• Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Cranfield University Featured Masters Courses
Birmingham City University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
0 miles
Materials Science×

Masters Degrees in Materials Science

We have 101 Masters Degrees in Materials Science

Masters degrees in Materials Science investigate the properties of natural and artificial materials. They develop expertise in the production and use of everyday components as well as advanced products and high-tech resources.

A diverse range of specialisms are available, with courses in Ceramics, Paper Technology or Metallurgy. Individual degrees may examine the inherent properties of these materials, or look more closely at their use and manufacture. Many programmes are wholly or partly interdisciplinary, drawing on other sciences such as Chemistry or on specific Engineering techniques.

Courses may be delivered through taught units, or based on more extensive research projects. A range of MSc, MPhil and MRes programmes are available, along with appropriate Postgraduate Certificates and Diplomas.

Why study a Masters in Materials Science?

Read more...

  • Materials Science×
  • Materials Science×
  • clear all
Showing 1 to 15 of 101
Order by 
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. Read more

Overview

The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. It is designed for students who may wish to pursue a professional career in Materials Science / Materials Engineering or related areas (in academic or industrial research) and who are already familiar with the subject.

The course allows students to continue a broad Materials Science education across a range of topics : the taught element consists of a series of approximately 16 modular lecture courses, covering a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. A research project is undertaken over 6 months, between October and March.

Specific aims are:
1. to build on the knowledge and ideas gained in prior Materials Science courses;
2. to develop a more specialised and in-depth understanding of Materials Science in selected areas;
3. to further develop analytical and presentational skills, both orally and in writing;
4. to provide training in investigating research problems, including gaining an understanding of relevant research techniques and also of the design and interpretation of experiments.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Learning Outcomes

At the end of the course students should:
1. be able to apply the ideas and concepts introduced in the course to solve problems, do calculations, make predictions and critically evaluate information and ideas;
2. be able to demonstrate an understanding of the courses attended, and of their individual research projects;
3. be able to demonstrate practical, organisational and presentational skills that will enable them to continue successfully with research or in other professional careers;
4. be able to demonstrate the necessary skills and understanding required for a career in Materials Science.

Continuing

Students wishing to continue to PhD studies will usually be required to obtain at least a 'Commendable' result in the MASt.

Teaching

There are approximately 16 lecture modules focusing on advanced topics across a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. Details of the modules available this year can be found at: http://www.msm.cam.ac.uk/teaching/partIII.php.

Students may choose which lecture modules they wish to attend, and must prepare a minimum of 10 courses for examination.

Students also undertake a substantial individual research project, chosen from a set of topics proposed by academic staff. Work on this project accounts for about a third of the final credit.

- Feedback
The MASt is treated as an undergraduate course for the purposes of supervisions, such that on average students should expect to have at least one supervision per week during term, with written and verbal feedback on their work within 24 hours.

Online written reports are provided at the end of each term.

Students should expect to meet daily to weekly with their project demonstrator and weekly to termly with their project supervisor.

Students receive written feedback on all aspects of work submitted for summative assessment (reports, oral presentations, poster), within two weeks of the work being submitted.

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Read less
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. Read more
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. It is designed for students who may wish to pursue a professional career in Materials Science / Materials Engineering or related areas (in academic or industrial research) and who are already familiar with the subject.

The course allows students to continue a broad Materials Science education across a range of topics : the taught element consists of a series of approximately 16 modular lecture courses, covering a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. A research project is undertaken over 6 months, between October and March.

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Course detail

Specific aims are:

- to build on the knowledge and ideas gained in prior Materials Science courses;
- to develop a more specialised and in-depth understanding of Materials Science in selected areas;
- to further develop analytical and presentational skills, both orally and in writing;
- to provide training in investigating research problems, including gaining an understanding of relevant research techniques and also of the design and interpretation of experiments.

Learning Outcomes

At the end of the course students should:

- be able to apply the ideas and concepts introduced in the course to solve problems, do calculations, make predictions and critically evaluate information and ideas;
- be able to demonstrate an understanding of the courses attended, and of their individual research projects;
- be able to demonstrate practical, organisational and presentational skills that will enable them to continue successfully with research or in other professional careers;
- be able to demonstrate the necessary skills and understanding required for a career in Materials Science.

Format

There are approximately 16 lecture modules focusing on advanced topics across a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. Details of the modules available this year can be found at: http://www.msm.cam.ac.uk/teaching/partIII.php.

Students may choose which lecture modules they wish to attend, and must prepare a minimum of 10 courses for examination.

Students also undertake a substantial individual research project, chosen from a set of topics proposed by academic staff. Work on this project accounts for about a third of the final credit.

Assessment

- A final report of up to 7000 words, worth 12% of the total credit.
- An interim report worth 4% of the total credit.
- A project viva worth 4% of the total credit.
- A project poster worth 4% of the total credit.
- A project oral presentation worth 4% of the total credit.
- Termly progress assessments from project supervisor worth 2% of the total credit.
- Vacation project written report worth 1% of the total credit.
- Three 3-hr written examination papers worth a total of 68% of the credit.
An oral presentation of a vacation project worth 1% of the total credit.

Continuing

Students wishing to continue to PhD studies will usually be required to obtain at least a 'Commendable' result in the MASt.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities: http://www.2016.graduate.study.cam.ac.uk/finance/funding

Read less
This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. Read more

This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. The course has considerable variety and offers career opportunities across a wide range of industry sectors, where qualified materials scientists and engineers are highly sought after.

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Core study areas include advanced characterisation techniques, surface engineering, processing and properties of ceramics and metals, design with engineering materials, sustainability and a project.

Optional study areas include plastics processing technology, industrial case studies, materials modelling, adhesive bonding, rubber compounding and processing, and polymer properties.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/

Programme modules

Full-time Modules:

Core Modules

- Advanced Characterisation Techniques (SL)

- Surface Engineering (SL)

- Ceramics: Processing and Properties (SL)

- Design with Engineering Materials (SL)

- Sustainable Use of Materials (OW)

- Metals: Processing and Properties (SL)

- MSc Project

Optional Modules

- Plastics Processing Technology (OW)

- Industrial Case Studies (OW)

- Materials Modelling (SL)

Part-time Modules:

Core Modules

- Ceramics: Processing and Properties (DL)

- Design with Engineering Materials (DL)

- Sustainable Use of Materials (OW or DL)

- Metals: Processing and Properties (DL)

- Surface Engineering (DL)

- Plastics Processing Technology (OW)

- MSc Project

Optional Modules

- Industrial Case Studies (OW)

- Adhesive Bonding (OW)

- Rubber Compounding and Processing (OW or DL)

Alternative modules:*

- Polymer Properties (DL)

- Advanced Characterisation Techniques (SL)

- Materials Modelling (SL)

Key: SL = Semester-long, OW = One week, DL = Distance-learning

Alternative modules* are only available under certain circumstances by agreement with the Programme Director.

Selection

Interviews may be held on consideration of a prospective student’s application form. Overseas students are often accepted on their grades and strong recommendation from suitable referees.

Course structure, assessment and accreditation

The MSc comprises a combination of semester-long and one week modules for full-time students, whilst part-time students study a mix of one week and distance-learning modules.

MSc students undertake a major project many of which are sponsored by our industrial partners. Part-time student projects are often specified in conjunction with their sponsoring company and undertaken at their place of work.

All modules are 15 credits. The MSc project is 60 credits.

MSc: 180 credits – six core and two optional modules, plus the MSc project.

PG Diploma: 120 credits – six core and two optional modules.

PG Certificate: 60 credits – four core modules.

- Assessment

Modules are assessed by a combination of written examination, set coursework exercises and laboratory reports. The project is assessed by a dissertation, literature review and oral presentation.

- Accreditation

Both MSc programmes are accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Careers and further Study

Typical careers span many industrial sectors, including aerospace, power generation, automotive, construction and transport. Possible roles include technical and project management, R&D, technical support to manufacturing as well as sales and marketing.

Many of our best masters students continue their studies with us, joining our thriving community of PhD students engaged in materials projects of real-world significance

Bursaries and Scholarships

Bursaries are available for both UK / EU and international students, and scholarships are available for good overseas applicants.

Why Choose Materials at Loughborough?

The Department has contributed to the advancement and application of knowledge for well over 40 years. With 21 academics and a large support team, we have about 85 full and part-time MSc students, 70 PhD students and 20 research associates.

Our philosophy is based on the engineering application and use of materials which, when processed, are altered in structure and properties.

Our approach includes materials selection and design considerations as well as business and environmental implications.

- Facilities

We are also home to the Loughborough Materials Characterisation Centre – its state of-the-art equipment makes it one of the best suites of its kind in Europe used by academia and our industrial partners.

The Centre supports our research and teaching activities developing understanding of the interactions of structure and properties with processing and product performance.

- Research

Our research activity is organised into 4 main research groups; energy materials, advanced ceramics, surface engineering and advanced polymers. These cover a broad span of research areas working on today’s global challenges, including sustainability, nanomaterials, composites and processing. However, we adopt an interdisciplinary approach to our research and frequently interact with other departments and Research Schools.

- Career prospects

Over **% of our graduates were in employment and / or further study six months after graduating. Our unrivalled links with industry are hugely beneficial to our students. We also tailor our courses according to industrial feedback and needs, ensuring our graduates are well prepared

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/



Read less
With a growing world population, there is increasing need for scientific experts and entrepreneurs who can develop novel materials with advanced properties - addressing critical issues from energy to healthcare - and take scientific discoveries to the commercial world. Read more

With a growing world population, there is increasing need for scientific experts and entrepreneurs who can develop novel materials with advanced properties - addressing critical issues from energy to healthcare - and take scientific discoveries to the commercial world. This degree combines frontline research-based teaching from across UCL to train the next generation of materials scientists.

About this degree

The programme aims to equip students with advanced, comprehensive knowledge of materials science and related state-of-the-art technologies, an understanding of the structure, properties and applications of materials, scientific research skills, and the insight and capability to be an entrepreneur in the field. In addition, students will engage in a literature project and a six-month cutting-edge research project.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), two optional modules (30 credits), a literature project (15 credits) and a research project/dissertation (60 credits).

Core modules

  • Advanced Materials Characterisation
  • Advanced Materials Processing and Manufacturing
  • Materials Design, Selection and Discovery
  • Microstructural Control in Materials Science
  • Research Methodology

Optional modules

Students choose one or two optional modules to a total value of 30 credits from the following:

  • Advanced Topics in Energy Science and Materials (15 credits)
  • Biomaterials Applications (15 credits)
  • Mastering Entrepreneurship (15 credits)
  • Materials and Fatigue/Fracture Analysis (15 credits)
  • Nanoscale Processing and Characterisation for Advanced Devices (15 credits)

Dissertation/report

All students undertake a literature project and a research project an independent research project which culminates in a 20-minute oral presentation and a dissertation of 10,000 to 12,000 words.

Teaching and learning

Teaching is delivered by lectures, interactive tutorials, case discussions, and modelling projects. Assessment is by a combination of ongoing coursework, presentations, a group project and/or a written examination, a dissertation and a viva voce.

Further information on modules and degree structure is available on the department website: Advanced Materials Science MSc

Careers

On graduation students will be equipped for a future career as a materials scientist or engineer in academia or industry, or as an entrepreneur.

Employability

In addition to the specific skills and knowledge students acquire by taking this programme, they also develop managerial and entrepreneurship skills, and transferable skills in areas including literature search, design of experiments, materials research, critical data analysis, teamwork and effective communication skills using real-life case scenarios and student-led group projects.

Why study this degree at UCL?

Advanced Materials Science MSc relates scientific theories to research and applications of advanced materials, encourages innovation and creative thinking, and contextualises scientific innovation within the global market and entrepreneurship.

The programme aims to deliver innovative teaching; from the group design projects where students are challenged to design the next advanced material to the module, Mastering Entrepreneurship, where students learn how to apply research in the commercial world.

Students on this interdisciplinary programme benefit from UCL’s emphasis on research-based learning and teaching and research input from departments across UCL in mathematical and physical sciences, and in engineering.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Degree. Master of Science (two years) with a major in Applied Physics or Master of Science (two years) with a major in Physics. Teaching language. Read more

Degree: Master of Science (two years) with a major in Applied Physics or Master of Science (two years) with a major in Physics

Teaching language: English

The Material Physics and Nanotechnology master's programme provides students with specialist knowledge in the area of new materials. Huge advances in modern technology and products in recent decades have to a large extent relied on developments in this field.

The importance of advanced materials in today’s technology is best exemplified by the highly purified semiconductor crystals that are the basis of the electronic age. Future implementations and applications of materials in electronics and photonics involve such subjects as nano-scale physics, molecular electronics and non-linear optics.

With support from internationally competitive research activities in materials physics at Linköping University, the programme has been established with distinct features that offer students high‑level interdisciplinary education and training in fundamental solid state physics and materials science within the following areas:

  • Electronic materials and devices
  • Surface and nano-sciences
  • Theory and modelling of materials
  • Organic/molecular electronics and sensors.

Advanced equipment training

The programme emphasises the comprehension of scientific principles and the development of personal and professional skills in solving practical engineering problems. Studies begin with mandatory courses, including nanotechnology, quantum mechanics, surface physics and the physics of condensed matter, in order to provide students with a solid knowledge foundation for modern materials science and nanotechnology. Moreover, through courses in experimental physics and analytical methods in materials science, students gain extensive training in operating the advanced instruments and equipment currently used in the research and development of new materials.

In-depth CDIO courses

A variety of elective courses is offered from the second term onwards, many of them involving the use of cutting-edge technology. These courses give students a broad perspective of today’s materials science research and links to applications in semiconductor technology, optoelectronics, bioengineering (biocompatibility), chemical sensors and biosensors, and mechanical applications for high hardness and elasticity. Students will also be instructed through in-depth CDIO (Conceive – Design – Implement – Operate) project courses, to develop abilities in creative thinking and problem solving.

Students complete a thesis project in the area of materials science and nanotechnology, either with an in-house research group or the industry.



Read less
This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. Read more

Mission and Goals

This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. The objective of the programme is to prepare a professional figure expert in materials and in the design of processes and manufactured goods. Within the scope of the study plan a number of specific specialisations are foreseen:
- Surface Engineering
- Polymer Engineering
- Nanomaterials and Nanotechnology
- Engineering Applications
- Micromechanical Engineering

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Career Opportunities

The Master of Science graduate in Materials and Nanotechnology Engineering has the ability to devise and manage innovation in the materials industry; he/she finds employment mainly in companies specialised in producing, processing and design various materials and components, as well as in the area of the development of new applications in the mechanical, chemical, electronics, energy, telecommunications, construction, transport, biomedical, environmental and restoration industries as well as in research and development centres of companies and public bodies.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Materials_Engineering_and_Nanotechnology_04.pdf
The Master of science programme aims at preparing specialists with strong technical skills for innovation of processes and applications of new materials and nanotechnologies. One of the major focuses of the MSc is on sustainable technologies and nanotechnologies for advanced applications. The city of Milan and its surroundings are fertile ground for social and technical culture, with a variety of small enterprises open to innovation and new technologies and working in niche fields, where non-traditional materials are key to future developments. The job market welcomes Material Engineers as professionals capable of handling complex problems directly related to the production, treatment and applications of materials, acknowledging the high level of education obtained at the Politecnico di Milano through original methodologies and new technologies.
The programme is taught in English.

Subjects

- Mathematical methods for materials engineering
- Advanced materials chemistry
- Polymer science and engineering
- Principles of polymer chemistry + Fundamentals of polymer mechanics
- Solid state physics
- Mechanical behavior of materials
- Cementitous and ceramic materials engineering
- Advanced Materials
- Functional materials + nanostructured materials
- Durability of materials
- Failure and control of Materials
- Surface engineering
- Thesis work

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
New materials underpin development and progress across a wide variety of sectors. New technologies, from planes to batteries, from hip implants to electronic devices, are made possible, and often limited by, the materials we currently know and use. Read more

New materials underpin development and progress across a wide variety of sectors. New technologies, from planes to batteries, from hip implants to electronic devices, are made possible, and often limited by, the materials we currently know and use.

Materials Scientists and Engineers work hard to understand how and why materials behave the way they do, and exploit this knowledge to develop new materials with amazing properties.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III and summer in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials.

Course details

Studying Materials Science and Engineering, you will develop a fundamental understanding of how the properties of a material, such as strength, electronic properties and biocompatibility, are affected by the material’s structure, such as its crystal structure or microstructure.

This knowledge can then be used to formulate strategies to develop new materials, such as alloys able to operate at higher temperatures for jet engine blades or high-toughness ceramics for armour applications. This programme will equip you with the skills required to join a wide variety of industries in the capacity of materials specialist, or continue your education at a PhD level.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III & summer. In addition to technical modules, the course also provides training for transferable skills such as Communiation Skills and Effective Project Management.

Research projects can be carried out in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials or in industry. The project involves full-time research for one third of the academic year.

Related links

Learning and teaching

All students take twelve modules for a total 120 credits, plus a research project.

The programme is currently delivered through a combination of lectures, seminars, tutorials, project-based and laboratory-based teaching and learning methods.

Employability

Our graduates go on to become engineers and scientists at a wide variety of industrial partners, or opt to continue their studies at PhD level.

Typical employers:

  • BAE Systems
  • Rolls-Royce
  • Royal Air Force
  • British Petroleum

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

The Master of Chemical and Materials Engineering educates students to become innovative engineers who will contribute to their profession and to society. Engineers in chemistry and materials play a unique role in sustainable development, where they must manage resources, energy and the environment in order to develop and produce novel materials and chemical commodities. Our graduates are prepared to face the demands of the modern technological employment field and for an international career with English as their professional language.

Course content

The Master in Chemical and Material Engineering (120 ECTS) offers a solid core of courses in both of these engineering fields. The integrated and the multidisciplinary approach provides students up-to-date knowledge enabling them to propose innovative engineering solutions in numerous modern technological sectors. Students have the possibility to specialize in Process technology or Material Science.

The Master of Chemical and Materials Engineering program consists of two profiles: Process Technology and Materials.

Profile: Process Technology:
The Process Technology orientation trains students to become engineers who are employable and innovative both in production units (operation and optimization of production facilities) and in engineering groups (develop new production units that meet desired performance specifications). An emphasis is placed on the biotechnology and food industries. Students are also trained to identify, solve and avoid environmental problems including waste management, water, air and soil pollution.

Profile: Materials:
The Materials orientation prepares students for the materials and materials technology sectors (metals, polymers, ceramics and composites). Students are trained to become creative engineers capable of designing sustainable multi-functional materials which meet specific applications. Students also have the capacity to contribute to the whole life-cycle of materials from their processing into semi or full end products using environmentally friendly and safe production processes to their recycling.

Become a skilled scientific engineer

This Master offers:
- a unique interdisciplinary programme which prepares you for employment in a professional field related to chemical engineering, materials or environmental technology.
- a high level scientific education that prepares you to a wide range of job profiles.
- the possibility to work in close contact with professors who are internationally recognized in their own disciplines and favor interactive learning.

Curriculum

http://www.vub.ac.be/en/study/chemical-and-materials-engineering/programme

The programme is built up modularly:
1) the Common Core Chemical and Materials Engineering (56 ECTS)
2) the Specific Profile Courses (30 ECTS)
3) the master thesis (24 ECTS)
4) electives (10 ECTS) from 1 out of 3 options.
Each of the modules should be succesfully completed to obtain the master degree. The student must respect the specified registration requirements. The educational board strongly suggests the student to follow the standard learning track. Only this model track can guarantee a timeschedule without overlaps of the compulsory course units.

Common Core Chemical and Materials Engineering:
The Common Core Chemical and Materials Engineering (56 ECTS) is spread over 2 years: 46 ECTS in the first and 10 ECTS in the second year. The Common Core emphasizes the interaction between process- and materials technology by a chemical (molecular) approach. The Common Core consists out of courses related to chemistry, process technology and materials and is the basis for the Process Technology and the Materials profiles.

Specific Courses Profile Materials:
The profile 'Materials' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Materials I - 14 ECTS in MA1 and Materials II - 16 ECTS in MA2. The profile adds material-technological courses to the common core.

Specific Courses Profile Process Technology:
The profile 'Process Technology' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Process Technology I - 14 ECTS in MA1 and Process Technology II - 16 ECTS in MA2. The profile adds process technological courses to the common core.

Elective Courses:
The elective courses are divided into 3 options:
- Option 1: Internship (10 ECTS)
- Option 2: Elective courses (incl. internship of 6 ECTS)
- Option 3: Entrepreneurship
The student has to select one option and at least 10 ECTS within that option. All options belong to the 2nd year of the model learning track.

Read less
About the course. It is estimated 70 per cent of innovations are due to an advance in materials. This course provides a solid grounding in all types of materials, and aims to prepare you for a career in industry or research by teaching you the concepts and theories that make materials science and engineering possible. Read more

About the course

It is estimated 70 per cent of innovations are due to an advance in materials. This course provides a solid grounding in all types of materials, and aims to prepare you for a career in industry or research by teaching you the concepts and theories that make materials science and engineering possible.

Our research-led teaching introduces you to all the latest developments; you’ll have the option to keep your course general or tailor your degree with optional modules to specialise in the area that interests you the most. Specialist modules include ceramic science and advanced solid state chemistry.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

  • Science of Materials
  • Materials Processing and Characterisation
  • Practical, Modelling and Digital Skills
  • Research project in an area of your choice

Examples of optional modules

  • Functional and Structural Ceramics
  • Glasses and Cements
  • Metallurgical Processing
  • Design and Manufacture of Composites
  • Materials for Energy Applications
  • Metals Processing Case Studies
  • Nanostructures and Nanostructuring


Read less
About the course. The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation. Read more

About the course

The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation.

You will experience the unique combination of a foundation semester in the general area of science and engineering of materials, followed by a nanoscience and nanotechnology specific semester to result in an unrivalled comprehensive nanomaterials expertise.

The course content reflects the highly interdisciplinary nature of this subject and allows students to specialise via options, and a major project.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

  • Science of Materials
  • Materials Processing and Characterisation
  • Practical, Modelling and Digital Skills
  • Nanoscale Magnetic Materials and Devices
  • Nanostructures and Nanostructuring
  • Nanomaterials
  • Research project in an area of your choice


Read less
This non-clinical course is run jointly with the Faculty of Engineering. It gives you a comprehensive education in basic materials science and the use of materials in dentistry and surgery. Read more

About the course

This non-clinical course is run jointly with the Faculty of Engineering. It gives you a comprehensive education in basic materials science and the use of materials in dentistry and surgery.

You’ll be taught by some of the leading academics in the fields of bio and dental materials science, tissue engineering, materials characterisation and biomedical engineering. You’ll also learn the principles of research and different techniques for evaluating dental materials and related health technologies.

Your career

We offer clinical and non-clinical courses that will further your career and develop your interests. Many of our clinical graduates go on to specialist dental practice, hospital practice or academic posts.

World-leading dental school

Our internationally recognised oral and dental research is organised into two overarching themes: ‘clinical and person centred’ and ‘basic and applied’. These themes are supported by three interdisciplinary research groups: Bioengineering and Health Technologies, Integrated Bioscience, and Person Centred and Population Oral Health.

We believe that dental science should not be constrained by the traditional boundaries created by specific clinical disciplines and that progress derives from a multidisciplinary approach. Our research supports our teaching enabling a blended approach to learning.
Your course will make the most of virtual learning environments and advanced practical sessions, as well as traditional lectures and seminars.

Facilities

You’ll develop your clinical skills in one of our two clinical skills labs or in our new virtual reality Simulation Suite where you can use haptic technology to undertake a range of clinical techniques.

You’ll complete your clinical training in Sheffield’s Charles Clifford Dental Hospital, part of the Sheffield Teaching Hospitals NHS Foundation Trust. There are 150 dental units with modern facilities for treatment under sedation, a well-equipped dental radiography department, oral pathology laboratories and a hospital dental production laboratory.

We have new modern research facilities and laboratories for tissue culture, molecular biology, materials science and histology- microscopy. All laboratories have dedicated technical support and academic expertise to guide you.

Core modules

Current Concepts in Dentistry; Dental Materials Science; Selecting Dental Materials for Clinical Applications; Science Writing and Health Informatics; Polymer Materials Chemistry; Structural and Physical Properties of Dental and Biomaterials; Group Projects and Developing Research; Introduction to Digital Dentistry and Dental Manufacturing; Dissertation.

Teaching

Teaching is through lectures, seminars and tutorials, personal academic study and self-directed learning, research project.

Assessment

You’ll be assessed on assignments, coursework, examination and research project dissertation.

Read less
A Masters course providing the foundation for 21st century technologies - from fuel cells to aeroengines. Read more

A Masters course providing the foundation for 21st century technologies - from fuel cells to aeroengines

The complete masters (MSc) course in Advanced Engineering Materials provides you with an in-depth understanding of the key factors that govern the design and selection of materials for use in advanced engineering applications, as well as their processing, properties and stability.

Aims

The programme aims to convey detailed knowledge of state-of-the-art materials systems, with a focus on composites, advanced alloys and functional and engineering ceramics. The students explore the technologies used in the manufacture and processing of advanced materials and develop an understanding of the relationships between composition, microstructure, processing and performance. The student learn how to assess materials performance in service and develop an understanding of the processes of degradation in hostile conditions. They are also trained in the essential skills needed to design and develop the next generation of high performance engineering materials, establishing a strong foundation for a future career in industry or research.

Course unit details

The taught units cover the structure and design of advanced engineering materials and provide graduates with an increased depth and breadth of knowledge of materials science, technology and engineering.

Taught units include:

  • Introduction to Materials Science
  • Advanced Research Methods
  • Principles of Advanced Engineering Materials
  • Superalloys and High Performance Materials
  • Advanced Metals Processing
  • Advanced Composites
  • Graphene and Nanomaterials

Overseas students will require and ATAS certificate for this course. The ATAS certificate will expire after 6 months so please wait until May before applying. For a full list of the course units, please contact  . The JACS code for this course is J511 or J5.

Scholarships and bursaries

Unfortunately, The University of Manchester does not have any funding opportunities at present. There may be external funding opportunities, please see the link for more information:http://www.manchester.ac.uk/study/masters/funding/

Facilities

To underpin the research and teaching activities at the School, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Our graduates of this programme have gone on to fill key posts as materials scientists, engineers, managers and consultants in academia, industry and research and development. You may also be able to advance to PhD programmes within the School.

Accrediting organisations

The MSc in Advanced Engineering Materials is accredited by the Institute of Materials, Minerals and Mining (IoM3) with the award of Further Learning. For more information, visit http://www.iom3.org  



Read less
Goal of the pro­gramme. Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Read more

Goal of the pro­gramme

Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Materials research plays an important part in solving challenging problems relating to energy, food, water, health and well-being, the environment, sustainable use of resources, and urbanisation.

An expert in materials research studies the chemical and physical bases of existing and new materials; their synthesis and processing, composition and structure, properties and performance. As an expert in materials research, your skills will be needed in research institutions, the technology industry (electronics and electrotechnical industry, information technology, mechanical engineering, metal industry, consulting), chemical industry, forest industry, energy industry, medical technology and pharmaceuticals.

This programme combines expertise from the areas of chemistry, physics and materials research at the University of Helsinki, which are ranked high in international evaluations. In the programme, you will focus on the fundamental physical and chemical problems in synthesising and characterising materials, developing new materials and improving existing ones. Your studies will concentrate on materials science rather than materials engineering.

Upon graduating from the programme you will have a solid understanding of the essential concepts, theories, and experimental methods of materials research. You will learn the different types of materials and will be able to apply and adapt theories and experimental methods to new problems in the field and assess critically other scientists’ work. You will also be able to communicate information in your field to both colleagues and laymen.

Depending on the study line you choose you will gain in-depth understanding of

  • The synthesis, processing, structure and properties of inorganic materials
  • Modelling methods in materials research
  • The structure and dynamics of biomolecular systems
  • The synthesis, structure and properties of polymers
  • Applications of materials research in industrial applications
  • The use of methods of physics in medicine

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

In the programme, all teaching is based on the teachers’ solid expertise in the fundamental chemistry and physics of materials. All teachers also use their own current research in the field in their teaching.

Your studies will include a variety of teaching methods such as lectures, exercises, laboratory work, projects and summer schools.

In addition to your specialisation, you can include studies in minor subjects from other programmes in chemistry, physics and computer science.



Read less
Materials Science and Engineering offers interdisciplinary programs leading to the degrees of master of science and doctor of philosophy. Read more
Materials Science and Engineering offers interdisciplinary programs leading to the degrees of master of science and doctor of philosophy. Established in 2002, the program offers both the MS and PhD degree in materials science and engineering. While the program is relatively young, the participating departments and faculty on campus have an extensive legacy of research and of offering relevant materials science and engineering academic training.

From the smallest of the small to the opposite end of the spectrum, our students develop a foundation in the principles of materials science, selecting an atomic/nano approach or a bulk/macro approach. This foundation is then coupled with specialized knowledge in one area of materials, such as: energy production, storage and transmission; nanomaterials for a range of applications; electronic materials with a specialization in flexible electronics; biomaterials; modeling and mechanical behavior.

Recent doctoral graduate placements include: Post Doctoral Fellowship at Massachusetts Institute of Technology, Reliability Engineer for Microsoft Corporation, Research Scientist for Toyota, Senior Research Engineer at LG Electronics, Post Doctoral Fellowship at Northwest National Lab, Senior Process Engineer at Global Foundries

Graduate Degrees Offered

- MS with an engineering emphasis or a science emphasis

All applicants must also submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
The MA is for people with a personal passion for material culture, materials innovations, crafts, designs, heritage, and the cultural issues which they present. Read more

The MA is for people with a personal passion for material culture, materials innovations, crafts, designs, heritage, and the cultural issues which they present. Some are social scientists rethinking the engagement of anthropology, ethnography and material culture; others are designers or makers exploring cultural and social issues.

About this degree

Students will study anthropological and material culture theory, apply social science and ethnographic methodologies to the problems of design, explore the technical, aesthetic and symbolic properties of materials, and examine how these interact with production technologies and consumption choices. They will develop understanding of how working with materials, crafts, and design helps us to rethink, understand, and critique socio-cultural issues in ways beyond other disciplines, and in cutting-edge anthropological ways.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (45 credits), three optional modules (45 credits), a departmental seminar series and a research dissertation (90 credits).

Core modules

  • Materials, Anthropology and Design

Optional modules

  • Anthropology of the Built Environment
  • Art in the Public Sphere
  • Mass Consumption and Design
  • Anthropology and Photography
  • Social Construction of Landscape
  • Ethnographic Film
  • Archaeobotanical Analysis in Practice
  • Archaeometallurgy 1: Mining and Extractive Technology
  • Archaeometallurgy 2: Metallic Artefacts
  • Archaeological Glass and Glazes
  • Interpreting Pottery
  • Lithic Analysis
  • Archaelogical Ceramics and Plaster
  • Issues in Conservation: Understanding Objects

Dissertation/report

All MA students undertake an independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, and tutorials. Several courses entail practical instruction, including visits to product design companies and trade fairs; archaeological field sites; Kew Botanical Archive and the British Museum. Assessment is through unseen examination, long essays, research methodology project and the dissertation.

Further information on modules and degree structure is available on the department website: Materials, Anthropology and Design MA

Careers

The unique combination of scientific and social science training offers students career pathways in a range of areas including:

  • design research
  • design consultancy and policy
  • heritage and museums
  • materials consultancy: advising industry on different materials, old and new, and their technical and aesthetic properties
  • product marketing
  • fashion marketing and buying
  • academia (PhDs, lecturing)

Employability

In addition to analytic and ethnographic skills honed by the core academic training, graduates develop a solid grounding in materials and design literacy, communication and interpersonal skills, new ways of thinking about culture and society and presentational and studio groupwork skills. 

Our graduates are equipped to collaboratively engage with different materials and design approaches for working alongside, and in conjunction with, designers, engineers, heritage professionals, environmentalists, materials scientists, and others with a pragmatic interest in materials and design.

Why study this degree at UCL?

UCL is a world leader in anthropological work, specialising in material culture, and also a pan-disciplinary leader in materials innovation and making. This MSc is the only specific design anthropology programme with a material culture emphasis, and the only one dedicated to seriously exploring materials and making in cultural terms.

The programme involves interdisciplinary engagements in: looking at materials expertise across London through visits to makespaces and materials libraries; a project for an external design client (in commerce, heritage, or the third sector); weekly high-profile academic speakers on material culture; and optional vocational seminars in the Spring Term. In some years we facilitate participation in conferences or workshops abroad.

UCL is located in central London, within walking distance to the British Museum and the British Library. UCL's own museums and collections form a resource of international importance for academic research.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Anthropology

68% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X