• University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Warwick Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Manchester Featured Masters Courses
United Kingdom
London×
0 miles
Chemistry×

Masters Degrees in Chemistry, London, United Kingdom

We have 40 Masters Degrees in Chemistry, London, United Kingdom

  • Chemistry×
  • United Kingdom
  • London×
  • clear all
Showing 1 to 15 of 40
Order by 
University College London Department of Chemistry
Distance from London: 0 miles
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. Read more

The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. The programme is particularly suitable for those wishing to embark on an academic career, with a strong track record of students moving into graduate research at UCL and elsewhere.

About this degree

Students develop a systematic approach to devising experiments and/or computations and gain familiarity with a broad range of synthetic, analytical and spectroscopic techniques, acquiring skills for the critical analysis of their experimental and computational observations. They also broaden their knowledge of chemistry through a selection of taught courses and are able to tailor the programme to meet their personal interests.

You will undertake Chemistry modules to the value of 180 credits.

The programme consists of core literature (30 credits) and research projects (90 credits), and a research and professional skills development module (15 credits) and optional taught modules (45 credits in total). Optional modules are chosen in consultation with your research advisor.

Core Modules

All students undertake a literature project (30 credits) and a research dissertation (90 credits), which are linked. In addition students take a module (15 credits) to develop their research and professional skills.

  • Literature Project
  • Research Project
  • Transferable Skills for Scientists

Optional Modules

Students choose three optional modules from the following:

  • Advanced Topics in Energy and Environmental Science
  • Advanced Topics in Physical Chemistry
  • Biological Chemistry
  • Concepts in Computational Chemistry
  • Frontiers in Experimental Physical Chemistry
  • Inorganic Rings, Chains and Clusters
  • Intense Radiation Sources in Modern Chemistry
  • Topics in Quantum Mechanics
  • Numerical Methods in Chemistry
  • Pathways, Intermediates and Function in Organic Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Simulation Methods in Materials Chemistry
  • Stereochemical Control in Asymmetric Total Synthesis
  • Structural Methods in Modern Chemistry
  • Synthesis and Biosynthesis of Natural Products
  • New Directions in Materials Chemistry

Dissertation/Report

All students undertake an independent research project which features an oral examination and culminates in submission of an extended dissertation (90 credits).

Teaching and Learning

The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through the dissertation, unseen written examinations, research papers, a written literature survey, and an oral examination. All students will be expected to attend research seminars relevant to their broad research interest.

Further information on modules and degree structure is available on the department website: Chemical Research MSc

Careers

This MSc is designed to provide first-hand experience of research at the cutting-edge of chemistry and is particularly suitable for those wishing to embark on an academic career (i.e. doctoral research) in this area, although the research and critical thinking skills developed will be equally valuable in a commercial environment.

Recent career destinations for this degree

  • Project Manager, Jiang Clinic
  • Secondary School Teacher (Chemistry), Loyang Secondary School
  • PhD in Engineering, Imperial College London

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

With departmental research interests and activities spanning the whole spectrum of chemistry, including development of new organic molecules, fundamental theoretical investigations and prediction and synthesis of new materials, students are able to undertake a project that aligns with their existing interests.

Students develop crucial first-hand experience in scientific methods, techniques for reporting science and using leading-edge research tools, as well as further essential skills for a research career.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.

Application and next steps

Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

Who Can Apply?

The programme is suitable for students wishing to progress to a research degree in chemistry or those seeking to acquire research skills which are valued in a commercial environment.

Application Deadlines

All applicants

27 July 2018

Applicants can select the research projects in Computational, Inorganic, Organic or Physical Chemistry. In the application cover letter students are asked to indicate which area(s) of chemistry they are interested in studying, clearly indicating why they chose this particular area, and indicating (at least) three academic members of staff they are interested in working with.

For more information see our Applications page.



Read less
University College London Department of Chemistry
Distance from London: 0 miles
The Organic Chemistry. Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Read more

The Organic Chemistry: Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Students gain outstanding training in synthetic organic chemistry applied to drug design, together with a breadth of experience in several areas of synthetic methodology and chemical biology.

About this degree

The programme provides a thorough foundation in drug design, advanced organic synthesis and biological chemistry, together with modules on research techniques, professional development and entrepreneurship. Students will carry out a substantial research project on organic/medicinal chemistry or chemical biology over a ten-month period.

MRes students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits) and a research project /dissertation (105 credits).

Core modules

Students take five 15-credit modules including two Master's-level chemistry modules, one transferable/research skills module, one analytical chemistry module, and one professional development module.

  • Transferable/Research Skills
  • Analytical Chemistry
  • Biological Chemistry
  • Principles of Drug Design
  • Professional Development

Optional modules

There are no optional modules for this programme.

Dissertation/report

Students will undertake a laboratory-based research project lasting 10months. An interim report is submitted after five months, and at the end of the project each student writes a dissertation, gives a short presentation and has a viva voce examination.

Teaching and learning

The programme is delivered through a combination of lectures, problem classes, workshops and projects. Assessment is through unseen written examination, coursework, project reports and presentations.

Further information on modules and degree structure is available on the department website: Organic Chemistry: Drug Discovery MRes

Funding

Students can be self-funded or find sponsorship from funding agencies such as research councils, the European Union, industry or charities.

There are also a number of Graduate School Scholarships and departmental bursaries and prizes available.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The MRes has been developed in response to the needs of the pharmaceutical and biotechnology sectors for highly qualified students as leaders in the discovery of new medicines. The pharmaceutical sector is a major employer in the UK and high-quality graduates with an understanding of the sector are always in demand. Our recent graduates have taken up PhD positions, are working in industry and have entered teacher training.

Why study this degree at UCL?

This degree involves a cutting-edge research project in the laboratory a member of research staff at UCL Chemistry. This is one of the leading research departments in the UK with staff undertaking world-leading research in all areas of chemistry and chemical biology.



Read less
School Direct (Tuition Fee) is a route into teaching at both primary and secondary levels. Trainees join other student teachers on the established Chemistry PGCE programme at the UCL Institute of Education (IOE), whilst undertaking their teaching experience at their host school or alliance. Read more

School Direct (Tuition Fee) is a route into teaching at both primary and secondary levels. Trainees join other student teachers on the established Chemistry PGCE programme at the UCL Institute of Education (IOE), whilst undertaking their teaching experience at their host school or alliance.

About this programme

This programme has been designed to enable all candidates to demonstrate that they have met the standards across Key Stages 3 and 4 (11–16 age range).

Students will acquire a critical understanding of current debates and issues relating to science education, and we will guide and support them in developing their subject knowledge. We expect students to engage with reading and research in science education and to regularly reflect upon their own progress.

This programme will cover health and safety, management of teaching and learning in laboratories and outdoors, the use of ICT, facilitating small group discussion, meeting pupils' special needs, and assessment. Our facilities include a suite of laboratories and a micro-computing laboratory.

Students undertake two Master’s-level (level 7) modules of 30 credits each, totaling 60 credits. These can be carried forward onto full Master’s programmes at the IOE.

The Secondary PGCE consists of three core modules: two Master’s-level modules, which are assessed through written assignments, and the Professional Practice module, which is assessed by the observation of practical teaching in placement schools.

Completion of the Professional Practice module and the two level 7 (Master’s level) modules (60 credits) will result in the award of a Postgraduate Certificate of Education (PGCE). Completion of the Professional Practice module and one or two level 6 (undergraduate/Bachelor’s level) modules, will lead to the Professional Graduate Certificate of Education (PgCE).

Core modules

  • Science Education in the Broader Context (30 Master's-level credits)
  • Wider Educational Studies - Chemistry (30 Master's-level credits)
  • Professional Practice

Optional modules

  • There are no optional modules for this programme

Placement

Student Teachers undertake at least two placements (totaling 120 days) at a school or college, during which time their teaching practice will be supported by a school subject tutor and mentor. The Professional Practice module is assessed through these placements, associated tasks and a portfolio. 

You may teach: 

Key Stage 3: Science (including elements of physics, chemistry and biology) 

Key Stage 4: Science (all areas) and/or chemistry (depending on school placement) 

Key Stage 5: AS/A2 level chemistry

Teaching and learning

The School Direct (Tuition Fee) PGCE is delivered via keynote lectures, subject lectures, seminars, workshops, tutorials and directed study days at the Institute of Education as well as time spent in placement schools or colleges. Assessment is by practical teaching, assignments, portfolio tasks and, for some subjects, practical projects. Students will also record their progress in a Career Entry and Development Profile statement. This will form part of a portfolio that links into the induction year (the first year of teaching) and a student's continuing professional development.

Further information on modules and programme structure is available on the department website: School Direct (Tuition Fee): Chemistry

Funding

Bursaries and scholarships of up to £30,000 are available to students who meet the eligibility criteria for the Chemistry PGCE. To find out what funding may be available, please visit the “Get into Teaching” website.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the UCL Scholarships and Funding website.

Careers

Graduates of this programme are currently working across a broad range of areas. Some are working as lecturers in science education, while others have jobs as school leaders, heads of year and advanced skills teachers. Graduates in this area can also be found working as chemistry teachers, science teachers and heads of department.

Employability

Graduates of the Secondary PGCE programme are highly employable and sought after by schools and colleges in London and beyond. Almost all graduates secure their first teaching post by the time they finish the PGCE programme. Graduates of the programme also have great career prospects, with many becoming Head of Department or a Head of Year within 2-5 years, often acting, in their schools, as mentors to new PGCE student teachers. Many of our graduates become senior teachers (such as Assistant Headteachers or Head of a Faculty) in 5-8 years of graduating, and some are now Headteachers. Others have developed their careers as subject specialist teachers and educators, both becoming lead teachers in the classroom and researching, writing and advising other teachers themselves. The Secondary PGCE Programme is a springboard into a rewarding career, not just as a skilled teacher, but as an educational leader.

Why study this programme at UCL?

This programme prepares students to teach all aspects of science to pupils up to age 16, as well as Chemistry to pupils aged up to 18. We are committed to creative and interactive approaches to teaching science to promote engagement and learning.

Students on the Chemistry PGCE work with a team of expert subject tutors who have all previously been classroom teachers and are actively involved with science education research, curriculum development and consultancy. During teaching practice, student teachers benefit from the support of subject specialist mentors within our network of over 200 schools throughout Greater London and beyond, ensuring each has the opportunity to become a skilled and confident teacher.

The Chemistry PGCE offers unique opportunities including teaching sessions at museums and Kew Gardens, and residential trips, developing students’ understanding of learning science outside the classroom.

Accreditation:

This route leads to the award of QTS (Qualified Teacher Status).



Read less
The Chemistry PGCE prepares chemistry student teachers to teach the 11-16 age range. We are committed to creative and interactive approaches to teaching science to promote engagement and learning. Read more

The Chemistry PGCE prepares chemistry student teachers to teach the 11-16 age range. We are committed to creative and interactive approaches to teaching science to promote engagement and learning.

About this programme

Students will acquire a critical understanding of current debates and issues relating to science education, and will be guided and supported in developing their subject knowledge. We expect students to engage with reading and research into science education and to regularly reflect upon their own progress, towards meeting the teaching standards across the 11–16 age range.

Students undertake two level 7 (Master’s-level) modules of 30 credits each, totaling 60 credits. These can be carried forward onto full Master’s programmes at the IOE.

The Secondary PGCE consists of three core modules: two Master’s-level (level 7) modules, which are assessed through written assignments, and the Professional Practice module, which is assessed by the observation of practical teaching in placement schools.

Completion of the Professional Practice module and the two level 7 (Master’s level) modules (60 credits) will result in the award of a Postgraduate Certificate of Education (PGCE). Completion of the Professional Practice module and one or two level 6 (undergraduate/Bachelor’s level) modules, will lead to the Professional Graduate Certificate of Education (PgCE).

Core modules

  • Science Education in the Broader Context (30 Master's-level credits)
  • Wider Educational Studies - Chemistry (30 Master's-level credits)

Placement

Student teachers undertake at least two placements (totaling 120 days) at a school or college, during which time their teaching practice will be supported by a school subject tutor and mentor. The Professional Practice module is assessed through these placements, associated tasks and a portfolio. 

Students may teach: 

Key Stage 3: science (including elements of physics, chemistry, biology) 

Key Stage 4: science (all areas) or chemistry (depending on school placement) 

Key Stage 5: AS/A2 level chemistry

Teaching and learning

The Secondary PGCE full-time route is delivered via keynote lectures, subject lectures, seminars, workshops, tutorials and directed study days at the Institute of Education as well as time spent in placement schools or colleges. Assessment is by practical teaching, assignments and portfolio tasks.

Students will also record their progress in a Career Entry and Development Profile statement. This will form part of a portfolio that links into the induction year (the first year of teaching) and a student's continuing professional development.

Further information on modules and programme structure is available on the department website: PGCE Chemistry

Funding

Bursaries are available for some subject programmes to students who meet the eligibility criteria. To find out what funding may be available to you, please visit the Department for Education funding page.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the UCL Scholarships and Funding website.

Careers

Graduates of this programme are currently working across a broad range of areas. Some are working as lecturers in science education, while others have posts as school leaders, heads of year and advanced skills teachers. They can also be found working as chemistry teachers, science teachers and heads of department.

Employability

Graduates of the Secondary PGCE programme are highly employable and sought after by schools and colleges in London and beyond. Almost all graduates secure their first teaching post by the time they finish the PGCE programme. Graduates of the programme also have great career prospects, with many becoming Head of Department or a Head of Year within 2-5 years, often acting, in their schools, as mentors to new PGCE student teachers. Many of our graduates become senior teachers (such as Assistant Headteachers or Head of a Faculty) in 5-8 years of graduating, and some are now Headteachers. Others have developed their careers as subject specialist teachers and educators, both becoming lead teachers in the classroom and researching, writing and advising other teachers themselves. The Secondary PGCE Programme is a springboard into a rewarding career, not just as a skilled teacher, but as an educational leader.

Why study this programme at UCL?

Students on the Chemistry PGCE work with a team of expert subject tutors who have all previously been classroom teachers and are actively involved with science education research, curriculum development and consultancy. During teaching practice, student teachers benefit from the support of subject specialist mentors within our network of over 200 schools throughout Greater London and beyond, ensuring each has the opportunity to become a skilled and confident teacher.

The Chemistry PGCE offers unique opportunities including teaching sessions at museums and Kew Gardens, and residential trips, developing students’ understanding of learning science outside the classroom.

Accreditation:

Students who successfully complete this programme will be recommended for Qualified Teacher Status (QTS).



Read less
Analytical chemistry underpins many important commercial enterprises from jet engine development to food production, and is also applied to many other academic disciplines such as Earth sciences, medicine, archaeology, pharmacy and forensics. Read more

Analytical chemistry underpins many important commercial enterprises from jet engine development to food production, and is also applied to many other academic disciplines such as Earth sciences, medicine, archaeology, pharmacy and forensics. This MSc seeks to train the next generation of analytical scientists in state-of-the-art methods and skills to tackle the challenges of this broad range of applications.

About this degree

This programme is designed to provide comprehensive training in analytical chemistry and its implementation. A thorough understanding of error analysis, data processing and data presentation will be at the foundation of this programme.

The programme will contain minimum formal instruction, but emphasise self-learning and originality of thought. Students will develop and demonstrate self-direction and originality, and the independence required for continuing professional development.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (90 credits), two optional modules (30 credits) and a report (60 credits).

Core modules

Students take the following core modules (105 credits) and submit a research dissertation (60 credits).

  • Analytical Strategies*
  • Data analysis for Analytical Chemistry*
  • Practical aspects of Analytical Chemistry*
  • Literature Project for Applied Analytical Chemistry
  • Transferable Skills for Chemists

*Students take these core modules in term one and only proceed to term two and select the research project if they have achieved 50% or greater in all three of the taught core modules.

Optional modules

Students choose one of the following options:

  • Mastering Entrepreneurship
  • Entrepreneurship: Theory and Practice
  • Numerical Methods in Chemistry
  • Strategic Project Management

Dissertation/report

All students undertake a substantial research project selected from a range (60 credits).

Teaching and learning

This degree emphasises self-learning and is delivered through individual and team-based tasks. The programme will focus on developing students’ knowledge of analytical methodology, philosophy and design.

Assessment is by presentations, vivas, and problem-solving coursework. Only optional modules are presented more formally with lectures and written examinations.

Further information on modules and degree structure is available on the department website: Applied Analytical Chemistry MSc

Careers

Graduates will be equipped for varied employment in industry and the public sector: analytical science techniques have a very broad range of applications in many sectors, ranging from forensics to global climate change and medicine to the automotive industry.

Employability

The programme includes a module on project management offered by the UCL School of Management which will prepare students for careers in research or in analytical sciences. There are also modules on mastering entrepreneurship, and new technology ventures which will help students transform ideas into commercial entities.

Why study this degree at UCL?

Using a non-traditional approach this programme will prioritise independent learning and research. Students also participate in peer-review assessment of posters and talks. Peer assessment is an important transferable skill that is used widely in industrial and academic environments.

Emphasis will be on designing appropriate analytical methodologies and the relevant underpinning data handling, analysis and interpretation. The physics and chemistry behind state-of-the-art measurement technologies, their methods and application limitations will also be prioritised.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
University College London Department of Chemistry
Distance from London: 0 miles
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules. Read more

The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules.

About this degree

The programme provides specific training in molecular modelling methods and structure determination and characterisation techniques applicable to the materials sciences, together with tuition in research methods and the use of literature sources. The taught modules cover both specialist scientific topics and general project management and professional skills training relevant to the industrial environment.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), two optional modules (30 credits) and a research project (105 credits).

Core modules

Students take both modules listed below (45 credits) and submit a research dissertation (105 credits).

  • Simulation Methods in Materials Chemistry
  • The Scientific Literature

Optional modules

Students take 2 modules drawn from the following or take one from following and one from UCL postgraduate course worth 15 credits.

  • Researcher Professional Development
  • Mastering Entrepreneurship
  • Transferable Skills for Scientists
  • Numerical Methods
  • Concepts in Computational and Experimental Chemistry
  • Advanced Topics in Inorganic Chemistry
  • Inorganic Rings, Chains and Clusters
  • Biological Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Pathways, Intermediates and Function in Organic Chemistry
  • Advanced Topics in Physical Chemistry
  • New Directions in Materials Chemistry

Dissertation/report

All students undertake an independent research project which culminates in a substantial dissertation of approximately 12,000 to 15,000 words, and an oral presentation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, practical classes and seminars. Assessment is through unseen examination, presentation, coursework and the research project.

Further information on modules and degree structure is available on the department website: Molecular Modelling and Materials Science MRes

Careers

This MRes provides the ideal foundation for employment in a range of industries or further doctoral research, with increasing career opportunities in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals.

Recent career destinations for this degree

  • Pharmaceutical Conference Producer, SMi
  • EngD Chemistry,UCL
  • PhD Chemistry, Technische Universität Berlin (Technical Universit
  • PhD Computional Chemistry, UCL
  • Laboratory Demonstrator and Marker,UCL and studying Chemistry, UCL

Employability

The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Chemistry's interests and research activities span the whole spectrum of chemistry from the development of new drugs to the prediction of the structure of new catalytic materials.

This programme was established by the Engineering and Physical Sciences Research Council in response to the needs of industry for highly qualified research leaders with industrial experience and it provides for significant collaboration between academic institutions and industry.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Learn how to teach science and chemistry to 11 to 16-year-olds with this National College for Teaching and Leadership (NCTL)-accredited PGCE School Direct course. Read more
Learn how to teach science and chemistry to 11 to 16-year-olds with this National College for Teaching and Leadership (NCTL)-accredited PGCE School Direct course. You’ll attend sessions at both London Met and one of our partnership schools in London, learning the principles of teaching chemistry and getting the vital hands-on experience necessary for later employment. Trainees on our PGCE School Direct Secondary courses achieve high results, with 95% receiving an Ofsted good or outstanding grade by the end of the course and 96% going on to obtain employment, often with one of their placement schools. In the most recent (2014-15) Destinations of Leavers from Higher Education (DLHE) survey, 100% of graduates from this course were in work or further study within six months.

More about this course

Successfully complete this NCTL-accredited PGCE Secondary Science with Chemistry course to achieve Qualified Teacher Status (QTS) and become a science teacher for students up to 14 years old and chemistry teacher for 15 to 16-year-olds. You may also the opportunity to teach at the 16 to 18 age range.

You’ll develop your teaching strategies and pedagogical techniques at London Met as well as exploring the fundamentals of how children learn. These study sessions will include collaborative projects and school-based work with other trainees, as well as how to implement teaching and pupil assessment.

The PGCE School Direct course benefits from our London location, which will widen your experience of teaching in multicultural urban environments. Through your two placements at our partnership secondary schools, you’ll help develop lesson plans and contribute to the development of pupils’ scientific skills and knowledge. London Met also provides you with the opportunity to teach children over 16 years old wherever possible.

We place great emphasis on the importance of gaining feedback from your peers and colleagues during your placements. You’ll complete a weekly reflection and contribute to discussions online in order to further develop your understanding of the role of a secondary teacher. Our commitment to your development has lead to positive reviews from Ofsted:

"Headteachers are particularly complimentary about the fact that the trainees and newly qualified teachers are prepared well to meet the specific challenges of pupils in the context of London schools."
Ofsted 2015.

Your assessment will consist of four elements:
-School placement A
-School placement B, where your teaching ability will be assessed in relation to the standard for Qualified Teacher Status
-A Professional Practice Portfolio, which is compiled throughout the year, detailing personal experiences and reflections on your development as a teacher, largely in relation to your practical teaching experience
-The Educational Research Assignment, which allows you to explore an educational issue

There are no examinations.

Professional accreditation

This course is accredited by the National College for Teaching and Leadership (NCTL).

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Curriculum Studies (core, 30 credits)
-Professionalism and Inclusive Practice (core, 30 credits)
-School Experience to Progress Point 2 (core, 15 credits)
-School Experience to Progress Point 5 (core, 45 credits)

What our students say

“The course is well-structured and gives a solid grounding in the pedagogical disciplines needed for a career in teaching. However the highlight for me has been the quality of the subject tutors. All the tutors I have worked with have been highly knowledgeable, approachable and more than capable of pushing students to reach their potential as future teachers.” Martin Gadgill, trainee of our PGCE Secondary Science with Chemistry

After the course

On successful completion of the course you will achieve Qualified Teacher Status (QTS) for teaching science at Key Stage 3 (ages 11 to 14 years old) and Key Stage 4 (ages 14 to 16 years old), and your chemistry specialism at Key Stage 4. London Metropolitan's students have an excellent rate of gaining Qualified Teacher Status and finding teaching positions within six months of graduating. Our trainees have gone on to become chemistry teachers at schools including Cardinal Pole Catholic School, South Hampstead High School, Platanos College and more.

Funding

Funding is available for many postgraduate courses leading to Qualified Teacher Status (QTS). Depending on your teaching subject and degree classification, you may be eligible for a bursary or scholarship of up to £30,000 through the teacher training bursary.

Moving to one campus

Between 2016 and 2020 we're investing £125 million in the London Metropolitan University campus, moving all of our activity to our current Holloway campus in Islington, north London. This will mean the teaching location of some courses will change over time.

Whether you will be affected will depend on the duration of your course, when you start and your mode of study. The earliest moves affecting new students will be in September 2017. This may mean you begin your course at one location, but over the duration of the course you are relocated to one of our other campuses. Our intention is that no full-time student will change campus more than once during a course of typical duration.

All students will benefit from our move to one campus, which will allow us to develop state-of-the-art facilities, flexible teaching areas and stunning social spaces.

Read less
Imperial College London Chemistry
Distance from London: 0 miles
Green chemistry serves to promote the design and efficient use of environmentally benign chemicals and chemical processes, and this course will introduce key aspects of sustainable chemical practices. Read more

Green chemistry serves to promote the design and efficient use of environmentally benign chemicals and chemical processes, and this course will introduce key aspects of sustainable chemical practices.

Chemistry plays a pivotal role in determining the quality of modern life. The chemicals industry and other related industries supply us with a huge variety of essential products, from plastics to pharmaceuticals. However, these industries have the potential to seriously damage our environment. This is being addressed by academics and those working in industry to minimise the impact of these processes on our planet.

There is a growing demand from society for a reduced reliance on fossil fuels, and for greener manufacturing processes. There is also a need for future innovations to be built on more sustainable foundations.

These goals can be achieved by the application of green technologies, many of which rely on the application of chemical concepts.

This course is designed to introduce you to key sustainable chemical practices, with nine months dedicated to a unique research project in an area of green/sustainable/environmental science.

This multidisciplinary one-year course features the involvement of several world class departments at Imperial, including Chemistry, Chemical Engineering and the Centre for Environmental Policy.

The aims of the course align closely with those of the Centre for Environmental Policy, the Energy Futures Lab and the Grantham Institute at Imperial College and there are many interactions between them and the students and staff involved in the MRes Green Chemistry course.

The course will also feature contributions from the chemical industry, including guest speakers and project supervision. Past presentations have included ones from Syngenta, GSK, SASOL and other potential employers.

These invited talks provide an insight into the use of sustainable chemistry and technology in industry. A network of alumni from the programme has been set up to allow current Green Chemistry students to find out more about potential areas of employment and career paths.

Careers

Graduates of this course can expect to have all the necessary skills and experience to apply green chemical technologies in either commercial or academic laboratories, the research project in particular equipping them admirably for PhD studies.



Read less
University College London Department of Chemistry
Distance from London: 0 miles
There is a growing need by industry for staff trained in computational molecular sciences. Read more

There is a growing need by industry for staff trained in computational molecular sciences. This new multidisciplinary MSc will teach simulation tools used in a wide range of applications, including catalysis and energy materials, nanotechnology and drug design, and will provide transferable skills to other fields, thereby broadening employment prospects.

About this degree

Students will gain detailed knowledge and skills in molecular modelling, focusing on the state-of-the art simulation techniques employed to research the molecular level properties that determine the macroscopic behaviour of matter. They will also gain key research skills and will learn the basic concepts in business and entrepreneurship as applied to high-tech industries.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), three optional module (45 credits) and a research project (90 credits).

Core modules

  • Simulation Methods in Materials Chemistry
  • The Scientific Literature

Optional modules

Students take 45 credits (3 modules) drawn from the following:

  • Mastering Entrepreneurship
  • Numerical Methods in Chemistry
  • Researcher Professional Development
  • Transferable Skills for Scientists
  • Choice of one postgraduate lecture module at UCL
  • Concepts in Computational and Experimental Chemistry
  • Advanced Topics in Inorganic Chemistry
  • Inorganic Rings, Chains and Clusters
  • Biological Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Pathways, Intermediates and Function in Organic Chemistry
  • Advanced Topics in Physical Chemistry
  • New Directions in Materials Chemistry

Dissertation/report

All students undertake a computational research project which culminates in a substantial dissertation of approximately 10,000 to 12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars and laboratory classes. Assessment is through unseen examination, coursework, individual and group projects, poster creation, presentation and the research project.

Further information on modules and degree structure is available on the department website: Molecular Modelling MSc

Careers

There are increasing career opportunities in the field of molecular modelling in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. This MSc will train students in the skills necessary for future employment in the industrial and public sector communities, together with specific training in career development and transferable skills.

The majority of students on the programme have moved on to PhD study.

Recent career destinations for this degree

  • PhD Chemistry, UCL

Employability

The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Chemistry has a world-leading position in molecular modelling research.

Molecular modelling techniques are having increasing impact in the industrial sector, as evidenced by the partnership between UCL's Industrial Doctorate Centre in Molecular Modelling and Materials Science and a range of national and international industrial sponsors.

This multidisciplinary programme offers a wide range of options, thereby enabling each student to tailor the programme to their own needs and interests.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
How are drugs designed? This qualification focuses on the latest developments in this critical area of contemporary medical therapy, while developing a wide range of skills associated with postgraduate study. Read more
How are drugs designed? This qualification focuses on the latest developments in this critical area of contemporary medical therapy, while developing a wide range of skills associated with postgraduate study. You will study aspects of medicinal chemistry that explore the links between disease, mechanisms of action and the development of safe, effective commercial drugs – pursuing these topics across a number of major health areas such as cancer, heart disease, infectious diseases, neuropharmacology and inflammation.

Key features of the course

•Explores current research and advanced scholarship within medicinal chemistry
•Critically evaluates research methodologies
•Concludes with a substantial piece of independent research on a topic of your choice.

This qualification is eligible for a Postgraduate Loan available from Student Finance England. For more information, see Fees and funding.

Course details

Modules

We recommend that you take the modules in the order listed below. However if you would prefer to start in February 2017, you can do so with Molecules in medicine (S807) before studying Developing research skills in science (S825) from October 2017. You must have successfully completed S807 before studying the project module, which we expect you to as the final module for this qualification. You must have successfully completed the taught modules before you undertake the project module as the topic you choose for your research project must be linked to medicinal chemistry.

To gain this qualification, you need 180 credits as follows:

Compulsory modules

• Developing research skills in science (S825)
• Molecules in medicine (S807)
• Concept to clinic (S827)

MSc project module for MSc in Medicinal Chemistry (SXM810)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

If you’ve successfully completed some relevant postgraduate study elsewhere, you might be able to count it towards this qualification, reducing the number of modules you need to study. Please note that credit transfer is not available for the MSc project module (SXM810). You should apply for credit transfer as soon as possible, before you register for your first module. For more details and an application form, visit our Credit Transfer website.

Read less
Imperial College London Chemistry
Distance from London: 0 miles
Catalysis underpins a huge range of modern chemical transformations. From the megaton scale production of acetic acid to the polymers we use for plastics, and from automotive catalytic converters to key steps in pharmaceutical synthesis, the impact of catalysis upon our everyday life is enormous. Read more

Catalysis underpins a huge range of modern chemical transformations. From the megaton scale production of acetic acid to the polymers we use for plastics, and from automotive catalytic converters to key steps in pharmaceutical synthesis, the impact of catalysis upon our everyday life is enormous.

It has been estimated that around 90% of all chemical products produced on a commercial scale involve catalysis, and that catalytic processes lead to approximately £550 billion of products.

It is embraced as a ‘green technology’ as it can limit waste and improve selectivity as well as provide re-use of the catalytic agent itself.

Since the landmark achievements of Nobel laureate Sir Geoffrey Wilkinson in catalysis, Imperial has been known internationally as a centre for catalysis research, and this tradition continues today with over 30 members of the Chemistry and Chemical Engineering departments active in the area.

Companies such as BP, INEOS, Sasol, Johnson Matthey, Pfizer and AstraZeneca all have research and development facilities in the UK. Researchers from many of these companies will deliver taught elements of this course, and therefore you will have the opportunity to learn from and network with future employers first hand.

Catalysis has traditionally been divided into homogenous (solution-based), heterogeneous (solid-liquid, solid-gas interface) and (reaction) engineering disciplines. However this distinction is becoming increasingly blurred, so this MRes course aims to provide you with a coherent overview of all these areas.

While the course will be run through the Chemistry Department, close ties will be maintained with Chemical Engineering as well as ensuring contact with industry through lectures on the course and invited seminars.

Careers

Students will graduate from the programme with a solid knowledge base in the area, and they will also be challenged to develop their own ideas on how to focus academic and industrial research to meet the pressing challenges in catalysis.

The training offered by this course will open a variety of international career options to our students, either within the framework of a PhD programme or within industry.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/chemistry/catalysis/

If you have any enquiries you can contact our team at:



Read less
Chemical analysis plays a role in virtually all aspects of everyday life throughout the world. With analytical techniques and instrumentation becoming evermore sophisticated, there is an increasing demand for qualified analytical chemists. Read more
Chemical analysis plays a role in virtually all aspects of everyday life throughout the world. With analytical techniques and instrumentation becoming evermore sophisticated, there is an increasing demand for qualified analytical chemists. This industrially relevant course will provide you with a strong background in the theory of analytical techniques and give you the ability to apply these techniques to complex analytical problems. You can also choose to combine your studies with training in the fundamentals of management theory.

The Analytical Chemistry MSc (ie not including Management Studies) provides exemption from Part A of the Mastership in Chemical Analysis, the statutory qualification for a public analyst.

What will you study?

You will gain the key skills required in the specialised area of analytical chemistry, including good measurement and scientific practice, evaluation interpretation of data, and other professional and organisational skills. You will also study core analytical techniques and their applications.

You may also be offered a placement within industry (depending on your results and project availability), where you will carry out your independent research project.

You can choose to study Management Studies with this degree, setting your scientific knowledge in a vocational context.

Assessment

Exams, lab reports, assignments, case studies, oral and poster presentations, practical research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.
-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Statistics and Quality Systems
-Molecular and Atomic Spectroscopy
-Separation Science
-Specialised Analytical Techniques
-Project

Read less
Chemical analysis plays a role in virtually all aspects of everyday life throughout the world. With analytical techniques and instrumentation becoming evermore sophisticated, there is an increasing demand for qualified analytical chemists. Read more
Chemical analysis plays a role in virtually all aspects of everyday life throughout the world. With analytical techniques and instrumentation becoming evermore sophisticated, there is an increasing demand for qualified analytical chemists. This industrially relevant course will provide you with a strong background in the theory of analytical techniques and give you the ability to apply these techniques to complex analytical problems. You can also choose to combine your studies with training in the fundamentals of management theory.

The Analytical Chemistry MSc (ie not including Management Studies) provides exemption from Part A of the Mastership in Chemical Analysis, the statutory qualification for a public analyst.

What will you study?

You will gain the key skills required in the specialised area of analytical chemistry, including good measurement and scientific practice, evaluation interpretation of data, and other professional and organisational skills. You will also study core analytical techniques and their applications.

You may also be offered a placement within industry (depending on your results and project availability), where you will carry out your independent research project.

You can choose to study Management Studies with this degree, setting your scientific knowledge in a vocational context.

Assessment

Exams, lab reports, assignments, case studies, oral and poster presentations, practical research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Statistics and Quality Systems
-Molecular and Atomic Spectroscopy
-Separation Science
-Specialised Analytical Techniques
-Project

Management Studies pathway modules
-Statistics and Quality Systems
-Molecular and Atomic Spectroscopy
-Separation Science
-Business in Practice
-Project

Read less
This modular Master's degree delivers comprehensive training in analytical chemistry, with the opportunity to specialise in areas such as forensic, clinical and biopharmaceutical or environmental analysis. Read more
This modular Master's degree delivers comprehensive training in analytical chemistry, with the opportunity to specialise in areas such as forensic, clinical and biopharmaceutical or environmental analysis.

The programme is available both part-time and full-time, by day release, and offers the opportunity to complete a research project in our research laboratories. This is a laboratory-based subject, with constant contact between staff and students which creates opportunities for you to comment on, and take responsibility for, the direction of your studies.

This course will develop your knowledge and understanding of key areas of analytical science and its practical applications, advance your understanding of recent advances in the field and equip you with the skills to formulate a research or method development plan and carry out the appropriate literature and data searches. You will also learn how to carry out chemical manipulations, operate advanced analytical equipment and work safely and efficiently in a laboratory.

Why study this course at Birkbeck?

Part-time study by day release allows you to combine study with other commitments, and accumulate modules over 2-5 years.
Includes a research project, which may be completed at your place of work if appropriate.
Available with specialisms in forensic analysis, clinical and biopharmaceutical analysis or environmental analysis.
Chemistry is taught in the School of Science, which offers state-of-the-art instrumental and computing facilities, and the possibility of collaborating with industry. The School also provides a seminar programme and skills training across disciplines.

Read less
University College London Department of Chemistry
Distance from London: 0 miles
The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. Read more

The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. This is a broad-based MSc, designed for graduates who wish to acquire skills in energy and materials science in order to participate in the emerging challenges to meet climate change targets.

About this degree

Students gain an advanced knowledge of materials science as it applies to energy and environmental technologies and research skills including information and literature retrieval, critical interpretation and analysis, and effective communication. They can benefit from modules in chemistry, physics, chemical engineering or mechanical engineering, thus offering future employers a wide-ranging skills base. Graduates will be well qualified to deal with the problems of energy decision-making and the implications for the environment.

Taught modules are delivered through a mixture of lectures, workshops and tutorials. These modules will enhance your subject knowledge in materials science, and chemistry as applied to the areas of energy, and environment, and also develop your transferrable and professional skills.

You will undertake modules to the value of 180 credits across a variety of key disciplines.

The programme consists of core literature (30 credits) and research project (60 credits) modules and also taught modules (90 credits).

An exit-level only Postgraduate Diploma (120 credits) is available.

An exit-level only Postgraduate Certificate (60 credits) is available.

CORE MODULES

Students take all of the following, totalling 105 credits, and a 60-credit research dissertation.

  • Advanced Topics in Energy and Environmental Science
  • New Directions in Materials Chemistry
  • Energy Systems and Sustainability
  • Researcher Professional Development
  • Transferable Skills for Scientists
  • Literature Project (30 credits)

OPTIONAL MODULES

Students take 15 credits drawn from the following:

  • Climate and Energy
  • Materials and Nanomaterials
  • Energy, Technology and Climate Policy
  • Mastering Entrepreneurship

DISSERTATION/REPORT

All MSc students undertake an independent research project which features a dissertation of approximately 7,000-10,000 words, an oral presentation and a viva voce examination (60 credits).

TEACHING AND LEARNING

The programme is delivered through a combination of lectures, seminars, self-study and research supervision. Assessment is through unseen written examination and coursework. The literature project is assessed by written dissertation and the research project is assessed by a written report and a viva voce examination.

Further information on modules and degree structure is available on the department website: Materials for Energy and Environment MSc

Careers

The UK has committed to 80% reduction in CO2 emissions on a 1990 baseline by 2050. CERES, the organisation that represents the largest institutional investors would like to see 90% reduction by 2050. National Systems of Innovation (NSI), which includes the universities, research centres and government departments working in conjunction with industry, will need to apprehend new opportunities and change direction, diverting personnel to energy and climate issues in response to changing markets and legislation. This MSc will contribute to the supply of personnel needed for the era of sustainability.

Recent career destinations for this degree

  • Engineer in Development, ProElectric
  • Researcher, Chemistry Institute
  • Cell Technician, Nexeon
  • PhD in Nanomaterials, University of Oxford
  • PhD in Chemical Engineering, Imperial College London

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

This programme is designed for graduates from a wide range of science and engineering backgrounds who wish to broaden their knowledge and skills into materials science with an emphasis on the energy and climate change issues that will drive markets over the next century. It delivers courses from five departments across three faculties depending on options and includes a self-managed research project which is intended to introduce the challenges of original scientific research in a supportive environment.

Research activities span the whole spectrum of energy-related research from the development of batteries and fuel cells to the prediction of the structure of new water-splitting catalytic materials.

Students develop experience in scientific method, techniques for reporting science and in the many generic skills required for a future career.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.

Application and next steps

Applications

Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

WHO CAN APPLY?

This MSc offers science and engineering graduates with a strong chemistry background the opportunity to expand into materials science and is suitable for materials graduates who intend to focus on energy and climate-related careers.

Students can be self-funded or find sponsorship from alternative sources, for instance via those shown on the UCL scholarships and funding pages



Read less

Show 10 15 30 per page



Cookie Policy    X