• Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Coventry University Featured Masters Courses
Durham University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Southampton Solent University Featured Masters Courses
Central European University Featured Masters Courses
United Kingdom
London×
0 miles
Geology×

Masters Degrees in Industrial Geology, London, United Kingdom

We have 3 Masters Degrees in Industrial Geology, London, United Kingdom

  • Geology×
  • Industrial Geology×
  • United Kingdom
  • London×
  • clear all
Showing 1 to 3 of 3
Order by 
University College London Department of Geography
Distance from London: 0 miles
The degree is the leading Master's programme in remote sensing available in the UK. It offers the opportunity to study at an advanced level the ways in which remote sensing instruments in space and on aircraft may be used to collect environmental information about the Earth at a range of scales. Read more
The degree is the leading Master's programme in remote sensing available in the UK. It offers the opportunity to study at an advanced level the ways in which remote sensing instruments in space and on aircraft may be used to collect environmental information about the Earth at a range of scales.

Degree information

Students develop an all-round knowledge of remote sensing, including fundamental principles, current technological developments and applications to local, regional and global problems. They gain highly developed, marketable practical skills to enable them to take leading roles in academic, government and industrial sectors.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules in term one (60 credits), four optional modules in term two (60 credits) and a research project in term three (60 credits). A Postgraduate Certificate (60 credits), full-time 12 weeks, flexible study up to two years is offered.

Core modules
-Analytical and Numerical Methods
-Scientific Computing
-Mapping Science
-Principles and Practice of Remote Sensing

Optional modules
-Terrestrial Carbon: Modelling and Monitoring
-Global Monitoring of Environment and Society
-Airborne Data Acquisition
-Image Understanding
-Ocean and Coastal Zone Management
-Terrestrial Data Acquisition
-Climate Modelling

Dissertation/report
All students undertake an individual research project. The department has links with industry, and projects may be carried out in collaboration with organisations outside UCL.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, individual and group coursework, and compulsory computer training. Student learning is supported by tutorials, transferable skills training and research supervision throughout the year. Assessment is through unseen written examinations, coursework, dissertation and an oral presentation.

Careers

This MSc will appeal to individuals interested in developing research training while acquiring vocational skills for work in remote sensing related positions in public and private sector institutions. The quantitative skills the course provides have proved attractive for employers, particularly the grounding in programming, data handling and analysis, image processing and report writing. These skills are generic and have allowed graduates to go into a range of careers in remote sensing and spatial analysis but also areas such as conservation and management, data analysis, computing, policy and commercial application.

Remote Sensing graduates find jobs in diverse companies: from consultancies carrying out environmental and spatial analysis through to major international companies, or government and government-affiliated agencies. The programme is also suitable training for those wishing to undertake higher level work as a prelude to a PhD in remote sensing.

Top career destinations for this degree:
-Civil Engineer, Irrigation Department
-Remote Sensing and Forest Ecology, The University of Edinburgh
-IT Operations Analyst, Ford
-Image Analyst, Civil Service
-PhD Geography, University of Cambridge

Employability
The range of generic, transferable skills provided by the degree programme have proved to be attractive to a range of employers. Students gain a fundamental understanding of the key principles of remote sensing and data handling and analysis, as well as the ability to communicate their ideas. Such skills and knowledge are applicable across a wide range of careers. The long heritage of the programme - over 30 years - and its interdisciplinary, intercollegiate nature provides students with a unique perspective, not just from UCL, but across the wider world of remote sensing and environmental science.

Why study this degree at UCL?

The MSc is run by UCL Geography, which enjoys an outstanding reputation for its research and teaching, and has a long pedigree in producing highly employable graduates for industry, research, policy and many other areas.

A distinctive feature of the programme is its intercollegiate nature which exposes students to a range of university departments and expertise across fields including terrestrial vegetation and carbon stocks, solid earth and geology, fire impacts, new sensor technology and ocean processes.

The degree is integrated with other Geography MSc programmes providing greater flexibility when choosing optional modules.

Read less
University College London Department of Geography
Distance from London: 0 miles
The Environmental Mapping MSc is designed to appeal to students looking to map and understand the environment. Read more
The Environmental Mapping MSc is designed to appeal to students looking to map and understand the environment. It provides the opportunity to study at an advanced level the ways in which spatial data can be collected, processed and analysed to qualify and understand environmental issues across a wide range of applications.

Degree information

Students receive core training in mapping science, analytical methods, geographic information systems (GIS), image processing, and other fundamentals of geomatics. They develop techniques for the acquisition of data including satellite remote sensing, global navigation satellite systems (GNSS) and LIDAR, alongside techniques for the analysis, processing, interpretation, and display of spatial data.

Students undertake modules to the value of 180 credits. The programme consists of six core modules (60 credits), optional modules (60 credits) and a research project (60 credits). A Postgraduate Certificate (60 credits), full-time 12 weeks, part-time one year is offered.

Core modules
-Analytical and Numerical Methods
-Scientific Computing
-Mapping Science
-Principles and Practice of Remote Sensing

Optional modules - options may include the following:
-Climate Modelling
-Airborn Data Acquisition
-Surface Water Modelling
-Terrestrial Carbon: Monitoring and Modelling
-Global Monitoring of Environment and Society
-Image Understanding
-Dissertation/report

All students undertake an individual research project. The department has links with industry, and projects may be carried out in collaboration with organisations outside UCL.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, tutorials, transferable skills training, compulsory computer training and research supervision. Assessment is through unseen written examinations, coursework, and a dissertation (including a poster presentation).

Careers

The MSc will appeal to individuals interested in developing research training while acquiring vocational skills for work in mapping and monitoring positions in public and private sector institutions. The quantitative skills the degree provides have proved attractive to employers, particularly the grounding in programming, data handling and analysis, image processing and report writing. These skills are generic and have allowed graduates to go into a range of careers in mapping and spatial analysis but also areas such as conservation and management and policy. Environmental Mapping graduates find jobs in diverse companies from consultants and NGOs carrying out environmental and spatial analysis, and governmental and government-affiliated agencies such as DECC and the National Physical Laboratory. The programme is also a suitable training for those wishing to undertake higher-level work as a prelude to a PhD

Employability
The range of generic, transferable skills provided by the programme has proved to be attractive to a range of employers. Students acquire fundamental understanding of the key principles of mapping and data handling and analysis, as well as the ability to communicate their ideas. These principles can and are applicable across a wide range of career options. The interdisciplinary, intercollegiate nature of the degree gives students a unique perspective, not just at UCL, but across the wider world of mapping and environmental science.

Why study this degree at UCL?

The MSc is run by UCL Geography, which enjoys an outstanding reputation for its research and teaching, and has a long pedigree in producing highly employable graduates for industry, research, policy and many other areas.

This MSc offers students an all-round knowledge of monitoring methods and environmental understanding, including the fundamental principles, and current technological developments and applications to local, regional and global problems.

Graduates of the programme are equipped with highly developed practical skills to enable them to take leading roles in academic, governmental or industrial sectors. The degree is integrated with other Geography MSc programmes to provide greater flexibility when choosing optional modules.

Read less
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste. Read more
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste.

It has been designed with industry advice to enable good science and engineering graduates begin and advance successful careers in the environmental sector, and pursue postgraduate scientific research. The MSc is delivered in first-class teaching and research facilities by a dedicated team of internationally renowned environmental scientists, and presents considerable interaction with environmental consultancies and engineers, industry, local and regulatory authorities, and research institutes.

During 2007-2011, the course was supported by 6 NERC studentships, the most awarded annually to an environmental MSc. Students on the course have won the most EMpower research projects funded by companies within the nuclear industry, and since 2008, a Prize for Best Performance Overall has been awarded annually by Arup, a global environmental engineering and consultancy company.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscenvironmentaldiagnosismanagement.aspx

Why choose this course?

- The quality of teaching and learning on the course is enhanced considerably by significant professional networking and interaction with leading experts from environmental consultants and engineers, industry, local and regulatory authorities, and universities and research institutes; who present seminars, host study visits, co-supervise research projects, and act as an advisory panel.

- Graduates of the course are skilled and knowledgeable scientists with excellent employment prospects within the environmental sector, particularly as environmental consultants and engineers, in local and regulatory authorities, industry, charitable trusts, and research institutes and universities.

- In the 2008 Research Assessment Exercise (RAE), the Department’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

Course content and structure

You will study seven taught modules, three case studies and complete an Independent Research Project:

- Communication & Co-operation Skills
Provides practical training in written and verbal communication media; project, team and time management; role playing in environmental impact assessment; careers advice and a mock job interview.

- Environmental Inorganic Analysis
A practical laboratory and field-work based introduction to quality assured sampling strategies, preparation processes and analytical methods for heavy metals in soils, surface waters, and vegetation.

- Diagnostic & Management Tools
Provides practical computer-based training in statistical analysis of environmental data, geographical information systems, and environmental risk assessment.

- Environmental Organic Chemistry Pathways Toxicology
Comprises physical and chemical properties, transport, fate and distribution, and toxicology of organic compounds in the environment.

- Contaminated Land Case Study
A practical laboratory and field-work based human health risk assessment of pollutant linkages at a former gravel extraction and landfill site. It comprises desk-top study, site investigation and sampling, laboratory analysis, data interpretation, quantitative risk assessment, and remediation options.

- Water Quality: Diagnosis & Management
A practical laboratory and field-work based introduction to aquatic science, hydrogeology, treatment of water and wastewater, and chemical, biological and physical monitoring of water quality. Includes a study visit to a global manufacturer of pesticides and herbicides.

- River Thames Basin Case Study
A combination of fieldwork, laboratory work and desk-top study to diagnose water quality in chemical and ecological terms, to identify industrial and agricultural pollutant linkages, and to determine environmental, ecological and health impacts.

- Air Pollution: Monitoring, Impacts & Management
Covers: sources, sinks, dispersion, conversion, monitoring, impacts and management of air pollutants with study visits to a local authority and a government research institute.

- Royal Holloway Campus Air Quality Case Study
Involves a consultancy company-style investigation of ambient and indoor air quality within the confines of RHUL campus; and combines desk-top research with practical fieldwork and laboratory analysis.

- Waste Management & Utilisation
Considers municipal, industrial and radioactive waste management options, with study visits to a landfill site, a waste incinerator, composting facility, recycling centre and nuclear power station.

- Independent Research Project
Consists of a four-month, independent scientific investigation, usually in collaboration with environmental consultants and engineers, local and regulatory authorities, industry, research institutes, and universities. Projects may comprise a desk-top study or practical laboratory and field investigation, they may be funded, and often lead to employment or to PhD research. Final results are presented at the Research Project Symposium to an audience from within the environmental sector

On completion of the course graduates will have acquired the experience, knowledge, and critical understanding to enable them to:

- Conduct themselves as professional environmental research scientists, consultants, and managers, convey in a professional manner, scientific, technical and managerial information, and manage projects and resources efficiently

- Apply quality assured sampling strategies, preparation procedures and analytical systems to quantify health risks posed by inorganic and organic pollutant linkages in soils, waters and air

- Apply statistical analysis, geographical information systems, and environmental impact and risk assessment to the interpretation of environmental data

- Appreciate the importance and impacts of hydro-geological, and bio- and physico-chemical processes on the treatment of water and wastewater, and on the quality of groundwater and aquatic ecosystems

- Appreciate the emissions, dispersion, conversion, and monitoring of natural and man-made gaseous and particulate air pollutants, their impacts on climate change, human health and vegetation, and management on local, regional and global scales

- Appreciate the prevention, re-use, recycling, recovery, disposal and utilisation of municipal and industrial waste and the management of nuclear waste within the constraints of national and international legislation

- Manage an independent environmental science research project, often with professional collaboration, and of significant value to their career development.

Assessment

- Written examinations test understanding of the principles and concepts taught in the modules and case studies, and the ability to integrate and apply them to environmental diagnosis and management.

- Assessment of module work and practical computing, laboratory and fieldwork evaluates critical understanding of the environmental science taught, and mastery of producing quality assured data, and its analysis, interpretation, presentation and reporting.

- Assessment also reflects the ability to work independently and in teams, and to learn during study visits.

- Assessment of research projects is based on the ability to manage and report on an original piece of independent scientific work.

- All assessed work has significant confidential written and verbal feedback.

Employability & career opportunities

94% of the graduates of the MSc from 2008 to 2013 either successfully secured first-destination employment as international environmental consultants and engineers, in industry, local and regulatory authorities and charitable trusts, or are conducting postgraduate research within international research institutes and universities.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X