• Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Bedfordshire Featured Masters Courses
Swansea University Featured Masters Courses
Italy ×
0 miles
Physics×

Masters Degrees in Physics, Italy

We have 10 Masters Degrees in Physics, Italy

  • Physics×
  • Italy ×
  • clear all
Showing 1 to 10 of 10
Order by 
The program deepens the knowledge of basic elements of modern physics (atomic and molecular physics, solid state physics, nuclear and particle physics, astrophysics) and of theoretical physics (analytical mechanics, quantum mechanics, mathematical and numerical methods). Read more

The program deepens the knowledge of basic elements of modern physics (atomic and molecular physics, solid state physics, nuclear and particle physics, astrophysics) and of theoretical physics (analytical mechanics, quantum mechanics, mathematical and numerical methods). It is possible to strengthen the knowledge of specific fields like biophysics, nanoscience, physics of matter, nuclear and particle physics, physics of the fundamental interactions, astrophysics. Finally, the program provides direct experience of the laboratory techniques and computer calculation techniques and data analysis.

The graduate in Physics will know and understand the most relevant phenomena of the physical world at different scales, starting from the macroscopic world down to the atomic physics, the physics of condensed matter, nuclear and subnuclear physics up to the physics of the universe. The understanding of the physical world will be based on experimental evidence and a proper use of the theoretical modelling and its mathematical instruments, including numerical techniques.

Course structure

The second-cycle degree in Physics is divided in three curricula to be chosen by the student: Physics of the fundamental interactions, Physics of matter and Physics of the universe. For further information please check: http://en.didattica.unipd.it

Career opportunities

The graduate in Physics can have jobs opportunities in Italy and abroad in industries involving new technologies regardless of the final products, in service companies aiming to innovation and, more generally, in all activities requiring understanding and modelling of processes and ability in analysis and testing. These include startups and high tech industries, software and consulting companies, research centers and public administration. They can also teach physics and mathematics in schools of different levels.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. Read more

Mission and goals

The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. The physical engineer can approach all sectors in which advanced technological systems are developed: lasers, photonics, materials technology, biomedical optics, etc.

The course has three possible finalizations:
- Nano-optics and Photonics
- Nano and Physical Technologies
- Semiconductor nanotechnologies

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Career opportunities

The graduate in Engineering Physics can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical optics.
The physical engineer can therefore find employment in companies working in the fields of materials engineering and optical technologies; companies which use innovative systems and technologies; public and private research centres; companies operating in the physical, optical and photonic technologies and diagnostics market.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Engineering_Physics.pdf
The objective of this programme is to prepare an engineer able to produce innovation both in the industrial environment as well as in basic research. The graduates will have a broad cultural and scientific foundation and will be provided with the latest knowledge of solid-state and modern physics, optics, lasers, physical technology and instrumentation, nanotechnologies and photonics. Thanks to the experimental laboratory modules, available within different courses, the students face realistic problems throughout their studies. Career opportunities in the Physics Engineering field are extremely wide and varied. In particular, graduates can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical technology.
Moreover, master graduates can work in strategic consultancy companies or can continue their Academic Education with a PhD Program toward a professional career in academic or industrial research. The programme is taught in English.

Subjects

Three tracks available: Photonics and Nanotechnologies; Nanophysics and nanotechnology; Semiconductor nanotechnologies

Subjects common to all the tracks:
Mathematical Methods for Engineering, Solid State Physics, Photonics I, Automatic Controls, Electronics, Computer Science, Management

Other subjects:
- TRACK: PHOTONICS AND NANO OPTICS
Micro and Nano Optics, Photonics II
- TRACK: NANOPHYSICS AND NANOTECHNOLOGY
Physics of Low Dimensional Systems, Electron Microscopy And Spintronics
- TRACK: SEMICONDUCTOR NANOTECHNOLOGIES
Physics of Low Dimensional Systems, Physics of Semiconductor Nanostructures, Graphene and Nanoelectronic Devices

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The onset of big data has led to an explosion of datasets with a far more complex structure and beyond standard physics. In this program, we will provide new theoretical and computational tools to tackle this challenge within the physicist mindset. Read more

The onset of big data has led to an explosion of datasets with a far more complex structure and beyond standard physics. In this program, we will provide new theoretical and computational tools to tackle this challenge within the physicist mindset.

The program intends to build an academic and professional figure that combines advanced knowledge in the field of Physics with a high-level training in Data Science.

The modeling and the theoretical interpretation of complex natural phenomena from large amounts of data are at the core of the research in Physics. The Big Data revolution presents in this sense the challenges and opportunities for the physicist of today. In addition to the figure of Data Scientist, specialized purely in the analysis of large amounts of data, it is increasingly clear the need to also train figures able to develop the methods and techniques that are fundamental for such analysis - in this sense we named the program of Physics of the Data. Training in Physics, Mathematics and Computation is increasingly necessary to generate such innovation and development. The program will thus train a new generation of physicists, which we could define as "data physicists", equipped with tools that will allow them to face the challenges that the digital revolution has brought in our society .

Career Opportunities

Graduates will have jobs opportunity in Italy and abroad in:

  • academic institutions
  • research centers
  • internet companies, consulting companies
  • startups and high tech industries
  • public administrations.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. Read more

Mission and Goals

This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. The objective of the programme is to prepare a professional figure expert in materials and in the design of processes and manufactured goods. Within the scope of the study plan a number of specific specialisations are foreseen:
- Surface Engineering
- Polymer Engineering
- Nanomaterials and Nanotechnology
- Engineering Applications
- Micromechanical Engineering

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Career Opportunities

The Master of Science graduate in Materials and Nanotechnology Engineering has the ability to devise and manage innovation in the materials industry; he/she finds employment mainly in companies specialised in producing, processing and design various materials and components, as well as in the area of the development of new applications in the mechanical, chemical, electronics, energy, telecommunications, construction, transport, biomedical, environmental and restoration industries as well as in research and development centres of companies and public bodies.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Materials_Engineering_and_Nanotechnology_04.pdf
The Master of science programme aims at preparing specialists with strong technical skills for innovation of processes and applications of new materials and nanotechnologies. One of the major focuses of the MSc is on sustainable technologies and nanotechnologies for advanced applications. The city of Milan and its surroundings are fertile ground for social and technical culture, with a variety of small enterprises open to innovation and new technologies and working in niche fields, where non-traditional materials are key to future developments. The job market welcomes Material Engineers as professionals capable of handling complex problems directly related to the production, treatment and applications of materials, acknowledging the high level of education obtained at the Politecnico di Milano through original methodologies and new technologies.
The programme is taught in English.

Subjects

- Mathematical methods for materials engineering
- Advanced materials chemistry
- Polymer science and engineering
- Principles of polymer chemistry + Fundamentals of polymer mechanics
- Solid state physics
- Mechanical behavior of materials
- Cementitous and ceramic materials engineering
- Advanced Materials
- Functional materials + nanostructured materials
- Durability of materials
- Failure and control of Materials
- Surface engineering
- Thesis work

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Read more

Mission and goals

The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Space Engineering graduates have all the competences to fully develop activities related to the design, technical analysis and verification of a space mission. Within these activities, in particular, graduates from Politecnico di Milano can develop specific skills in the areas of: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, space systems integration and testing.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Professional opportunities

The knowledge gained through the degree in Space Engineering is suited to responsibility positions where working autonomy is required. As an example, positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components. Furthermore, the skills and competences of the space engineer are well suited to companies involved in the design and manufacturing of products characterized by lightweight structures and autonomous operation capacity, and more in general where advanced design tools and technologies are adopted.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Space_Engineering_02.pdf
The Master of Science programme in Space Engineering aims at training professionals able to develop and manage technical activities related to research and design in the space sector. Within these activities, students can develop specific skills in the following areas: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, and space systems integration/testing. Space engineers are suitable for positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components, or generally in the design of advanced technologies. The programme is taught in English.

Subjects

- 1st year
Aerothermodynamics, Orbital Mechanics, Aerospace Structures, Dynamics and Control of Aerospace Structures with Fundamentals of Aeroelasticity, Fundamentals of Thermochemical Propulsion, Heat Transfer and Thermal Analysis, Communications Skills.

- 2nd year
Spacecraft Attitude Dynamics and Control, Space Propulsion and Power Systems, Space Physics, Numerical Modeling of Aerospace Systems, Experimental Techniques in Aerospace Engineering, Aerospace Technologies and Materials, Telecommunication Systems, Space Mission Analysis and Design, Graduation Thesis and Final Work.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
About MathMods. MathMods is a. 2-year. Joint. MSc programme which can be taken in. 5 EU universities. Read more

About MathMods

MathMods is a 2-year Joint MSc programme which can be taken in 5 EU universities: University of L’Aquila in Italy (UAQ), Vienna University of Technology in Austria (TUW), Autonomous University of Barcelona in Spain (UAB), Hamburg University of Technology (TUHH) & University of Hamburg in Germany (UHH), and University of Nice - Sophia Antipolis in France (UNS).

What makes MathMods so special is its peculiar mobility scheme, that is the fact that our students will be spending their postgrad years in two or even three different European countries. You'll be indeed studying in central Italy for your first semester, then move to Austria or Germany for the second term, and finally move again to 1 of our 5 partners for your second year, based on the mobility path you'll be assigned. 

Upon graduation students will be awarded a Joint Master's degree (or double, depending on where they spend their Year2).

Since its establishement in 2008 MathMods was funded by the EU Commission firstly through the Erasmus Mundus programme action 1 A (project no. 2008-0100), and later through the Erasmus+ Key Action 1 programme, project no. 2013-0227. We're currently applying for the Erasmus+ Call for Proposals 2018 to continue awarding Erasmus Munuds scholarships to our future generations. No matter the outcome, MathMods will still be running with the aid of Consortium grants and other local grants. Visit the sections Apply and Program Structure to learn more.

Programme Structure

Semester 1 focuses on Theory and is to be spend in L'Aquila (Italy)

Semester 2 focuses on Numerics and can be taken in Vienna (Austria) or Hamburg (Germany).

Then for Year2 each partner institution offers a specific curriculum or study path:

  • Mathematical models in social sciences (UAQ, Italy)
  • Mathematical modelling and optimisation (UAQ, Italy)
  • Stochastic modelling and optimization (UAB, Spain)
  • Modelling and simulation of complex systems (TUHH or UHH, Germany)
  • Mathematical modelling applications to finance (UNS, France)
  • Advanced modelling and numerics for applied PDEs (TUW, Austria)

Semester4 is dedicated to thesis work.

Aims

Mathematical modelling refers to the use of mathematics and related computational tools to bring real-world, challenging and important socio-economic and industrial problems into a form simple enough so that a good solution can be found in a reasonable time, while keeping the relevant features of the problem. Constructing models requires knowledge of enough mathematical theory, methods of solution which are really effective and efficient, computational tools at hand to do it, some knowledge of the field of application, and communicative skills to understand the important elements from experts in that field. Our master's programme tries to put together all these elements to produce professionals able to work in different relevant fields with the highest intellectual level and state-of-the-art tools.

Effective modelling and simulation is an art that require a lot of practice, so that problem solving, project development and team work are aspects that should be highlighted in any training programme, as our Consortium knows perfectly. On the other hand, the abstraction behind the specific application is necessary to realise that the same base tools can be applied, with the needed changes, to very different situations in various engineering fields.

Language

The language of the whole course is exclusively English at each of our five universities. Students must also attend (and acquire the relating credits of) a course of basic Italian language (first semester) and German language (second semester). Students will also have the opportunity to attend local language courses during their second year (spent at one of the five partners).

Employability

The area of applied mathematics on which this project is focused is a fundamental scientific field for a number of key technologies and sciences. The areas of the proposed tracks connect very well with various branches of the European high-tech industry, and one of the goals of the project is to enhance these connections by means of the release of well prepared professionals and researchers.

Career opportunities for graduates will typically arise in research and development laboratories, especially those defining and testing numerical models and procedures, either working for an specific sector or with a broader scope. Also, in big or medium size enterprises possessing their own research department or a division with an orientation towards research, in public or privately held Sector Technology Centres, and at computing centres involved in data processing or the creation of numerical codes for the industry.

 Click here to view the results of a recent survey taken by our graduates about their overall experience in our MSc and their work experience after having graduated.

Academic opportunities

The graduates will be able to apply successfully for PhD programmes if they wish so, as has happened for the three already completed cycles. In all the countries of the Consortium members, the programme has been validated as enabling the holder of the MSc degree to enter a local PhD programme. A good percentage of our students seem indeed to prefer pursuing a PhD before going to the industry or returning to their countries of origin. The intended level of the programme, together with the initial selection of the students, allows affirming that most of them could follow a successful academic career, after a suitable PhD. 



Read less
The M.Sc. in Engineering for Natural Risk Management aims to train professionals capable of working in all sectors of safety and civil protection, both public and private, at national and international level. Read more

The M.Sc. in Engineering for Natural Risk Management aims to train professionals capable of working in all sectors of safety and civil protection, both public and private, at national and international level. Thanks to its multidisciplinary nature, the program will provide the skills to coordinate the activities of a complex system such as civil protection.

The student of the M.Sc. in Engineering for Natural Risk Management at the end of his studies will have the following knowledge and understanding capabilities:

a) Knowledge of physical phenomena that generate disasters

b) Capacity of understanding of the mechanisms of interaction between natural events and industrial activities that can generate technological risk

c) Ability to understand and evaluate the legal implications related to the management of emergency situations.

The acquired knowledge may be applied for the:

a) Use the most advanced technologies in order to assess risk exposure and vulnerability, predict the occurrence of catastrophic events and post disasters impact assessment.

b) Assessment of environmental impact of natural disasters

c) Definition of emergency plans for the integrated risk management and decisions support in emergency situations

The courses are fully taught in English. The fourth semester is mainly devoted to internships and thesis work to facilitate international exchanges and contacts with the labour market.

The program has the support of CIMA Foundation, expert center of the national civil protection, which is based in the University Campus of Savona. CIMA has the University of Genoa, the Department of Civil Protection, the Liguria Region and the Province of Savona as founding members. CIMA will provide laboratories, researchers and administrative staff to support the teaching activities.

Students are offered the opportunity to carry out internships/periods of study at Italian and foreign institutions and universities.

Graduates in Engineering for Natural Risk Management may find career opportunities in:

1. public organizations and administrations;

2. international organizations that deal with emergencies and disasters;

3. international development cooperation;

4. humanitarian organizations;

5. private sector, insurances;

6. professional services;

7. research facilities;

8. operational centers for forecasting natural disasters and decision support.

Typical career opportunities for graduates in Engineering for Natural Risk Management are:

a. responsible for managing emergencies in public institutions/government (civil protection);

b. responsible in entities involved in the management of emergency conditions (eg. the fire-fighters, Forestry Police);

c. expert in risk monitoring in public bodies and international organizations;

d. responsible for planning the phases of management of emergencies in public bodies;

e. risk expert in insurance companies;

f. expert in operational management of emergencies in international governmental organizations, non-governmental and development cooperation;

g. expert in mapping of hazardous conditions with reference to security from natural and industrial risks working for professional offices, public/private institutions, public administration.



Read less
The program aims at preparing professionals able to design, develop, and maintain established and emerging telecommunications services and network infrastructures. Read more

Mission:

The program aims at preparing professionals able to design, develop, and maintain established and emerging telecommunications services and network infrastructures. This requires a vast body of knowledge, including signal processing, modulation, coding, networking, transmission media, and electromagnetism, as well as some aspects of electronics, automation, and computer science. The program grants a Master of Science Degree, which is a second-cycle degree equivalent to the Italian Laurea Magistrale.

Organization:

The program starts every year in September and lasts two years (four semesters), with a workload of 120 ECTS credits. All activities are in English.

Fees and Funding:

Tuition fees range from 360 to 1400 euro per year. LAZIODISU offers grants and accommodations to low-income students. International students may also obtain grants from the Italian Ministry of Foreign Affairs and the Italian Trade Commission.

Studying Abroad:

Students are encouraged to spend a period of study and/or to prepare their thesis abroad (earning up to 60 ETCS credits). The Erasmus mobility program allows students to study in partner European universities without paying additional tuition fees.

Internship:

Students are encouraged to make an internship experience so as to acquire working-oriented skills and become more aware of their professional choices (earning up to 6 ETCS credits). We offer internship programs in collaboration with partner companies and institutions. Traineeships in foreign companies and research centers are also available.

Career Opportunities:

Prospective jobs are available not only with telecommunications operators and manufacturers, but also in many other sectors where telecommunications are critical, such as finance, energy, defense, surveillance, healthcare, education, public services, commerce, traffic control, environmental monitoring, space exploration, robotics, etc. The program also paves the way to doctoral and postgraduate research studies.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X