• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Durham University Featured Masters Courses
King’s College London Featured Masters Courses
University of Reading Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cass Business School Featured Masters Courses
Swansea University Featured Masters Courses
United Kingdom
London×
0 miles
Chemistry×

Masters Degrees in Pharmaceutical Chemistry, London, United Kingdom

We have 18 Masters Degrees in Pharmaceutical Chemistry, London, United Kingdom

  • Chemistry×
  • Pharmaceutical Chemistry×
  • United Kingdom
  • London×
  • clear all
Showing 1 to 15 of 18
Order by 
The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing. Read more

The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing.

The programme will generate graduates with in-depth theoretical knowledge and extensive laboratory skills, allowing students to be involved in many disciplines of pharmaceutical sciences from drug discovery and medicinal chemistry through to product development and manufacture and including pharmaceutical analysis, quality control and quality assurance.

Teaching and learning methods

Delivery on this programme involves a series of lectures, seminars, workshops and lab-based exercises. Many of the lectures on this programme are delivered by leading industrial experts. Problem-based learning and case studies will provide students with experience of team-working that simulates an industrial setting. Students will develop team-working, critical thinking and analytical problem solving abilities which are important in the modern pharmaceutical industry.

Research project

The main part of the programme is a research project that runs over the whole academic year and gives students the opportunity to work with modern research equipment to carry out novel research. Project work will help students enhance practical skills, analytical thinking, time management, communication skills and independence.

Outcomes

The aims of the programme are to:

  • Acquire a sound core knowledge base together with knowledge of a specialist area of pharmaceutical sciences to support current and future developments of pharmaceutical and related sciences
  • Enhance students' critical, analytical, practical and communication skills relevant to the modern, multidisciplinary pharmaceutical industry
  • Develop research skills in terms of: planning, conducting, evaluating and reporting the results of investigations
  • Gain the knowledge and skills necessary to solve a range of pharmaceutical drug development and processing problems
  • Enable students to use and develop advanced theories and develop novel concepts to explain pharmaceutical development and processing data.

Visit the website http://www.gre.ac.uk/pg/engsci/mps

What you'll study

Full time

Students are required to study the following compulsory courses:

Colloids and Structured Materials in Formulations (30 credits)

Drug Discovery and Medicinal Chemistry (30 credits)

English Language Support (for Postgraduate students in the Faculty)

Analytical Methods and QA/QC Principles (30 credits)

MSc Pharmaceutical Sciences Research Project (60 credits)

Modern Pharmaceutical Technologies and Process Engineering (30 credits)

Part time

- Year 1:

Students are required to study the following compulsory courses:

English Language Support (for Postgraduate students in the Faculty)

Analytical Methods and QA/QC Principles (30 credits)

Modern Pharmaceutical Technologies and Process Engineering (30 credits)

- Year 2:

Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)

Drug Discovery and Medicinal Chemistry (30 credits)

MSc Pharmaceutical Sciences Research Project (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:

- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)

- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through examinations, coursework and a dissertation.

Career options

Graduates from this programme can pursue careers in the NHS, the pharmaceutical industry or industries manufacturing other health care products.

Find out how to apply here - https://www.gre.ac.uk/study/apply



Read less
University College London Department of Chemistry
Distance from London: 0 miles
The Organic Chemistry. Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Read more
The Organic Chemistry: Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Students gain outstanding training in synthetic organic chemistry applied to drug design, together with a breadth of experience in several areas of synthetic methodology and chemical biology.

Degree information

The programme provides a thorough foundation in drug design, advanced organic synthesis and molecular modelling, together with modules on research techniques, professional development and entrepreneurship. Students will carry out a substantial research project on organic/medicinal chemistry or chemical biology over a ten-month period.

MRes students undertake modules to the value of 180 credits.

The programme consists of two modules from the Wolfson Institute for Biomedical Research (30 credits), one Master's level chemistry module (15 credits) two transferable/research skills modules (30 credits) and the research project (105 credits).

Core modules - students take 30 credits of transferable/research skills and submit a research dissertation (105 credits).
-Transferable/Research Skills
-Research Dissertation

Optional modules - students take 45 credits from the following options:
-Bioinformatics
-Target Identification
-Cheminformatics
-Biological Molecules
-Biophysical Screening
-Fragment Based Drug Design
-Target Selection (Scientific)
-Target Selection (Commercial)
-Principles of Drug Design
-Biological Chemistry
-Stereochemical Control in Asymmetric Synthesis
-Synthesis and Biosynthesis of Natural Products
-Organometallics and Catalysis
-Structural Methods in Modern Chemistry

Dissertation/report
Students will undertake a laboratory-based research project lasting ten months. An interim report is submitted after five months, and at the end of the project each student writes a dissertation, gives a short presentation and has a viva voce examination.

Teaching and learning
The programme is delivered through a combination of lectures, problem classes, workshops and projects. Assessment is through unseen written examination, coursework, project reports and presentations.

Careers

The MRes has been developed in response to the needs of the pharmaceutical and biotechnology sectors for highly qualified students as leaders in the discovery of new medicines. The pharmaceutical sector is a major employer in the UK and high-quality graduates with an understanding of the sector are always in demand. Our recent graduates have taken up PhD positions, are working in industry and have entered teacher training.

Top career destinations for this degree:
-PHD Chemical Biology, University College London (UCL)
-PhD Radiochemistry, University College London (UCL)

Why study this degree at UCL?

This programme is taught in collaboration with the Wolfson Institute of Biomedical Research (WIBR) which brings together scientists and clinicians from both academic and pharmaceutical industry backgrounds. The institute's strength is in its multidisciplinary approach to research, with the goal of identifying novel targets for drug development.

Read less
Pharmaceutical Technology is a science-based programme, for pharmacists, life science, chemistry and chemical engineering graduates, focused to teach skills in formulation and drug delivery. Read more
Pharmaceutical Technology is a science-based programme, for pharmacists, life science, chemistry and chemical engineering graduates, focused to teach skills in formulation and drug delivery. The course utilises well-equipped laboratories for hands-on time with a range of modern techniques and instruments.

Key benefits

- King's is ranked 4th in the world for Pharmacy & Pharmacology (QS World University Rankings by Subject 2016)

- Well-equipped laboratories allowing students lots of 'hands-on' time for a range of modern techniques and instruments.

- Students learn about the art of developing Active Pharmaceutical Ingredients into medicinal products.

- Opportunity to undertake an extended project of interest in the laboratories of internationally-rated scientists.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/pharmaceutical-technology-msc.aspx

Course detail

- Description -

Our advanced programme is concerned with the science and application of formulation of pharmaceutical products to support the discovery and development of better medicines.

- Course purpose -

To provide pharmacists and other life science or engineer graduates with the necessary knowledge and expertise in liquid and solid dosage form design and handling and the scientific principles underlying dosage form stability for a career in the pharmaceutical industry, research institutes or biotech. The programme is science-based concerned with the biopharmaceutic and physicochemical aspects of dosage form design.

- Course format and assessment -

Lectures; laboratory classes; tutorials; laboratory-based research project or dissertation; modules assessed by coursework and written examination.

Required Modules:

- Principles of Analytical Techniques
- Numerical Methods and Regulatory Affairs
- Principles of Drug Delivery and Disposition.

Career prospects

Recent graduates have gone on to take PhD studies; to work in R&D laboratories in the pharmaceutical industry; or biotech. Overseas students have returned to similar positions in their home countries.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This is one of three related MSc programmes in pharmaceutical sciences offered by King's College London. The programmes have been designed to help you develop advanced laboratory skills and techniques for application within the pharmaceutical industry and research institutes. Read more
This is one of three related MSc programmes in pharmaceutical sciences offered by King's College London. The programmes have been designed to help you develop advanced laboratory skills and techniques for application within the pharmaceutical industry and research institutes.

The programmes are designed for graduates in pharmacy, chemistry or related sciences who wish to progress their careers within the pharmaceutical industry, in research and development, drug information or registration departments. The programmes are also suitable for those who wish to work in research institutes, hospital pharmacy, or with drug licensing or regulatory authorities. They also offer a solid foundation for students wishing to enter into research degree programmes.

Key benefits:

- King's is ranked 4th in the world for Pharmacy & Pharmacology (QS World University Rankings by Subject 2016)

- A programme of study in London focused on the discovery and development of biopharmaceuticals, therapeutic peptides, protein, monoclonal antibodies and nucleic acids.

- Links with the pharmaceutical industry in terms of visiting lecturers and site visits.

- A six-month research project.

- Combined teaching with the MSc Pharmaceutical Technology and Pharmaceutical Analysis & Quality Control programmes provides a broad education in the pharmaceutical sciences and allows student flexibility.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/biopharmaceuticals-msc.aspx

Course detail

This advanced programme provides an introduction to the principles of biopharmaceutics and pharmaceutical analysis, offering specialisation in the more biological aspects of the pharmaceutical sciences with an emphasis on drug metabolism and biochemical toxicology.

- Course purpose -

To provide chemical, life science and pharmacy graduates with scientific knowledge and expertise in the areas of biopharmaceutical discovery and development required for a career in the pharmaceutical industry, research institutes or regulatory authorities.

- Course format and assessment -

Lectures; small group tutorials; laboratory classes; laboratory-based research project (or in some instances a critical review of the scientific literature). Each taught module is assessed by a written examination (70 per cent) and coursework (30 per cent).

Modules include:

- Principles Of Chemical Analysis Techniques, Numerical Methods And Regulatory Affairs
- Principles Of Drug Delivery And Disposition
- Research Project/dissertation - Pharmaceutical Sciences

Career prospects

Recent graduates have gone on to take PhD studies; to work in R&D laboratories in the pharmaceutical industry and Biopharmaceutical Industry (including Pfizer, GSK and Novartis); or small Biotech companies. Overseas students have returned to similar positions in their home countries.

How to apply:

http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This course enables you to gain a recognised qualification that will further your career in the pharmaceutical industry or public services, while also providing an excellent foundation for a further research degree. Read more
This course enables you to gain a recognised qualification that will further your career in the pharmaceutical industry or public services, while also providing an excellent foundation for a further research degree. You will gain a strong background in the theory of analytical techniques used in pharmaceutical science and how to apply them to complex problems in an industrially relevant context. You can choose to combine your studies with training in the fundamentals of management theory.

The Pharmaceutical Analysis MSc (ie not including Management Studies) provides exemption from Part A of the Mastership in Chemical Analysis, which is the statutory qualification for a public analyst.

What will you study?

You will gain key skills in the specialised area of pharmaceutical analysis, including good measurement and scientific practice, evaluation interpretation of data, and other professional and organisational skills. In addition to studying core analytical techniques and their applications, you will be introduced to various pharmaceutical technologies, for example, formulations and topics such as clinical pharmacokinetics.

You may be offered a placement within industry (depending on your results and project availability) where you will carry out your independent research project.

The Management Studies option enables you to explore the fundamentals of management theory within the commercial and public sectors.

Assessment

Exams, laboratory reports, assignments, case studies, oral presentations, poster presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Molecular and Atomic Spectroscopy
-Separation Science
-Pharmaceutical and Analytical Technology
-Statistics and Quality Systems
-Project

Read less
If you would like to develop the knowledge and skill set to take on any number of roles associated with pharmaceutical and biopharmaceutical product development then this course is ideal for you. Read more
If you would like to develop the knowledge and skill set to take on any number of roles associated with pharmaceutical and biopharmaceutical product development then this course is ideal for you. The taught modules will give you an insight into preformulation, formulation and the regulation of medicines enabling you to take on a variety of roles within industry including marketing, sales, production, public relations, regulatory affairs, process development, medical statistics and clinical trial organisations.

What will you study?

You will learn about a broad range of formulations and pharmaceutical technologies through the use of examples and case studies along with the underpinning science. You will be given hands-on experience in a number of preformulation and formulation technologies. Clinical trials and other aspects of regulatory affairs, including those covering biotechnological products will be covered in an integrated manner. Employability has been embedded into the course and the varied assessment strategies reflect this. Our study skills centre and the use of formative (practice) assessments are intended to give you the opportunity to develop communication, computing and other key skills.

Assessment

Exams, tests, laboratory reports, assignments, case studies, oral and poster presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Statistics and Quality Systems
-Pharmaceutical and Analytical Technology
-Manufacture and Clinical Trials of Medicines
-Advanced Pharmaceutical Technology and Formulation
-Project

Read less
Phytopharmaceutical Science, the development of drugs from plants and other natural compounds, is now a significant area of research for the development of new medicines with a sound historical basis. Read more
Phytopharmaceutical Science, the development of drugs from plants and other natural compounds, is now a significant area of research for the development of new medicines with a sound historical basis. Many drugs listed as conventional medications are derived from plants and were originally administered in plant form.

Over recent years, in their search for novel therapeutic agents, there has been a huge rise in interest from the global pharmaceutical industry centred on the isolation and evaluation of compounds from plants used in medical treatment derived from traditional medicine sources.

Based on the increasing importance of this emerging area of natural product science this programme of study will enable individuals with specific expertise in the regulation and development of plant-based medicines to pursue a career in the rapidly expanding phytopharmaceutical industry or a government regulatory body.

The MSc in Phytopharmaceuticals is a taught postgraduate programme which provides an in depth study of natural products, their analysis, value as medicines and regulatory issues controlling their production and sales.

As a MSc Phytopharmaceutical student, you will:

receive a high quality programme which will provide you with the expertise to work in the pharmaceutical industries emerging area of natural product science
be supported throughout your studies by our experienced, dedicated team of staff
study in excellent facilities, including new refurbished laboratories with the latest analytical equipment and Medicinal Herb Garden.

Programme structure

Phytopharmaceuticals is multi-disciplinary. You will study, plant chemistry, phytochemical analysis, analytical methods, quality control, toxicology, ethnobotany, herbal therapeutics, legislation and regulation of herbal products, and research methods.

In order to be eligible for the award of the Postgraduate Diploma, a student shall have passed the two specialist modules, the optional module and the core module; or one specialist module, the research project and the core module (120 M Level credits). Students obtaining 60 M level credits (by the core module and either specialist module or the research project) may be considered for the award of Postgraduate Certificate in Life Sciences.

In order to be eligible for the award of the Masters degree, a student shall have passed both specialist modules, the optional module, the research project and the core module (180 M level credits).

You will be assessed throughout the programme in practical work and theory. Coursework varies and includes laboratory work, data analysis, essays, presentations and examinations.

Career opportunities

Feedback from industry suggests that natural product science is an expanding area of interest resulting in new employment opportunities for qualified individuals with specific expertise in the regulation and development of plant based medicines. Opportunities also exist in teaching, writing and horticulture.

You may also be interested in UEL's MSc Pharmaceutical Science programme.

Read less
This course will develop your knowledge of the design, development, analysis and production of medicines, the drug industry and regulatory affairs. Read more
This course will develop your knowledge of the design, development, analysis and production of medicines, the drug industry and regulatory affairs. It is particularly suitable if you are keen to enter employment in areas such as pharmaceutical marketing, formulation, regulatory affairs, process development, medical statistics and clinical trial organisations. You can choose to combine your studies with training in the fundamentals of management theory (option available only for September intake), which is especially suitable to those interested in taking up management positions in relevant organisations.

What will you study?

You will have the chance to explore current trends in chemical, biological and biotechnological therapeutics, and will look at the latest technologies used in the pharmaceutical industry. You will gain an understanding of the processes used in clinical trials and in the development, manufacture and regulation of medicines. You will also develop your computing and statistical skills and other key skills, such as data collection, communication, time management, organisational and review and synopsis skills.

Assessment

Exams, tests, laboratory reports, assignments, case studies, oral and poster presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules (September start)
-Statistics and Quality Systems
-Pharmaceutical and Analytical Technology
-Manufacture and Clinical Trials of Medicines
-Design, Discovery and Development of Pharmaceuticals
-Business in Practice
-Project

Modules (January start)
-Statistics and Formulation of Therapeutics
-Design, Discovery and Manufacture of Medicines
-Quality and Analytical Systems
-Drug Development and Clinical Trials
-Project

Read less
This course will develop your knowledge of the design, development, analysis and production of medicines, the drug industry and regulatory affairs. Read more
This course will develop your knowledge of the design, development, analysis and production of medicines, the drug industry and regulatory affairs. It is particularly suitable if you are keen to enter employment in areas such as pharmaceutical marketing, formulation, regulatory affairs, process development, medical statistics and clinical trial organisations. You can choose to combine your studies with training in the fundamentals of management theory (option available only for September intake), which is especially suitable to those interested in taking up management positions in relevant organisations.

What will you study?

You will have the chance to explore current trends in chemical, biological and biotechnological therapeutics, and will look at the latest technologies used in the pharmaceutical industry. You will gain an understanding of the processes used in clinical trials and in the development, manufacture and regulation of medicines. You will also develop your computing and statistical skills and other key skills, such as data collection, communication, time management, organisational and review and synopsis skills.

Assessment

Exams, tests, laboratory reports, assignments, case studies, oral and poster presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Management Studies pathway modules (only available for a September start)
-Statistics and Quality Systems
-Pharmaceutical and Analytical Technology
-Manufacture and Clinical Trials of Medicines
-Business in Practice
-Project

Read less
Imperial College London Department of Chemistry
Distance from London: 0 miles
Chemical Biology is an emerging discipline that sits at the interface of traditional chemistry and biology. It draws on the tools and ideas of modern Physical Sciences (e.g. Read more
Chemical Biology is an emerging discipline that sits at the interface of traditional chemistry and biology.

It draws on the tools and ideas of modern Physical Sciences (e.g. Chemistry, Mathematics, Physics and Engineering) and applies these to the solution of biological problems at the molecular level.

It is a discipline that is perfectly poised to address the next great challenge in biological science – to understand how gene products are used in and interact with the cellular environment.

The research element provides physical scientists with the ability to bridge disparate fields and gain the confidence to grapple with biomolecular research in a multidisciplinary environment.

Read less
University College London Department of Medicine
Distance from London: 0 miles
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Read more
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Conducting cutting-edge research within the drug industries and UCL's academic group, it offers opportunities for networking and future career development.

Degree information

This programme teaches students the latest methodologies and approaches and covers all aspects of drug design: drug discovery, computational and structural biology, screening, assay development, medicinal chemistry, and most importantly the industrial practices involved in modern drug design technology.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a dissertation/report (105 credits).

Optional modules - students will select three from the following Drug Design MSc modules:
-Bioinformatics and Structural Biology as applied to Drug Design
-Biological Molecules as Therapeutics
-Biophysical Screening Methods, X-ray Crystallography, Protein NMR and Phenotypic Screening
-Cheminformatics and Modelling for Drug Design
-Fragment-based Drug Design
-Target Selection – Commercial and Intellectual Property Aspects
-Target Selection – Scientific Grounds

Core modules - plus two taught transferable skills modules delivered by CALT (UCL Centre for the Advancement of Learning and Teaching):
-Investigating Research
-Researcher Professional Development

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 to 20,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and problem classes, critical journal clubs and a research project. Assessment is through coursework, practicals, laboratory work, examination, dissertation and oral presentation.

Careers

We expect students graduating from this programme to take leading roles in drug discovery and development worldwide or to undertake further PhD level research. The first cohort of students on the Drug Design MRes graduating in 2015 have found jobs in the pharmaceutical industry as well as PhD studentships in leading universities.

Employability
The advanced knowledge and skill set acquired by taking this programme will enable students to find employment in the pharmaceutical and biotech industries in a global market.

Why study this degree at UCL?

The division hosts research groups in the areas of medicine, pharmaceutical research, cell cycle, neurobiology, mitochondrial function, stem cells and cancer. Underpinning the translational aspects of the biomedical research, we have a medicinal chemistry group which conducts research where chemistry and biology intersect, using the latest techniques and developing new ones for the study of biological systems.

The division collaborates extensively within industry and academia to develop biological tools and therapeutic agents. There are plenty of opportunities to conduct translational research that has an impact on drug discovery.

Pharmaceutical and biotech companies, well established in the West, have been transferring their research and development to the East. Given these substantial developments, particularly in China and India, the programme will have a broad international appeal.

Read less
Medway School of Pharmacy is a joint venture between the Universities of Greenwich and Kent. Since 2004, the Department has invested heavily in facilities and equipment. Read more
Medway School of Pharmacy is a joint venture between the Universities of Greenwich and Kent. Since 2004, the Department has invested heavily in facilities and equipment: it houses strong and vibrant research groups that span a range of pharmacy-related areas. Staff have a wealth of research experience and UK and international links with both industry and academic institutions. Our excellent relationship with both Greenwich and Kent gives the Department access to world-class research facilities. PhD studentships are awarded on a competitive basis and in a broad range of research areas, including chemistry and drug delivery, biological sciences and pharmacy practice.

The programme aims to give postgraduate students the integrated, broad-based research training needed to exploit the advances in pharmaceutical and biological sciences and pharmacy practice for conducting contemporary research. We also offer part-time MPhil/PhD programmes.

Visit the website http://www2.gre.ac.uk/study/courses/pg/res/pharm

What you'll study

Research areas and recent research topics include:

Chemistry and drug delivery
Synthesis and biological evaluation of potential anti-cancer agents
Structure-based drug design
Quantitive structure-activity relationship (QSAR) predication of ADMET properties
Controlled release
Particle engineering
Powder technology
Pharmaceutical technology
Novel drug delivery systems with a focus on respiratory drug delivery
Pharmacology, cell and molecular biology
Cancer gene therapy
Immunology of allergic response
Neuropharmacology
Neurobiology (circadian rhythms)
Control of microbial infection
Ion channels and their role in disease states
Pharmacy practice
Rational cost-effective use of drugs
Pharmaceutical care - with an emphasis on new models of care for specific patient groups
Medicines management
Pharmaceutical services, ethics and pharmacy practice

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.Find out more about our fees and the support available to you at our:

- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through their thesis and an oral examination.

Career options

Graduates from this programme can pursue positions in the pharmaceutical industry, consultancy, the NHS and other parts of the public sector, and academia.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
University College London UCL School of Pharmacy
Distance from London: 0 miles
The Drug Sciences MRes is for graduates wishing to pursue a career in research. The programme provides a flexible opportunity for high-level research-based training and acquiring a range of academic skills that will prepare students for PhD-level study or a career in biotech and pharmaceutical industries. Read more
The Drug Sciences MRes is for graduates wishing to pursue a career in research. The programme provides a flexible opportunity for high-level research-based training and acquiring a range of academic skills that will prepare students for PhD-level study or a career in biotech and pharmaceutical industries.

Degree information

This programme includes taught and research components and runs for 12 months. The research project begins immediately when students join their chosen laboratory. Project work continues throughout the whole year. The taught component is tailored to individual research programmes. Students select the appropriate modules for their chosen research discipline. There is also core training in research methods and transferable skills.

Students undertake modules to the value of 180 credits.

The programme consists of both a taught component (30 credits) and a larger research component (150 credits). The taught component will be drawn from a range of specialist options taught by the School of Pharmacy. Students will study either one 30-credit or two 15-credit modules. Not all modules will be available every year.

Core modules
-Dissertation

Optional modules - students select either one or two modules from a wide range including:
-Medicinal Natural Products
-New Drug Targets in the CNS
-Anticancer Personalised Medicines
-Modern Aspects of Drug Discovery
-Analysis and Quality Control
-Preformulation
-Formulation of Small Molecules
-Personalised Medicines
-Natural Product Discovery
-Adverse Drug Reactions and Biomarkers
-Advanced Structure Based Drug Design
-Pharmaceutical Biotechnology
-Clinical Pharmaceutics
-Nanomedicines
-Formulation of Natural Products and Cosmeceuticals
-Developmental Neurobioloy
-Neurobiology of Degeneration and Repair
-Cognitive Systems Neuroscience
-Systems and Circuit Neuroscience
-Medicinal Chemistry

Dissertation/report
All students undertake a programme of full-time research equivalent to approximately 10 months' duration. This research will be written up as a dissertation at the end of the period of study.

Teaching and learning
The programme is delivered through a combination of lectures and seminars, laboratory work, participation in the research training programme. Assessment is through written examination, research dissertation, oral presentation and viva voce examination.

Careers

Graduates of this programme can expect to become proficient research scientists equipped for a career in research, in the pharmaceutical industry, or with a government regulatory body.

Why study this degree at UCL?

This MRes in Drug Sciences is conducted primarily as an in-depth and novel research project at the forefront of research in the area of medical and pharmaceutical sciences within the internationally recognised UCL School of Pharmacy.

Thus students gain research experience and training in their chosen research laboratory and also importantly, they have the opportunity to interact with expert researchers in all aspects of the drug discovery and delivery process.

Read less
University College London UCL School of Pharmacy
Distance from London: 0 miles
This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body. Read more
This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body.

Degree information

You will gain hands-on experience of molecular modelling and computer-based drug design, and analytical and synthetic techniques and be exposed to modern platforms for drug discovery and methods of drug synthesis.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (90 credits), two optional modules (30 credits) and a dissertation (60 credits).

Core modules
-Modern Aspects of Drug Discovery
-The Process of Drug Discovery and Development I
-The Process of Drug Discovery and Development II

Optional modules - students choose two from the following:
-Anticancer Personalised Medicines
-New Drug Targets in the CNS
-Pharmacogenics, Adverse Drug Reactions and Biomarkers
-Advanced Structure-based Drug Design

Dissertation/report
All students undertake a laboratory-based research project which is assessed at the end of the year by a written report and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials and seminars supported by the Blackboard e-learning system and practical classes. Assessment is through a combination of written examination and coursework. The research project is assessed by written report and oral presentation.

Careers

Students who complete the Drug Delivery and Development MSc will progress to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Top career destinations for this degree:
-Analytical Scientist, GSK (GlaxoSmithKline)
-Product Physician, AstraZeneca
-PhD in Medicinal Chemistry, University College London (UCL)

Why study this degree at UCL?

Lectures and seminars from industry-based scientists and visits to industrial and biotechnological research laboratories are key features of this programme.

Our graduates include international students from 24 different countries.

The programme covers marketing, licensing and the regulatory affairs that form an integral part of the development process.

Read less
University College London UCL School of Pharmacy
Distance from London: 0 miles
This exciting new programme has been introduced as a spin-off from the very successful Drug Discovery MSc in response to the increasing opportunities which now exist for research scientists who can evaluate the business potential of their science as well as generate the science itself. Read more
This exciting new programme has been introduced as a spin-off from the very successful Drug Discovery MSc in response to the increasing opportunities which now exist for research scientists who can evaluate the business potential of their science as well as generate the science itself.

Degree information

This MSc contains the science core of the Drug Discovery MSc and combines a broad overview of the drug discovery and development process with specialisation in management training and awareness, and strategic partnering and business development skills.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (120 credits), and a dissertation (60 credits). There are no optional modules for this programme.

Core modules
-The Process of Drug Discovery
-The Process of Drug Development
-Modern Aspects of Drug Discovery
-Pharma Management

Dissertation/report
All students undertake a business development project based on an aspect of science from drug discovery either at the UCL School of Pharmacy or in industry.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials and seminars and practical classes. Assessment is through a combination of written examination and coursework. The business development project is by written report and oral presentation to the class and a judging panel of scientists and managers.

Careers

Students who complete the Drug Discovery and Pharma Management MSc will progress to careers in the varous aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Why study this degree at UCL?

The Pharma Management component of this MSc is led by Dr Nigel Ratcliffe, formerly Vice-President for regulatory and commercial affairs at Astra Zeneca.

Students visit a leading research laboratory e.g. GlaxoSmithKline to look at computer-based molecular modelling, how physico-chemical properties are determined, the robotic compound library, and high throughput screening. The visit is supplemented by material and instruction and the discovery process of a drug will be worked through in detail.

Students attend a one-day research conference on an aspect of drug discovery and development organised by the Society for Medicines Research where there is opportunity to interact with leading industrialists and researchers in the field.

Read less

Show 10 15 30 per page



Cookie Policy    X