• University of Oxford Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
University of Leeds Featured Masters Courses
Vlerick Business School Featured Masters Courses
Coventry University Featured Masters Courses
Cass Business School Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Ireland ×
0 miles
Medicine×

Masters Degrees in Radiology, Ireland

We have 4 Masters Degrees in Radiology, Ireland

  • Medicine×
  • Radiology×
  • Ireland ×
  • clear all
Showing 1 to 4 of 4
Order by 
The School of Clinical Medicine offers a programme in Medical Imaging with an option in Nuclear Medicine, Radiation Safety or Magnetic Resonance Imaging and Computed Tomography. Read more
The School of Clinical Medicine offers a programme in Medical Imaging with an option in Nuclear Medicine, Radiation Safety or Magnetic Resonance Imaging and Computed Tomography.

The Nuclear Medicine and Radiation Safety strands are offered in parallel on a bi-annual basis, the Magnetic Resonance Imaging and CT strand are offered on alternate years. In September 2013, the MRI and CT strands will commence.

The main aim of the programme is to train and qualify Radiographers in the practice of Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging or Computed Tomography.

The course is intended for qualified Radiographers with a clinical placement in a Nuclear Medicine Department, a Radiology Department, a Magnetic Resonance Imaging Department or a Computed Tomography Department. It is a course requirement that the student must spend a minimum of 15 hours per week on clinical placement in a Nuclear Medicine Department, a Radiology Department, a Magnetic Resonance Imaging Department or a Computed Tomography Department as appropriate to fulfill the requirements of the course.

The M.Sc. in Medical Imaging will be run over 12 months on a part-time basis.

In the M.Sc. in Medical Imaging, there are 4 separate strands: Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging and Computed Tomography. Students will choose one of the 4 options.

The taught component of the course is covered in the first 8 months. The student may opt to exit the programme upon completion of the taught component with a Postgraduate Diploma in Medical Imaging.

From May to September, students undertake an independent research project. Successful completion of the research component of the programme leads to the award of M.Sc. in Medical Imaging.

The list of common core modules currently available to students of the Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging and CT strands are:

Medico-Legal Aspects, Ethics and Health Services Management (5 ECTS)
Clinical Practice (10 ECTS)

The additional modules in the Nuclear Medicine strand are:

Physics and Instrumentation, and Computer Technology Radiation Protection and Quality Control in Nuclear Medicine (15 ECTS)
Clinical Applications of Nuclear Medicine and Hybrid Imaging (15 ECTS)
Anatomy, Physiology and Pathology applied to Nuclear Medicine (5 ECTS)
Radiopharmacy (5 ECTS)

The additional modules in the Radiation Safety strand are:

Radiation Protection Legislation (10 ECTS)
Practical Aspects of Radiation Protection (5 ECTS)
Physics and Instrumentation and Computer Technology (10 ECTS)
Quality Management and Quality Control (15 ECTS)

The additional modules in the Magnetic Resonance Imaging strand are:

Physics and Instrumentation of MR and computer technology (15 ECTS)
Anatomy, Physiology and Pathology applied to MR (10 ECTS)
Safety in MR and Quality Control (5 ECTS)
MR Imaging Techniques and Protocols (15 ECTS)

The additional modules in the Computed Tomography strand are:

Physics and Instrumentation of CT and computer technology (10 ECTS)
Anatomy, Physiology and Pathology applied to CT (10 ECTS)
CT Imaging Techniques and Protocols (15 ECTS)
Radiation protection and quality assurance in CT (5 ECTS)

All common modules and strand-specific modules must be undertaken. The taught component thus consists of 60 ECTS.
Dissertation (30 ECTS)

Read less
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. Read more
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. James's Hospital and St. Luke's Hospital, Dublin.

Students enter via the M.Sc. register. This course covers areas frequently known as Medical Physics and Clinical Engineering. It is designed for students who have a good honours degree in one of the Physical Sciences (physics, electronic or mechanical engineering, computer science, mathematics) and builds on this knowledge to present the academic foundation for the application of the Physical Sciences in Medicine.

The course will be delivered as lectures, demonstrations, seminars, practicals and workshops. All students must take a Core Module. Upon completion of this, the student will then take one of three specialisation tracks in Diagnostic Radiology, Radiation Therapy or Clinical Engineering. The running of each of these tracks is subject to a minimum number of students taking each track and therefore all three tracks may not run each year.

Core Modules

Introduction to Radiation Protection andamp; Radiation Physics (5 ECTS)
Imaging Physics andamp; Technology (5 ECTS)
Introduction to Radiotherapy and Non-Ionising Imaging (5 ECTS)
Basic Medical Sciences (5 ECTS)
Introduction to Research Methodology and Safety (5 ECTS)
Medical Technology and Information Systems (5 ECTS)
Seminars (5 ECTS)
Specialisation Track Modules (Diagnostic Radiology)

Radiation Physics and Dosimetry (5 ECTS)
Medical Informatics and Image Processing (5 ECTS)
Ionising and Non-Ionising Radiation Protection (5 ECTS)
Imaging Physics and Technology 2 (10 ECTS)
Specialisation Track Modules (Radiation Therapy)

Radiation Physics and Dosimetry (5 ECTS)
Principles and Applications of Clinical Radiobiology (5 ECTS)
External Beam Radiotherapy (10 ECTS)
Brachytherapy and Unsealed Source Radiotherapy (5 ECTS)
Specialisation Track Modules (Clinical Engineering)

The Human Medical Device Interface (5 ECTS)
Principle and Practice of Medical Technology Design, Prototyping andamp; Testing (5 ECTS)
Medical Technology 1: Critical Care (5 ECTS)
Medical Technology 2: Interventions, Therapeutics andamp; Diagnostics (5 ECTS)
Medical Informatics and Equipment Management (5 ECTS)
Project Work and Dissertation (30 ECTS)

In parallel with the taught components, the students will engage in original research and report their findings in a dissertation. A pass mark in the assessment components of all three required sections (Core Module, Specialisation Track and Dissertation) will result in the awarding of MSc in Physical Sciences in Medicine. If the student does not pass the dissertation component, but successfully passes the taught components, an exit Postgraduate Diploma in Physical Sciences in Medicine will be awarded. Subject areas include

Radiation Protection and Radiation Physics
Imaging Physics and Technology
Basic Medical Sciences
Medical Technology Design, Prototyping and Testing
Medical Informatics
Image Processing
External Bean Radiotherapy
Brachytherapy and Unsealed Source Radiotherapy
The Human-Medical Device Interface
The course presents the core of knowledge for the application of the Physical Sciences in Medicine; it demonstrates practical implementations of physics and engineering in clinical practice, and develops practical skills in selected areas. It also engages students in original research in the field of Medical Physics / Engineering. The course is designed to be a 1 year full-time course but is timetabled to facilitate students who want to engage over a 2 year part-time process.

Read less
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. Read more
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)
Human Gross Anatomy (5 ECTS)
The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)
Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)
Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)
Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.
Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)
Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)
Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.
X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.
Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.
Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.
Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)
Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)
The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals
Hospital & Radiation Safety [11 ECTS]
Workshop in Risk and Safety.
Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.
- NUIG Radiation Safety Course.
Course for Radiation Safety Officer.
- Advanced Radiation Safety
Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.
- Medical Imaging Workshop
Operation of imaging systems. Calibration and Quality Assurance of General
radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]
A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less
The aim of this course is to enable students to build on their current skills set, through teaching and their own research, in order to work at an advanced level within the radiotherapy department and/or the radiotherapy treatment planning area. Read more
The aim of this course is to enable students to build on their current skills set, through teaching and their own research, in order to work at an advanced level within the radiotherapy department and/or the radiotherapy treatment planning area. The course will develop students' knowledge and skills in the advanced radiation therapy management of cancer patients and to enable students to critically evaluate and participate in research in this area.

The M.Sc. uses a range of authentic assessments which give students the opportunity to produce assessed work which is highly relevant to the clinical environment and which develops independent life-long learning skills.

This M.Sc. course has two separate strands:

1. Advanced Radiotherapy Practice

2. Radiation Therapy Treatment Planning

Strand 1: Advanced Radiotherapy Practice

This course aims to develop students' knowledge and skills in the advanced radiotherapy management of cancer patients and to enable students to critically evaluate and participate in research in this area. The course will provide knowledge of advanced clinical practice for radiation therapists, develop the role of the radiation therapist and provide skills required to further research into cancer management in the radiotherapy department.

On completion of this strand, students will be able to demonstrate:
The ability to use evidence-based medicine to underpin their radiation therapy practice
Proficiency in undertaking research in the field of radiation therapy
An understanding of management processes and their application in oncology
An understanding of the biological consequences of ionising radiation exposure and its potential in cancer treatment
Familiarity with radiological anatomy and the acquisition of optimal imaging for radiotherapy.
Understand the principles of contouring and become proficient in contouring for prostate radiotherapy.

Strand 2: Radiation Therapy Treatment Planning

This course develops students' skills in the area of radiotherapy treatment planning. All components of treatment planning are taught from 3D Conformal Radiotherapy to IMRT treatment planning and treatment planning for specialist techniques such as stereotactic radiotherapy and brachytherapy.

On completion of this strand, students will be able to:
Prepare 3D and IMRT treatment plans
Analyse and discuss treatment plans for specialist techniques
Undertaking research in the field of radiation therapy treatment planning
Identify radiological anatomy and discuss optimal imaging for radiotherapy, from diagnosis to on-treatment verification.
Understand the principles of contouring and become proficient in contouring for prostate radiotherapy.

For both strands, Year 1 consists of six taught modules (60 ECTS). Students who progress to Year 2 will undertake a research dissertation (30 ECTS). Students who pass the taught component and have completed 60 ECTS may exit with a postgraduate diploma if they do not wish to proceed to the dissertation in Year 2.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X