Showing courses
1 to 15
of 17

Order by

The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training.
Read more…

The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)

Human Gross Anatomy (5 ECTS)

The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)

Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)

Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)

Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.

Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)

Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)

Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.

X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.

Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.

Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.

Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)

Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)

The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals

Hospital & Radiation Safety [11 ECTS]

Workshop in Risk and Safety.

Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.

- NUIG Radiation Safety Course.

Course for Radiation Safety Officer.

- Advanced Radiation Safety

Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.

- Medical Imaging Workshop

Operation of imaging systems. Calibration and Quality Assurance of General

radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]

A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less

Syllabus Outline. (with ECTS weighting)

Human Gross Anatomy (5 ECTS)

The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)

Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)

Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)

Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.

Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)

Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)

Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.

X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.

Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.

Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.

Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)

Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)

The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals

Hospital & Radiation Safety [11 ECTS]

Workshop in Risk and Safety.

Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.

- NUIG Radiation Safety Course.

Course for Radiation Safety Officer.

- Advanced Radiation Safety

Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.

- Medical Imaging Workshop

Operation of imaging systems. Calibration and Quality Assurance of General

radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]

A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less

Research degrees in Experimental Physics typically include a mixture of course modules and original research work, which may involve laboratory investigations and computational studies.
Read more…

Closing date:

Research applications are generally accepted at any time

MSc by Research students must take a minimum of 10 credits in taught modules (at least 5 in generic/transferable modules and at least 5 in subject specific/advanced specialist modules) from the Structured PhD programme.

Read less

Students take modules in Mathematical Physics and Mathematics. At least 4 of the modules (at least 45 ECTS) must be taken at the Masters level (level 6 in Mathematical Physics and level 5 in Mathematics).
Read more…

See the website https://www.maynoothuniversity.ie/mathematical-physics/our-courses/msc-mathematical-science-pt

PAC Code

MHQ53

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less

MSc by research in Mathematical Physics. The objective of the structured research programme in Mathematical Physics is to provide.
Read more…

The objective of the structured research programme in Mathematical Physics is to provide:

- A high quality research experience and training

- Enhanced arrangements for supervision and mentorship

- Structured arrangements for the development of generic and transferable skills

- Advanced discipline-specific taught courses

- Regular monitoring of progress

Closing date

Research applications are generally accepted at any time.

PAC Code

MHQ06 MSc Full-time

MHQ07 MSc Part-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less

Master of Science in Mathematical Science. Students take modules in Mathematical Physics and Mathematics. At least 4 of the modules (at least 45 ECTS) must be taken at the Masters level (level 6 in Mathematical Physics and level 5 in Mathematics).
Read more…

Students take modules in Mathematical Physics and Mathematics. At least 4 of the modules (at least 45 ECTS) must be taken at the Masters level (level 6 in Mathematical Physics and level 5 in Mathematics). The remaining credits may be made up at levels 4, 5 or 6.

PAC Code

MHQ52

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less

This is a one year full-time or two or more years part-time taught course. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules.
Read more…

PAC Code

MHQ55 Part-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less

This is a one year full-time or two or more years part-time taught course. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules.
Read more…

PAC Code

MHQ54 Full-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less

The MSc in Mathematical Sciences is a one-year (12 months) full-time programme which allows a student to combine graduate-level modules in one or more of the disciplines of the school (Actuarial Science and Statistics, Mathematics, Applied Mathematics/Mathematical Physics).
Read more…

The MSc in Mathematical Sciences is a one-year (12 months) full-time programme which allows a student to combine graduate-level modules in one or more of the disciplines of the school (Actuarial Science and Statistics, Mathematics, Applied Mathematics/Mathematical Physics). It consists of 60 credits of taught modules in Mathematics, Statistics, Mathematical Physics or Applied Mathematics, and 30 credits assigned to the writing of a dissertation as well as active participation in a research seminar.

September to August (full time) - 1 year or 3 semesters

September to August (part time) - 2 years or 6 semesters

Read less

September to August (full time) - 1 year or 3 semesters

September to August (part time) - 2 years or 6 semesters

Read less

If you are interested in the possibility of a research degree (PhD or Research Masters) in the School of Mathematical Sciences, we encourage you to become familiar with the range of research activity and expertise in the School.
Read more…

If you are interested in the possibility of a research degree (PhD or Research Masters) in the School of Mathematical Sciences, we encourage you to become familiar with the range of research activity and expertise in the School. In particular, we would encourage you to approach or contact members of the academic staff whose research area may be of particular interest.

The research of the School covers a wide range of areas including:

Analysis (Infinite-dimensional analysis, Functional Analysis, Potential Theory)

Algebra (Matrix Theory, K-theory, Quadratic and Hermitian Forms)

Discrete Mathematics (Coding, Cryptography, Number Theory)

Applied Mathematics (Fluid Dynamics, Computational Science, Meteorology, Biomathematics, Information Theory)

Theoretical Physics (Astrophysics, General Relativity, Quantum Gravity, Statistical Mechanics, Quantum Field Theory)

Statistics (Bayesian Statistics, Pharmaceutical, Medical and Educational Statistics, Environmental and ecological modelling, Epidemiology, Econometrics).

Please see our School Website for more details:

http://www.ucd.ie/mathstat

Read less

The research of the School covers a wide range of areas including:

Analysis (Infinite-dimensional analysis, Functional Analysis, Potential Theory)

Algebra (Matrix Theory, K-theory, Quadratic and Hermitian Forms)

Discrete Mathematics (Coding, Cryptography, Number Theory)

Applied Mathematics (Fluid Dynamics, Computational Science, Meteorology, Biomathematics, Information Theory)

Theoretical Physics (Astrophysics, General Relativity, Quantum Gravity, Statistical Mechanics, Quantum Field Theory)

Statistics (Bayesian Statistics, Pharmaceutical, Medical and Educational Statistics, Environmental and ecological modelling, Epidemiology, Econometrics).

Please see our School Website for more details:

http://www.ucd.ie/mathstat

Read less

Masters Video Profile(s) Available

click to view.

Masters Student Profile(s) Available

click to view.

Distance learning or online Masters course

Full Time Masters Course

Part Time Masters Course

Last Minute courses for 2017

Our dedicated 2017 Courses list includes hundreds of Masters degrees worldwide, all with a 2017 start-date.