credits)

These modules are followed by the biomedical research project (90 credits).

How you will be assessed

The course is assessed by coursework and examination, plus research project.

Careers

The MSc Design for Medical Technologies is aimed at providing the key knowledge and experience to allow you to pursue a career in bioengineering, healthcare or biotechnology. This opens up a vast range of opportunities for employment in these industries as a design, development or product engineer, research scientist, sales and marketing manager or Director of a start-up company. The programme also provides the ideal academic grounding to undertake a PhD degree leading to a career in academic research.

Read less
Medical engineering combines the design and problem-solving skills of engineering with medical and biological sciences to contribute to medical device solutions and interventions for a range of diseases and trauma. Read more

Medical engineering combines the design and problem-solving skills of engineering with medical and biological sciences to contribute to medical device solutions and interventions for a range of diseases and trauma.

This exciting and challenging programme will give you a broad knowledge base in this rapidly expanding field, as well as allowing you to specialise through your choice of optional modules.

We emphasise the multidisciplinary nature of medical engineering and the current shift towards the interface between engineering and the life sciences. You could focus on tissue engineering, biomaterials or joint replacement technology among a host of other topics.

Whether you’re an engineer or surgeon, or you work in sales, marketing or regulation, you’ll gain the knowledge and skills to launch or develop your career in this demanding sector.

Institute of Medical and Biological Engineering

You’ll learn in an exciting research environment where breakthroughs are being made in your discipline. This programme is closely linked to our Institute of Medical and Biological Engineering (IMBE), which focuses on research and education in the fields of medical devices and regenerative medicine. It focuses on innovating and translating new therapies into practical clinical applications.

Our world-class facilities in materials screening analysis, joint simulation, surface analysis, heart valve simulation and tensile and fatigue testing allow us to push the boundaries in medical engineering.

Find out more about IMBE

Accreditation

This course is accredited by the Institute of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council.



Read less
Why this course?. This MSc course provides engineers and physical scientists with knowledge and understanding of the medical devices used in diagnosis and treatment of patients. Read more

Why this course?

This MSc course provides engineers and physical scientists with knowledge and understanding of the medical devices used in diagnosis and treatment of patients.

The course is delivered by staff of the EPSRC-funded Centre for Doctoral Training in Medical Devices and Health Technologies (CDT), with colleagues from Engineering, the Life Sciences and Physical Sciences. There’s also input from clinical advisers from the NHS and elsewhere.

The training programme equips you with the basic knowledge and terminology in current life science subjects to allow you to explore topics in your own research project with direction from your supervisor.

You'll gain practical experience in the life science techniques and an appreciation of interdisciplinary project work.

You’ll study

This credit-based modular degree comprises assessed instructional classes and project work.

You’ll also undertake a research project. You’ll choose from a list of relevant industrial or clinical projects, and submit a thesis.

Learning & teaching

The first and second semesters consist of taught classes, laboratory demonstrations, practical exercises and clinical visits.



Read less
By studying this course you will gain a strong foundation in modern bioengineering technology with a focus on biomaterials and biomechanics. Read more

By studying this course you will gain a strong foundation in modern bioengineering technology with a focus on biomaterials and biomechanics.

This 12 month course aims to provide science or engineering graduates from a diversity of backgrounds with a solid grounding in modern bioengineering technologies, together with a strong emphasis in biomechanics and biomaterials. This course will prepare students for a career in an industrial, clinical or research environment, independent learning, and postgraduate research or careers in industry or hospitals.

This course is one of two closely related bioengineering masters courses that comprise of a common core with the ability to focus on specific aspects of bioengineering.

This multidisciplinary MSc covers practical and theoretical aspect of bioengineering, including:

  • cell-biomaterial surface interactions
  • materials characterisation
  • functionalisation of surface
  • biomechanics and mathematical modelling.


Read less
Rapid growth in the global medical devices industry demands an innovative fusion of biomedical, materials sciences, manufacturing, and engineering knowledge - and the University of Auckland is responding to the challenge. Read more

Rapid growth in the global medical devices industry demands an innovative fusion of biomedical, materials sciences, manufacturing, and engineering knowledge - and the University of Auckland is responding to the challenge.

This programme is aimed primarily at engineers and health professionals to provide them with the necessary broad range of knowledge in the various technologies underpinning medical devices.

Programme overview

The programme is funded by the Tertiary Education Commission of New Zealand, and is a collaboration between the Faculty of Engineering, Faculty of Medical and Health Sciences at the University of Auckland and the Medical Technology Association of New Zealand.

The programme is normally two semesters and will accommodate part-time enrolments. To best meet the needs of participants with different backgrounds, including those coming from industry, the programme is provided as both a research masters and a taught masters. 

All students complete two core courses that give an overview of technology and practices related to medical devices.

Students have a choice of completing a 90-point research portfolio or a smaller 60-point research project. In both cases the research is a significant component of the study programme and will involve working with a research group or being seconded to industry for a supervised research project that provides specialisation in a particular aspect of medical device technology. For participants without a medical background, a clinical secondment will be used to strengthen the experiential component of their learning.

Participants enrolled in the 90-point research portfolio will prepare a written thesis, while participants enrolled in the 60-point project will prepare a written project report. Both are examined following the standard the University of Auckland processes.

The taught masters option provides a wide variety of courses that participants can draw upon to best address their own areas of interest. Courses are lecture-based and delivered as modules, each taught by the University’s research specialists ensuring participants meet the multidisciplinary requirements of medical devices technology.

Employment opportunities

Graduates of the programme will be equipped with the technical, medical, ethical, regulatory and business knowledge required for innovation in medical devices and technologies, filling the large demand for these skills in the global and domestic medical devices industry.

The programme works closely with New Zealand medical devices companies such as Fisher & Paykel Healthcare and members of Medical Technology Association of New Zealand.

There are over 130 medical devices companies in New Zealand and many of our graduates are employed by these companies.



Read less
The one-year MRes Medical Device Design and Entrepreneurship is a unique programme which combines development of medical devices and biomedical engineering knowledge, alongside entrepreneurship skills. Read more

The one-year MRes Medical Device Design and Entrepreneurship is a unique programme which combines development of medical devices and biomedical engineering knowledge, alongside entrepreneurship skills.

The focus is on the intricate and unique field of medical device development and the key entrepreneurship and management skills required to get the device to market, from concept to business planning and market emergence.

In addition to specific training in medical device entrepreneurship, you will also develop research and analytical skills related to bioengineering. This provides a solid foundation for those intending to go into industry or on to study for a PhD.

This is a very hands-on course, with much of the training and assessment based around a year-long project aimed at developing an engineering developmental and start-up business plan around a medical device concept.

The programme is supplemented by a small amount of formal teaching, and a requirement to attend at least one seminar per week throughout the first two terms in the Department of Bioengineering.

Careers

This MRes was the first of its kind in the UK and aims to ensure the development of advanced medical devices.

Our course prepares you for an innovative research career in Bioengineering. The practical nature of the course, and the key training in business skills, sees you well-placed to seek a career in this area.

You are equally well-prepared to pursue further study and research at PhD level, with the research project element of this course accounting for three-quarters of the assessment.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/bioengineering/medical-device-design-mres/

If you have any enquiries, please contact our team at:



Read less
The medical technologies sector is seeing unprecedented growth, with an increasing need for trained professionals with a skill set combining scientific proficiency with entrepreneurial and business flair. Read more
The medical technologies sector is seeing unprecedented growth, with an increasing need for trained professionals with a skill set combining scientific proficiency with entrepreneurial and business flair. This innovative programme, in partnership with the UCL Institute of Healthcare Engineering, offers a unique graduate pathway into this flourishing sector.

Degree information

This programme combines medical device scientific research and development with training in translation techniques, enterprise and entrepreneurship. Students will learn about entrepreneurial finance and gain knowledge in business management, while carrying out technical research that will give them a solid grounding in medical device development. The programme provides the essential skills to move forward in the medical device sector.

Students take modules to the value of 180 credits.

The programme consists of two core modules (30 credits), two optional modules (30 credits), and a dissertation/report (120 credits).

Core modules
-Two skill modules with an emphasis on entrepreneurship based in UCL School of Management.

Optional modules
-Two scientific modules will be chosen from a wide range of appropriate MSc modules across UCL

Dissertation/report
All students undertake an independent research project culminating in a dissertation of a maximum of 20,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, problem classes, workshops, and projects. Assessment of taught components is through unseen written examinations or by assessed coursework. Assessment of the project is by dissertation and viva.

Careers

It is anticipated that on completion of this programme students will either embark on a career in either industry or academic research. This MRes forms the first year of a doctoral training programme in Medical Device Innovation. An industrial career in this expanding area could lie anywhere on the spectrum of working within large multinational medical technology companies to setting up your own enterprise in a medical device need area that you have identified.

Employability
This programme offers a unique opportunity to combine an understanding of medical device engineering with enterprise skills. You will gain an understanding of the innovation pipeline concept, through development, to bringing a product to the marketplace. This skill set is key to being at the forefront of the emerging medical device market as the balance of power shifts from pharmaceuticals to medical technologies.

Why study this degree at UCL?

The UCL Institute of Healthcare Engineering provides a unique source of coherent entrepreneurship training for medical technology graduate students in the UK, alongside a vibrant multidisciplinary biomedical engineering research community engaged in developing new medical devices to transform medicine.

Our entrepreneurial training is delivered by the UCL School of Management, and is complemented by seminars and networking events bringing together researchers, clinicians and industrialists.

Where students are sponsored by an industrial partner, they will spend time with that partner. Links are also being built with Yale University and students may have the opportunity to spend short periods of time there.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Medical Engineering is the application of engineering principles to both the human body and to a broad range of instrumentation used in modern medicine.

The courses at Swansea University draw on the exciting medical research that is taking place within the College of Engineering and the College of Medicine. The research success in the two colleges led to the creation of the £22 million Centre for NanoHealth (CNH), a unique facility linking engineering and medicine.

Our Medical Engineering graduates gain the skills of engineering, whilst also providing employers with the added experience and knowledge of anatomy and physiology, and the ability to communicate with clinicians.



Read less
With flexible study options tailored to your area of practice, GCU’s MSc Medical Ultrasound gives you the theoretical foundation and real-world experience you need to improve not only your own work – but your field at large. Read more

With flexible study options tailored to your area of practice, GCU’s MSc Medical Ultrasound gives you the theoretical foundation and real-world experience you need to improve not only your own work – but your field at large.

Using state-of-the-art simulation facilities (MedaPhor ScanTrainer) and sonographic equipment (GES8), our multidisciplinary team of academic experts and clinical specialists will coach you in safe and effective medical ultrasound practice. You’ll rehearse your skills in a setting that prepares you for real-world practice and get instant feedback that’s specific to your field.

Accredited by the Consortium for Accreditation of Sonographic Education (CASE), your programme will draw on industry best practice for a curriculum that is both evidence-based and varied – with lectures, workshops, simulations, seminars and case studies to help you learn. And at GCU, you’ll get a world-class education that also contributes to the common good – through critical evaluation of research, professional discussion and debate designed to help promote innovation in the field.

What you will study

Postgraduate Certificate (60 M credits)

Principles of Practice in Medical Ultrasound. Plus one Ultrasound Clinical Module from the following: General Medical Ultrasound, Obstetric and Gynaecological Ultrasound, Defined Area of Ultrasound Practice 1 or Defined Area of Ultrasound Practice 2.

Postgraduate Diploma (120 M credits)

Advanced Research Methods OR Advanced Leadership. Plus one of the following: General Medical Ultrasound, Obstetric and Gynaecological Ultrasound, Defined Area of Ultrasound Practice 1 or Defined Area of Ultrasound Practice 2.

MSc (180 M credits)

Masters Dissertation.

Work placement

Accredited by the Consortium for Accreditation of Sonographic Education (CASE), your programme will draw on industry best practice for a curriculum that is both evidence-based and varied with lectures, workshops, simulations, seminars and case studies to help you learn. In conjunction with your practical workplace supervisor on the MSc Medical Ultrasound programme ensures competency to practice.

Accreditation

This programme is accredited by the Consortium for Accreditation of Sonographic Education (CASE).

Graduate prospects

Whether you’re advancing your current career or starting a new one, your programme will prepare you to help create meaningful change in the practice of medical ultrasound. Graduates have gone on to lead their fields as managers, make a positive impact through research and promote new approaches to practitioner-led ultrasound services.



Read less
Overview. Graduates will extend their engineering skills and technical knowledge to work in partnership with healthcare clinicians and other medical experts, acquiring grounding in the culture and ethics of the healthcare profession. Read more

Overview

Graduates will extend their engineering skills and technical knowledge to work in partnership with healthcare clinicians and other medical experts, acquiring grounding in the culture and ethics of the healthcare profession. This is a new programme with a novel cross-institutional approach, sharing modules in Dublin City University, the Royal College of Surgeons Ireland and Maynooth University..

Course Structure

This is a 1 year full time course. Module themes include medical sciences, Biomedical Engineering, advanced control theory, computer vision, healthcare ethics, law, risk management and signal modelling and compression.

Duration: 1 year Full-time




Read less
Recent years breakthrough discoveries in health sciences have generally been achieved by effective cooperation between interdisciplinary research teams, which included members from medicine, basic sciences and engineering. Read more
Recent years breakthrough discoveries in health sciences have generally been achieved by effective cooperation between interdisciplinary research teams, which included members from medicine, basic sciences and engineering. Such a cooperation provides a broad visionary approach and strong scientific basis for a better understanding of the health related problems and allows the development of novel technologies to improve the quality of life.
Koç University Biomedical Sciences and Engineering (BMSE) MS and PhD programs have been developed with this philosophy in mind and offer unique, truly interdisciplinary graduate education and leading edge research opportunities for students with different disciplines, which include basic sciences (chemistry, physics and biological sciences) engineering (chemical, mechanical and electrical engineering), medicine and related health sciences programs and provide them with the vision, knowledge and tools to become the future leaders.

Current faculty projects and research interests:

• Computational and Quantative Biology
• Biometric Materials and Islet Cell Bioengineering
• Robıtics and Mechanics
• Computational Biology and Bioinformatics
• Molecular biochemistry
• Computational Systems
• Biofluids and Cardiovascular Mechanics
• Polymer Science and Technology
• Mitochondrial Biogenesis
• Cell Biology
• Microphotonics
• Optofluidic and Nano-Optics

Read less
Three cross-cutting research themes - Energy, Biomedical Engineering and Sustainable Cities - facilitate multidisciplinary research across research groups. Read more

Overarching research themes

Three cross-cutting research themes - Energy, Biomedical Engineering and Sustainable Cities - facilitate multidisciplinary research across research groups.

Research Groups (specialisms)

Communications, Energy Conversion, Electrical Power, Fluid Dynamics, Geotechnics and Tunnelling, Thermofluids, Precision Mechanics, Process and Chemical Engineering, Sensors and Devices, Structures and Materials, Civil Engineering and Systems Modelling.

Read less
The programme focuses on biological and artificial interfaces that are of utmost importance and interest in the field of biomedical science. . Read more

The programme focuses on biological and artificial interfaces that are of utmost importance and interest in the field of biomedical science. 

This is an excellent opportunity for you who has a bachelor’s degree in life sciences and would like to advance your skills in biomedical science. The programme offers theoretical as well as practical skills, beyond traditional teaching in biomedicine, biology and chemistry. The education combines cell and molecular biology with surface and colloid chemistry. It offers unique knowledge, useful in biotech applica­tions such as: drug delivery systems, implants, bio-assays, medical nano-technology and food technology. Arranged in close collaboration with regional industry, it provides an up to date overview of research and development in the field of biomedical surface science.

About

The program creates a platform for understanding the involvement of surface science in biomedicine and biotechnology. You will get theoretical knowledge and practical skills in the areas of biomedical activities which require expertise beyond traditional disciplines of biomedicine, chemistry or biology.

Active connections

The program is carried out in close collaboration with regional industry, and provides up to date overview on research and development work in the area of biomedical technology. Education is conducted by researchers and teachers who are participants of an industrially relevant research network called Profile “Biofilms – research center for biointerfaces”. Our experimental facilities combine chemistry, cell and molecular biology, and bioanalytical laboratories.

Forms of study

We use different pedagogical forms, with a strong focus on research questions in development of biomedical products. The collaboration with surrounding biomedical industry is conducted through CDIO, Conceive - Design - Implement - Operate projects.

What is Biomedical Surface Science?

Biomedical surface science refers to the knowledge and understanding of the theoretically and practically integration of surface chemistry in applied aspects of cell biology, immunology, molecular biology and nanotechnology.Biomedical surface science refers to specialised knowledge of surface chemistry in applied areas of cell biology, immunology, molecular biology, nano-biotechnology and colloid chemistry, as well as substantially knowledge on integration of these subject in biomedical surface science.

Major Biomedical industries

Drugs and biotechnology

  • small molecules - synthetic organic molecules
  • biologics - biological molecules made by living organisms (biotechnology)

Devices and diagnostics

  • medical devices industry
  • diagnostics - IVD (in-vitro diagnostics)

Content

Course list:

Degree

Master's Degree (120 credits).

After the education on the programme is accomplished the requirements for the master degree in Biomedical Surface Science are fulfilled. 

The degree certificate states the Swedish title Masterexamen i biomedicinsk ytvetenskap (120 hp)and the English title Degree of Master of Science (120 credits) with a major in Biomedical Surface Science.



Read less

Show 10 15 30 per page



Cookie Policy    X