• Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Durham University Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
National Film & Television School Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Swansea University Featured Masters Courses
0 miles
Geology×

Masters Degrees in Mantle & Core Processes

We have 5 Masters Degrees in Mantle & Core Processes

Masters degrees in Mantle & Core Processes are predominantly concerned with the processes within the Earth’s lithosphere, particularly the behaviour and composition of the mantle and core.

Specialisations include Volcanology and Seismology. Entry requirements normally include an appropriate undergraduate degree such as Geology.

Why study a Masters in Mantle & Core Processes?

Read more...

  • Geology×
  • Mantle & Core Processes×
  • clear all
Showing 1 to 5 of 5
Order by 
In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. Read more

In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. During this two-year programme, you will learn to link geological, geophysical, geochemical, and geodetic observations made at the Earth’s surface to physical processes operating within the planet.

The programme combines physics, chemistry, mathematics, geology, and field studies to address how the solid Earth works. It allows you to specialize in virtually any aspect of solid Earth science, ranging from theoretical geophysics to pure geology or geochemistry. Many students choose a combined geology-geophysics focus.

STUDY PROCESSES BELOW THE EARTH'S SURFACE

The main subject areas you will study consist of seismology, tectonophysics, mantle dynamics, structural geology, metamorphism, magmatic processes, basin evolution, hydrocarbon and mineral deposits, and the properties of Earth materials. You will examine processes ranging from slow geodynamic processes – such as mantle convection, plate tectonics, and mountain building – to those that can have an impact during a human lifetime. These include active crustal deformation, seismicity, and volcanism as well as subsidence, uplift, and seismicity induced by hydrocarbon production and geological storage of CO2.

Tracks

You can choose one of three specialization tracks based on your interests in the field:

  • Earth Materials: Deformation and metamorphic and igneous processes operating in the crust and upper mantle.
  • Physics of the Deep Earth and Planets: An in-depth geophysical approach to understand the deep interior of the Earth and other planets.
  • Basins, Orogens, and the Crust-Lithosphere System: Combine courses from other tracks to create a hybrid Geology-Geophysics track


Read less
Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Read more

Program Overview

Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Current interests include topics in observational and theoretical glaciology; climate variability; geodynamics of the crust, mantle, and core of Earth and other planets; geological fluid mechanics; volcanic processes; origin and structure of planetary magnetic fields; reflection seismology; time-series analysis and wavelet processing; inversion methodologies with application to reflection seismology, mineral exploration, and environmental studies; computational electrodynamics; seismology with observational programs in crustal and upper mantle studies; earthquake studies focused on understanding past and current tectonic processes in Western Canada; and theoretical model studies to investigate wave propagation in laterally heterogeneous media.

Program Requirements

Geophysics students who have not completed a course in physics of the Earth at either the senior undergraduate or graduate level will be required to register for EOSC 453. The M.A.Sc. program consists of a 12-credit thesis and 18 credits of coursework. A minimum of 24 credits must be at the 500-level and above.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Geophysics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Read more

Program Overview

Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Current interests include topics in observational and theoretical glaciology; climate variability; geodynamics of the crust, mantle, and core of Earth and other planets; geological fluid mechanics; volcanic processes; origin and structure of planetary magnetic fields; reflection seismology; time-series analysis and wavelet processing; inversion methodologies with application to reflection seismology, mineral exploration, and environmental studies; computational electrodynamics; seismology with observational programs in crustal and upper mantle studies; earthquake studies focused on understanding past and current tectonic processes in Western Canada; and theoretical model studies to investigate wave propagation in laterally heterogeneous media.

Program Requirements

Geophysics students who have not completed a course in physics of the Earth at either the senior undergraduate or graduate level will be required to register for EOSC 453. The M.Sc. program consists of a 12-credit thesis and 18 credits of coursework. A minimum of 24 credits must be at the 500-level and above.

Quick Facts

- Degree: Master of Science
- Specialization: Geophysics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
This MSc examines the physical processes governing the behaviour of volcanoes. Read more
This MSc examines the physical processes governing the behaviour of volcanoes. The programme is taught by leading scientists who are working at the cutting edge of research into volcanoes, and will provide you with a strong background for independent research to PhD level or for a career in industry, the public sector or an NGO.

The programme is designed to equip you with knowledge of the physical processes of volcanoes, including both sub-surface and surficial behaviour, insights into important historical eruptions, understanding of risk and risk mitigation, and instruction and experiential learning on data gathering, handling analysis and presentation to publishable standard.

You will develop a wide range of skills, such as quantitative and computational skills, including the use of statistical and data handling software; proficiency in critical analysis of scientific material from a variety of sources, including primary research documents and original data; and the ability to synthesise concise and informative material produced for a variety of audiences.

Programme structure

Core units
-Physics of Volcanoes and Hazardous Flows
-Scientific Communication
-Literature Review (Volcanology)
-Research Methods in Volcanology

Optional units
-Frontiers in Earth Science
-Geophysical Fluid Dynamics
-Natural Hazards in Central America
-Natural Hazards in Central America (without fieldwork)
-Seismology
-Volcanic Hazards: Observation, Modelling and GIS

Research project
The final part of the programme consists of a research project. For further information on research projects, please see the School of Earth Sciences website: http://www.bristol.ac.uk/earthsciences/research/projects.html

Careers

The MSc in Volcanology prepares students for research-based careers. Most students then continue on one of three paths, using the skills they have acquired at Bristol. About 40 per cent of graduating students continue on to study for a PhD at a range of institutions in the UK, Europe, North America, Australia and Singapore. Most overseas students return to their home country to work for government agencies in hazard management.

Other graduates choose to work in the commercial sector for either geotechnical companies (who manage assets for large multinationals) or risk management and reinsurance companies, typically in London where we have a burgeoning presence within that community.

The volcanology programme is rigorous and quantitative, and prepares students for settings where both domain-specific knowledge and the ability to conduct independent research are highly valued.

Read less
Geochemistry is at the heart of earth sciences, and provides the techniques and knowledge that allow scientists to answer such fundamental questions as. Read more

MSc in Geochemistry

Geochemistry is at the heart of earth sciences, and provides the techniques and knowledge that allow scientists to answer such fundamental questions as: how has the mantle evolved through time, was there ever life on Mars, what was the chemistry of Earth’s and Mars’ ancient atmospheres, and what are the rates and drivers of past and current climate change on Earth? Geochemistry has widespread applications to understanding and solving contemporary problems in Earth surface chemistry, such as pollution of soils and water or rates of ocean acidification. It is a forensic part of Earth science and is used to address questions that are both diverse and profound.

The St Andrews MSc in Geochemistry delivers postgraduate level knowledge and skills training in geochemistry and modern geochemical methods, involving extensive hands-on laboratory training and experience with state-of-the-art equipment. This comprehensive and rigorous course is relevant preparation for pursuing a PhD in geochemistry by incorporating a lab-based research dissertation, as well as employment in industry through incorporation of economic and environmental geochemistry
modules. Staff in the Department of Earth & Environmental Sciences and the School of Chemistry contribute to the core laboratory training and teaching within subject modules.

Features

The Department of Earth & Environmental Sciences has 20 full-time academics, 8 research fellows and 4 technical staff members, with a student population of about 170. We have a wide range of expertise in the field of geochemistry underpinned by new state-of-the-art laboratory facilities developed as a result of the recent appointment of early career academics over the past five years. Geochemistry research spans investigations into the origins of life, evolution of the Earth and other terrestrial planets, composition of
oceans, rivers and atmospheres, and the pulse of past and current climate change.

Postgraduate community

A dynamic and research-intensive atmosphere is encouraged and supportive of all students. The size of our Department engenders cohesive and friendly collaborations between staff, postdoctoral research fellows and postgraduate students, and co-authored papers are routinely published in the top journals for geochemistry, such as Nature, Nature Geoscience, Geochimica et Cosmochimica Acta and Science. We are part of the ‘IAPETUS’ NERC Doctoral Training programme, along with the universities of Durham, Glasgow, Newcastle and Stirling, and the British Geological Survey.

Facilities

The Department houses state-of-the-art stable and radiogenic isotope geochemistry and geobiology laboratories, including culturing facilities for corals and microbes. Our research equipment includes five high-precision isotope mass spectrometers (two MAT 253s, two Nu Plasma, and one Neptune Plus installed in 2015), two Class 100 clean labs, an XSeries quadropole ICP-MS, ICP-OES, and a Finnegan Delta Plus XP gas source mass spectrometer. All materials, and particularly gases, liquids, minerals, rocks, organisms, and soils, can be analysed for isotopes and major and trace elements within research projects that cover the breadth of earth and environmental science. We host an experimental petrology facility capable of simulating conditions from the mid-crust to upper mantle (pressures of between 0.5-4.5 GPa and 300- 2000°C). A range of spectroscopic, SEM, electron microprobe and X-ray diffraction and fluorescence techniques are also part of our analytical facilities.

Careers

The range of research areas and applications of geochemistry is so broad that career opportunities span the whole of earth and environmental sciences. Geochemists are employed in the energy sector (hydrocarbon industries, petrochemicals, nuclear and renewables), in mining and mineral exploration, extraction and processing, and in environmental industries and agencies focused on pollution monitoring and environmental remediation. Masters-level training in geochemistry would provide a suitable platform for a career in materials science outside of earth and environmental sciences specifically. MSc Geochemistry graduates are also in demand as specialised research technicians in academic institutes worldwide and as PhD students in geochemistry-focused research.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X