• Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cranfield University Featured Masters Courses
Ulster University Featured Masters Courses
University of Cambridge Featured Masters Courses
Newcastle University Featured Masters Courses
0 miles
Geology×

Masters Degrees in Land-Atmosphere Interactions

We have 10 Masters Degrees in Land-Atmosphere Interactions

Masters degrees in Land-Atmosphere Interactions offer advanced study of the interface between terrestrial, marine and atmospheric processes, such as the exchanges of moisture and energy.

Specialisations include Hydrology, Hydrometeorology, Meteorology and Micrometeorology. Entry requirements normally include an undergraduate degree in a relevant subject such as Environmental Science.

Why study a Masters in Land-Atmosphere Interactions?

Read more...

  • Geology×
  • Land-Atmosphere Interactions×
  • clear all
Showing 1 to 10 of 10
Order by 
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics. Read more
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics.

You will receive training in research methods and take a taught course unit in a relevant subject area. The research topic for your project is agreed with a supervisor in advance and can be in any area of the expertise in the department research groups. The project outline will be developed in consultation with your supervisor and project work is carried out in parallel with the taught courses, becoming full-time during the third term.

This Master’s by Research will provide you with a suitable background to work as a research assistant or as the grounding for further study towards a PhD.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscearthsciencesbyresearch.aspx

Why choose this course?

- This course is ideal for graduates in geology and related sciences who wish to carry out independent research over a shorter time period than is possible in a doctorate (PhD) programme. It allows you study at Master's level an aspect of the geological sciences which may not be catered for by specialist MSc programmes.

- You will be involved at every step of the research project - from planning and sample collection, laboratory work, result analysis, to writing your dissertation.

- It is ideal preparation if you are interested in studying for a PhD, but would like to have further preparation and training.

- In the 2008 Research Assessment Exercise (RAE), the Department of Earth Science’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

- The Department has up-to-date computer interpretation facilities, a full range of modern geochemical laboratories including XRF, quadrupole and multicollector ICP Mass Spectrometry, atmospheric chemistry and a new excimer laser ablation facility, excellent structural modelling laboratories, palaeontology and sedimentology laboratories.

Course content and structure

The course consists of the following three components:

A Research Study Skills Course Unit
- Personal research skills (e.g. safety, time and project management, teamwork)
- IT skills (e.g. literature retrieval, web authoring, databases, modelling)
- Data analysis skills (e.g. statistical methods, GIS systems, sampling techniques)
- Communication skills (e.g. posters, oral presentation, writing papers, web pages)
- Subject-specific skills and techniques. These amount to 55% of the research skills assessment, and for example may include parts of specialist taught courses (see below), a training course on the theory and practice of chemical and isotopic analysis, or other training arranged by the project supervisor. This will include training for research in the general field of the research project, not solely what is needed to carry out the project.

A Specialist Taught Course Unit
You will choose an advanced taught course unit relevant to the subject area of your research project. The following taught units are currently offered:
- Applied Sedimentology and Stratigraphy
- Pollution Sources and Pathways
- Oceans and Atmospheres
- Risk and Environmental Management
- Geographical Information Systems
- Environmental Inorganic Analysis
- Contaminants in the Environment
- Advanced Igneous Petrogenesis
- Seismic Processing and Interpretation
- Geodynamics and Plate Tectonics
- Interpretation of Structural Settings
- Coal Geology
- Petroleum Geology and Evaluation
- Terrestrial Palaeoecology
- Palaeoclimates

Research Project
The project may be on any topic which is within the broad research themes of the Department. You will be linked to a potential supervisor at the application stage and, in consultation with the supervisor, you will develop a detailed project outline during the first half of the first term. Project work is then carried out in parallel with taught courses during terms one and two, becoming the full-time activity after Easter. A bound dissertation is submitted for examination in early September.

On completion of the course graduates will have:

- an advanced knowledge and understanding of a variety of analytical, technical, numerical, modelling and interpretive techniques applicable to the specific field of earth sciences

- the articulation of knowledge and the understanding of published work, concepts and theories in the chosen field of earth sciences at an advanced level

- the acquisition of knowledge from published work in the chosen area of earth sciences to a level appropriate for a MSc degree.

Assessment

Research Study Skills: this is assessed by coursework and theory examination and will include short written assignments, a seminar, worksheets and practical tests. These assessments contribute 12.5% of the course marks.

Specialist Taught Course Units: these are mostly assessed by a written, theory examination and coursework. The unit assessment contributes 12.5% of the course marks.

Research Project: the project dissertation must be submitted in early September. It will be marked by both an internal and an external examiner, and will be defended at an oral examination with both examiners. The project assessment contributes 75% of the course marks.

Employability & career opportunities

Subject to agreement and suitable funding, MSc by Research students can transfer to the MPhil/PhD programme at Royal Holloway. They may use the research carried out for the MSc towards the PhD, and count the time spent towards MPhil/PhD registration requirements, provided that the MSc research forms a coherent part of the PhD, and that the transfer is approved prior to submission of the MSc research dissertation.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Are you interested in working on solutions for environmental issues like water scarcity and quality, soil degradation, food supply, loss of biodiversity… Read more

Are you interested in working on solutions for environmental issues like water scarcity and quality, soil degradation, food supply, loss of biodiversity, vulnerability to severe weather and climate change? Join the master's Earth & Environment in Wageningen to help the next generations of scientists to find solutions for these issues confronting the way we look after our planet, now and in the future!

Study programme

During the two-year master programme, you become a well-rounded specialist in the fields of (a) hydrology and water resources; (b) meteorology and air quality; (c) biological and chemical aspects of soil and water; or (d) soil geography and earth surface dynamics. Furthermore, you also gain a broad view of the interactions in the critical zone where the different spheres meet. Subjects studied range from micro to global scale; they are closely related to the innovative research and applications of ten leading research groups. Read more about the Background of the programme.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Student experiences

The best way to get to know a place is by getting to know the people. Students share their experiences with you about the master's programme and student life in Wageningen on the page student experiences.

Future career

Graduates from this programme are well equipped with the knowledge and skills to continue their academic training as a PhD student, or to start a career as a scientific professional at universities, research institutes and consultancies. Depending on their specialization, graduates may take up positions as meteorologists, hydrologists, water quality scientists or soil scientists in the public or private sector. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Environmental Sciences

MSc Management, Economics and Consumer Studies

MSc Biology

MSc Climate Studies

MSc International Land and Water Management

MSc Plant Sciences.



Read less
This programme aims to introduce students to the concepts of soil for the 21st century and is suitable for students wishing to pursue a career in land-based management or environmental protection. Read more

This programme aims to introduce students to the concepts of soil for the 21st century and is suitable for students wishing to pursue a career in land-based management or environmental protection.

Soils underpin the sustainability of terrestrial ecosystems and are key to food production. Soils form the basis of all agricultural production, but they also store water, mediate the impact of pollutants, provide biological habitats, have an impact on the accumulation of greenhouse gases in our atmosphere, are involved in dealing with society’s waste, are a source of extractable minerals and provide the foundations for the housing and roads on which society depends.

You will learn about soil function and management, and soil classification, assessment and analysis, with a strong emphasis on practical skills. You will gain expertise in the relationship between soil and sustainable approaches to land resource use.

This programme is run in collaboration with Scotland’s Rural College (SRUC).

Programme structure

This programme involves two semesters of compulsory and option taught courses followed by a period of individual dissertation project work.

Compulsory courses typically will be:

  • Soil Protection and Management
  • Soils Science Concepts and Application
  • Professional Research Skills in Practice
  • Dissertation

Option courses:

In consultation with the Programme Director, you will choose from a range of optional courses^. We particularly recommend:

  • Analysing the Environment
  • Analysing the Environment Study Tour
  • Culture, Ethics & Environment
  • Ecosystem Dynamics and Functions
  • Human Dimensions of Environmental Change and Sustainability
  • International Development in a Changing World
  • Principles of Environmental Sustainability
  • Principles of GIS
  • Project Appraisal
  • Atmospheric Quality and Global Change
  • Frameworks to Assess Food Security
  • Integrated Resource Management
  • Spatial Modelling
  • Ecosystem Values and Management
  • Environmental Impact Assessment
  • Land Use/Environmental Interactions
  • Participation in Policy and Planning
  • Sustainability of Food Production
  • Interrelationships in Food Systems

Courses are subject to timetabling and availability and are subject to change.

Field trip

An integral, week-long study tour lets you refresh skills learned on the programme and develop new tools and techniques, useful during the dissertation process. The tour has historically been held in Mende, France. In addition to the formal taught component, students had the opportunity to go rafting and visit the Aven Armand caves.

There may also be a short tour during induction week, to give students a chance to get to know each other.

Learning outcomes

Students will:

  • gain a knowledge and understanding of the relationship between soils and sustainable land management
  • gain an understanding of soil sampling and analysis, interpretation and reporting
  • be able to assess soil management issues and develop improved management plans
  • understand the function of soils in relation to sustainable land use and societal needs

Career opportunities

A recent report by the British Society of Soil Science (BSSS) identified soil science as an area in which there are critical skills shortages, meaning graduates will be in high demand.

Soil scientists are employed in a broad range of vocations including environmental consultancy, research, overseas development, environmental impact assessment and analysis, site reclamation and remediation, and conservation as well as advising on government policy, archaeological excavations and laboratory analyses, forensics, and landscape design.

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.



Read less
The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment. Read more

Why take this course?

The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment.

This course is designed to provide you with the particular expertise required for dealing with contaminated sites. Such expertise is essential to ensuring we maintain habitable, safe and sustainable communities.

What will I experience?

On this course you can:

Use our state-of-the-art geological and geotechnic labs for practical work
Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by recognised experts with extensive knowledge in groundwater hydrology, environmental geology and contaminated land

What opportunities might it lead to?

We will give you the knowledge and practical skills to ensure an interesting and rewarding career in the specialist area of contaminated land consultancy, regulation and remediation, both in the UK and overseas.

Here are some routes our graduates have pursued:

Environmental organisations
Geotechnical consultancies
Mining companies
Local authorities
Government agencies

Module Details

You can opt to take this course in full-time or part-time mode. The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

This course covers a mixture of topics including: groundwater hydrology, geochemistry, site investigation, geotechnics and contaminated land assessment.

Here are the units you will study:

Soil Mechanics: This unit is fundamental to understanding how contaminants behave and migrate in the ground. You will gain an advanced understanding of the geo-mechanical behaviour of soils, including the description and testing of soils to UK and international standards.

Desk Studies and Ground Models: These are an integral part of any contaminated land assessment. You will have training in the development of geological ground models and geomorphological terrain models through desk studies, walk-over surveys and site investigation.

Ground Investigation Techniques: You will gain advanced knowledge of ground investigation using invasive techniques, in-situ tests and geophysical methods.

Contaminated Land Risk Assessments: You will learn key techniques for site assessment, analytical testing and risk assessment.

Field Reconnaissance and Walk-Over Survey: This unit covers techniques which are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn integration and analysis of spatial datasets using GIS and interpretation of aerial photography and satellite imagery - key tools for terrain evaluation.

Independent Research Project: This provides an opportunity for you to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, workshops and practical laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Essays
Laboratory reports

Student Destinations

Contaminated land is listed as one of the key areas in which the UK has a skills shortage. This fact, combined with the vocational nature of this course, means that you will be in high demand from employers looking for newly qualified contaminated land specialists. You will find the majority of such roles in the environmental consultancy sector.

This course will provide you with a variety of transferable skills such as project planning, literature and data reviewing, report writing, along with the more general skills of presentation, communication and so on. It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
We engage in fundamental research in atmospheric science, both independently and in cooperation with federal and provincial laboratories and other research groups around the world. Read more

General Information

We engage in fundamental research in atmospheric science, both independently and in cooperation with federal and provincial laboratories and other research groups around the world. The emphasis of the research is on studies of processes and developing physical understanding of the atmosphere. The research commonly involves field or laboratory measurement and observation; data analysis and interpretation; and numerical model construction, modification and validation.

Quick Facts

- Degree: Master of Science
- Specialization: Atmospheric Science
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Options
- Faculty: Faculty of Science

Program Description

Programs leading to the M.Sc. and Ph.D. degrees are offered under the joint sponsorship of the Department Earth, Ocean and Atmospheric Sciences and the Department of Geography. There are also several biometeorology professors from the Faculty of Land and Food Systems who can also supervise Atmospheric Science students.

Theoretical knowledge is an important part of this program and a wide range of courses are available. Courses can also be taken from outside of this list.

The M.Sc. thesis based program consists of twelve credits of thesis, 18 credits of course work and a thesis defence. Average time to completion is two years. However, this is very much dependent on the student so completion may take longer.

The Co-op M.Sc. consists of ATSC 597, ATSC 598, six credits of ATSC 548 and 24 credits of additional coursework. Co-op M.Sc. students must also have identified in advance an employer who will pay a salary during the Co-op work terms, and must satisfy eligibility requirements set by the UBC Co-op Program. Students normally complete this degree within two years.

Finally there is also a course-based M.Sc. option. This consists of three credits of a major essay and 27 credits of additional coursework. Most fulltime students will complete within one year.

Read less
What are the solutions to the environmental issues on a global scale, like climate change, sustainable development and the greenhouse effect? What alternative sources of energy do we need to explore?. Read more
What are the solutions to the environmental issues on a global scale, like climate change, sustainable development and the greenhouse effect? What alternative sources of energy do we need to explore?

The Master's degree programme in Energy and Environmental Sciences focuses on the large-scale issues and tries to contribute to possible solutions to the energy and environmental challenges.

The programme is connected to the Energy and Sustainability Research Institute Groningen (ESRIG). Several research groups are joining forces in ESRIG resulting in a variety of research subjects, such as:

* Polymer and organic solar cells

* Climate and atmosphere

* Geo-energy

* Combustion technology

* Bio-fuels technology, land and ocean-based

* Renewable energy

* Energy and land use scenario's and modeling


The Master's programme is accessible for several Bachelor degrees in Natural Sciences.

Why in Groningen?

- Energy and Sustainability are main research focus areas
- Accessible for several Bachelor's degrees in Natural Sciences
- Excellent career prospects
- Offering interdisciplinary system and several experimental specialisations

Job perspectives

Energy and Environmental scientists from the University of Groningen are renown for their interdisciplinary systems-approach and/or specialised experimental skills. In general they easily obtain jobs in their field of study at or in:
- Research institutes or universities
- Industry
- Companies like major consultancy firms
- Governmental agencies

Read less
Goal of the pro­gramme. Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Read more

Goal of the pro­gramme

Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in

  • Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data
  • Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication
  • Making systematic and innovative use of investigation or experimentation to discover new knowledge
  • Reporting results in a clear and logical manner

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The six study lines are as follows:

Aer­o­sol phys­ics

Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods.

Geo­phys­ics of the hy­dro­sphere

Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes. 

Met­eor­o­logy

Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example.

Biogeo­chem­ical cycles

Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Re­mote sens­ing

Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry.

At­mo­spheric chem­istry and ana­lysis

Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods.



Read less
The University of Worcester welcomes applications to undertake research towards MPhil and PhD degrees in Atmospheric Science. Research at Worcester has grown significantly in the last 10 years as the University itself has expanded. Read more
The University of Worcester welcomes applications to undertake research towards MPhil and PhD degrees in Atmospheric Science.

Research at Worcester has grown significantly in the last 10 years as the University itself has expanded. As a research student you will join a vibrant student community in our Research School and become part of our dynamic research environment.

You will have the opportunity to be supervised by leading researchers in your field and take advantage of our rich Researcher Development programme which will help you to develop the skills and knowledge you need to complete your research degree but also enhance the skills you will need in any future career.

Read less
Geotechnical engineering examines the engineering behaviour of earth materials and is relevant to all engineering and construction practices that are concerned with the ground on both a surface level and within it. Read more

Geotechnical engineering examines the engineering behaviour of earth materials and is relevant to all engineering and construction practices that are concerned with the ground on both a surface level and within it. Geotechnical engineers investigate the ground and measure the chemical properties, evaluate the stability of the area and design earthworks and structure foundations enabling projects to take place.

The programme is multi-disciplinary in nature, and provides students with the knowledge of rock engineering, site investigation, data capture and data analysis required to understand the issues facing engineers excavating increasingly ambitious and complex underground spaces. This course is relevant to students entering or working in a range of engineering careers within the construction, environmental and extractive industries.

Featured content draws upon the unique expertise of the Camborne School of Mines, with strengths in the areas of rock mechanics and underground excavation, as well as specialist knowledge of working in extreme conditions and with high-stress or difficult ground.

Delivered by staff with strong research interests directly related to the topics covered, modules involve a broad range of activities and teaching delivery methods. This includes workshops using the latest industry relevant computational tools, practical activities and group and individual exercises.

In support of this research-led teaching, key experts from the extractive and construction industry will provide topical insight to the state of the industry and clarify the context for the theory covered in the lectures.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Project and Dissertation;
  • Excavation and Geomechanics
  • Hydrogeology
  • GIS and Remote Sensing

Optional modules include;

  • Health and safety in the extractive industry
  • Project management
  • Surface extractive design
  • Mine planning design
  • Underground excavation design
  • Soil and water contamination
  • Underground construction
  • Site investigation including near surface geophysics

Learning and teaching

Teaching and assessment

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation. The taught part of the programme is structured into two semesters. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X