• Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Durham University Featured Masters Courses
De Montfort University Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Swansea University Featured Masters Courses
Ireland ×
0 miles
Medicine×

Masters Degrees in Medicine, Ireland

We have 63 Masters Degrees in Medicine, Ireland

  • Medicine×
  • Ireland ×
  • clear all
Showing 1 to 15 of 63
Order by 
The School of Clinical Medicine offers a programme in Medical Imaging with an option in Nuclear Medicine, Radiation Safety or Magnetic Resonance Imaging and Computed Tomography. Read more
The School of Clinical Medicine offers a programme in Medical Imaging with an option in Nuclear Medicine, Radiation Safety or Magnetic Resonance Imaging and Computed Tomography.

The Nuclear Medicine and Radiation Safety strands are offered in parallel on a bi-annual basis, the Magnetic Resonance Imaging and CT strand are offered on alternate years. In September 2013, the MRI and CT strands will commence.

The main aim of the programme is to train and qualify Radiographers in the practice of Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging or Computed Tomography.

The course is intended for qualified Radiographers with a clinical placement in a Nuclear Medicine Department, a Radiology Department, a Magnetic Resonance Imaging Department or a Computed Tomography Department. It is a course requirement that the student must spend a minimum of 15 hours per week on clinical placement in a Nuclear Medicine Department, a Radiology Department, a Magnetic Resonance Imaging Department or a Computed Tomography Department as appropriate to fulfill the requirements of the course.

The M.Sc. in Medical Imaging will be run over 12 months on a part-time basis.

In the M.Sc. in Medical Imaging, there are 4 separate strands: Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging and Computed Tomography. Students will choose one of the 4 options.

The taught component of the course is covered in the first 8 months. The student may opt to exit the programme upon completion of the taught component with a Postgraduate Diploma in Medical Imaging.

From May to September, students undertake an independent research project. Successful completion of the research component of the programme leads to the award of M.Sc. in Medical Imaging.

The list of common core modules currently available to students of the Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging and CT strands are:

Medico-Legal Aspects, Ethics and Health Services Management (5 ECTS)
Clinical Practice (10 ECTS)

The additional modules in the Nuclear Medicine strand are:

Physics and Instrumentation, and Computer Technology Radiation Protection and Quality Control in Nuclear Medicine (15 ECTS)
Clinical Applications of Nuclear Medicine and Hybrid Imaging (15 ECTS)
Anatomy, Physiology and Pathology applied to Nuclear Medicine (5 ECTS)
Radiopharmacy (5 ECTS)

The additional modules in the Radiation Safety strand are:

Radiation Protection Legislation (10 ECTS)
Practical Aspects of Radiation Protection (5 ECTS)
Physics and Instrumentation and Computer Technology (10 ECTS)
Quality Management and Quality Control (15 ECTS)

The additional modules in the Magnetic Resonance Imaging strand are:

Physics and Instrumentation of MR and computer technology (15 ECTS)
Anatomy, Physiology and Pathology applied to MR (10 ECTS)
Safety in MR and Quality Control (5 ECTS)
MR Imaging Techniques and Protocols (15 ECTS)

The additional modules in the Computed Tomography strand are:

Physics and Instrumentation of CT and computer technology (10 ECTS)
Anatomy, Physiology and Pathology applied to CT (10 ECTS)
CT Imaging Techniques and Protocols (15 ECTS)
Radiation protection and quality assurance in CT (5 ECTS)

All common modules and strand-specific modules must be undertaken. The taught component thus consists of 60 ECTS.
Dissertation (30 ECTS)

Read less
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine. Read more
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine.

This course aims to give participants an indepth understanding of the emerging field of molecular medicine which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that of molecular interactions.

The course aims to provide students with an understanding of the molecular basis of human disease and its implications for the practice of clinical medicine and research in the life sciences. The course will ensure that students from all disciplines have the skills necessary to conduct research and critically evaluate the scientific and medical literature.

The course includes lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and to disease processes. Modules on molecular signalling and therapeutics, bioinformatics and ethical-legal aspects of the discipline are included, as well as literature reviews, laboratory practicals and a laboratory project.

The course is available in a one-year, full-time and a two-year, part-time format. It consists of lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and more specifically to disease processes such as cancer, immune dysfunction, and diseases with an inherited component. The course content includes molecular signalling and therapeutics, molecular and population genetics, nanoscience, and high content cell analysis. There is a core, 'Research Skills' module which encompasses bioinformatics and ethical-legal aspects of the emerging discipline, literature reviews, and laboratory practicals in basic molecular and cellular techniques. Candidates will complete a laboratory project of three months (full-time) or six months (part-time) duration. Candidates must also complete the taught module, Molecular Mechanisms of Human Disease I. This course provides the applicant with state-of-the-art information and critical analysis of: The human genome at a molecular level, the integration of molecular and cellular biology in relation to human diseases; the molecular basis of human genetic disease; the molecular interactions between microbiological pathogens and the human host; the technology currently employed in researching molecular medicine; the molecular basis of common human inflammatory diseases and malignancies; the utilisation of knowledge on the molecular basis of human disease in planning and design of novel therapies, using pharmacological agents or gene therapy; the ethical and legal aspects of molecular medicine as it impinges on clinical practice. You will also gain a working appreciation of molecular and cellular biology at the practical level and development of the ability to perform independent research with the ability to apply bioinformatic and computational techniques in medical and biological research, and information retrieval. The student is examined on the basis of a submitted critical literature review essay, a written examination, assessment of laboratory practicals and the writing of a dissertation based on a research project. Candidates from health science (medical, dental, veterinary), biological science and other science disciplines (e.g. chemical or pharmacy), are invited to apply.

Read less
This programme aims to provide participants with an in-depth understanding of the emerging field of molecular medicine, which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that is, at the level of molecular interactions. Read more
This programme aims to provide participants with an in-depth understanding of the emerging field of molecular medicine, which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that is, at the level of molecular interactions. The Diploma in Molecular Medicine is designed to make available a high quality course to those individuals who cannot avail of a full-time programme, due to the high demands it makes on a candidate's time. The diploma may therefore be an attractive option for, among others, people working in business, clinical industry, or other disciplines, who wish to gain a comprehensive knowledge in this area with a view to progressing professionally, or going on to do a higher degree.

This programme offers a comprehensive and thoroughly up-to-date overview of the area, which provides participants with the skills necessary to critically evaluate the literature and understand the central concepts of molecular medicine, such as the molecular basis of human disease and its implications for the practice of clinical medicine and research in the life sciences. The course includes lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and to disease processes. Advanced modules cover topics such as molecular oncology, signalling, development and therapeutics, immunology and infectious agents among others. A selection of modules on issues such as bioinformatics, research methodology, statistics and ethicallegal aspects of the discipline may be undertaken on an optional basis.

Students choose a minimum of 10 units totalling a minimum of one hundred contact hours teaching. Students are also required to complete a written review of a relevant part of the literature. Students are examined on the basis of the submitted critical literature review essay, and written examinations of the modules taken. Examinations are undertaken at the end of each term.

Candidates should normally have a minimum of a 2.1 honors degree or equivalent in a biological science; a clinical science such as medicine, dentistry or veterinary; a pharmaceutical science such as pharmacy, or related area. However individuals with other appropriate or industrial experience (for example those working in the life sciences sector) will also be considered. The candidate may be interviewed to establish his/her suitability for the course.

Read less
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. Read more
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. James's Hospital and St. Luke's Hospital, Dublin.

Students enter via the M.Sc. register. This course covers areas frequently known as Medical Physics and Clinical Engineering. It is designed for students who have a good honours degree in one of the Physical Sciences (physics, electronic or mechanical engineering, computer science, mathematics) and builds on this knowledge to present the academic foundation for the application of the Physical Sciences in Medicine.

The course will be delivered as lectures, demonstrations, seminars, practicals and workshops. All students must take a Core Module. Upon completion of this, the student will then take one of three specialisation tracks in Diagnostic Radiology, Radiation Therapy or Clinical Engineering. The running of each of these tracks is subject to a minimum number of students taking each track and therefore all three tracks may not run each year.

Core Modules

Introduction to Radiation Protection andamp; Radiation Physics (5 ECTS)
Imaging Physics andamp; Technology (5 ECTS)
Introduction to Radiotherapy and Non-Ionising Imaging (5 ECTS)
Basic Medical Sciences (5 ECTS)
Introduction to Research Methodology and Safety (5 ECTS)
Medical Technology and Information Systems (5 ECTS)
Seminars (5 ECTS)
Specialisation Track Modules (Diagnostic Radiology)

Radiation Physics and Dosimetry (5 ECTS)
Medical Informatics and Image Processing (5 ECTS)
Ionising and Non-Ionising Radiation Protection (5 ECTS)
Imaging Physics and Technology 2 (10 ECTS)
Specialisation Track Modules (Radiation Therapy)

Radiation Physics and Dosimetry (5 ECTS)
Principles and Applications of Clinical Radiobiology (5 ECTS)
External Beam Radiotherapy (10 ECTS)
Brachytherapy and Unsealed Source Radiotherapy (5 ECTS)
Specialisation Track Modules (Clinical Engineering)

The Human Medical Device Interface (5 ECTS)
Principle and Practice of Medical Technology Design, Prototyping andamp; Testing (5 ECTS)
Medical Technology 1: Critical Care (5 ECTS)
Medical Technology 2: Interventions, Therapeutics andamp; Diagnostics (5 ECTS)
Medical Informatics and Equipment Management (5 ECTS)
Project Work and Dissertation (30 ECTS)

In parallel with the taught components, the students will engage in original research and report their findings in a dissertation. A pass mark in the assessment components of all three required sections (Core Module, Specialisation Track and Dissertation) will result in the awarding of MSc in Physical Sciences in Medicine. If the student does not pass the dissertation component, but successfully passes the taught components, an exit Postgraduate Diploma in Physical Sciences in Medicine will be awarded. Subject areas include

Radiation Protection and Radiation Physics
Imaging Physics and Technology
Basic Medical Sciences
Medical Technology Design, Prototyping and Testing
Medical Informatics
Image Processing
External Bean Radiotherapy
Brachytherapy and Unsealed Source Radiotherapy
The Human-Medical Device Interface
The course presents the core of knowledge for the application of the Physical Sciences in Medicine; it demonstrates practical implementations of physics and engineering in clinical practice, and develops practical skills in selected areas. It also engages students in original research in the field of Medical Physics / Engineering. The course is designed to be a 1 year full-time course but is timetabled to facilitate students who want to engage over a 2 year part-time process.

Read less
This Masters in Medicine course is offered to medical graduates in training who wish to develop their research skills, broaden their research interests, and develop advanced knowledge in selected areas of clinical and scientific practice. Read more
This Masters in Medicine course is offered to medical graduates in training who wish to develop their research skills, broaden their research interests, and develop advanced knowledge in selected areas of clinical and scientific practice. The course syllabus and curriculum have been developed following consultation with medical trainees in Ireland in order to ensure that the course fulfills their needs in terms of higher medical training at national and international level. The aim of the course is to provide advanced training in key domains of excellence relevant to modern medical practice for all students while also providing specialist knowledge relevant to their individual chosen career pathways.

Students will be required to complete twelve taught modules (5 ECTS each) as follows:

Six core modules (in year 1):

Professional and Ethical Practice of Medicine,
Research Skills I,
Research Skills II,
Health Services Management,
Health Informatics,
Patient Safety for Clinical Specialists.

Six optional modules (year 2) from either Molecular and Translational Medicine (strand A):

Cellular Biology and Cell signalling Mechanisms,
Introduction to Genetics and Molecular Biology,
Molecular oncology,
Molecular Mechanisms of Human disease I and II, and
laboratory skills for clinical specialists

or Population Health and Health Implementation (Strand B):

Public Health for Clinical Specialists,
Global Health for Clinical Specialists,
Rehabilitation Medicine for Clinical Specialists,
Teaching and Learning for Clinical Specialists,
Pharmacoeconomics, Pharmacoepidemiology, and Drug Safety 56

Students will also be required to submit a dissertation (30 ECTS) based on an original research/ laboratory-based project at the end of the second year.

Read less
This M.Sc. course is administered by the Department of Pharmacology and Therapeutics, in the Trinity Centre of Health Sciences, St James's Hospital, Dublin. Read more
This M.Sc. course is administered by the Department of Pharmacology and Therapeutics, in the Trinity Centre of Health Sciences, St James's Hospital, Dublin. It has been developed to provide medical and science graduates with specialist knowledge and skills in the area of clinical pharmacology and pharmaceutical medicine. In-take is on an annual basis. Components of the course include principles of:

Pharmacology and biostatistics
New drug development and the regulatory environment
Pharmacoeconomics and rational use of drugs
Pharmacovigilance and drug information

The course involves completion of taught modules and the additional undertaking of a research project. The modules consist of formal teaching and personal assignments and are run over five terms on a part-time basis (approximately two modules per term). Some of the modules are undertaken by way of distance learning. In addition, the students are assigned a research project (including field work), to be submitted as a dissertation for the degree of M.Sc. only.

The syllabus is compliant with PharmaTrain, an EU funded Innovative Medicines Initiative (http://www.pharmatrain.eu).

Students are assessed by way of continuous assessment and are required to pass written and oral examinations at the end of their course. In addition, they are required to submit a written dissertation on their research project (with the possibility of an oral examination) by the end of the second year of the course.

Prospective students for this course must hold a primary degree in either medicine or another relevant health or science subject. Candidates should have a minimum of two years' practical experience in their area of qualification/pharmaceutical industry. The course is run in the Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8.

Read less
Candidates for the M.D. degree must be M.B. graduates (or acceptable equivalent) of at least three years standing. Read more
Candidates for the M.D. degree must be M.B. graduates (or acceptable equivalent) of at least three years standing. A candidate must either be a graduate of the University of Dublin or have been for at least one year prior to registration a full-time or part-time member of staff of the College, or a formally appointed Research Fellow of the College or a Registrar in one of the teaching hospitals with which the College has a formal association. Applications must be made on the official form, which may be obtained from the Graduate Studies Office. Work for this degree may be carried out elsewhere than in the College itself save that in the case of candidates who are not graduates of the University of Dublin, the bulk of the research work eventually submitted must be carried out while they are on the staff of the College or Hospital. A thesis for examination must be presented not less than twelve months or not more than five years after the date of registration. Advice to applicants is contained in the document “Doctor in Medicine (M.D.), Guidelines for Candidates”. Applications to the M.D. register must first be assessed for acceptance by the internal Professional Higher Degrees Committee. Distinguished graduates of the University of Dublin may submit a thesis for the degree of M.D., which is based solely on published work relating to a single theme. In such cases the normal regulations concerning admission to the postgraduate register and minimum time between registration and submission will not apply.

Read less
The course includes lectures, practical and clinical work. Read more
The course includes lectures, practical and clinical work. It aims to present a scientific basis for the study of all aspects of sports and exercise medicine; to outline a comprehensive programme for injury prevention and treatment; to define guidelines for the scientific monitoring and training of athletes; to enable participants to prescribe training advice for different age groups; and to expose participants to a wide range of specialities relevant to sport and exercise.

A M.Sc. degree is awarded following the passing of written, oral and clinical examinations and the acceptance of a dissertation based on practical research work. Marks are allocated on the basis of 67% continuous assessment and end of year written examinations and 33% dissertation.

Read less
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. Read more
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)
Human Gross Anatomy (5 ECTS)
The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)
Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)
Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)
Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.
Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)
Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)
Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.
X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.
Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.
Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.
Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)
Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)
The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals
Hospital & Radiation Safety [11 ECTS]
Workshop in Risk and Safety.
Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.
- NUIG Radiation Safety Course.
Course for Radiation Safety Officer.
- Advanced Radiation Safety
Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.
- Medical Imaging Workshop
Operation of imaging systems. Calibration and Quality Assurance of General
radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]
A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less
Students enter via the M.Sc. register. Read more
Students enter via the M.Sc. register. Students will take a core module in Research skills based in the School of Medicine and concurrently follow one of three specialist tracks, which will be provided by the actual modules as offered by the currently running three Masters courses (i) the masters course in molecular medicine, (ii) the masters course in neuroscience, or (iii) the masters course in bioengineering. Students will then conduct a three month research project and will submit a dissertation based on this project. Applications should be addressed directly to Ms. Dara OMahony, School of Research Postgraduate Education, Trinity Centre for Health Sciences, St. James Hospital, Dublin 8.

Read less
Respiratory Physiotherapy is one of the core areas of Physiotherapy Practice. The aim of this course is to develop physiotherapists knowledge and skills in the physiotherapy management of the patient with respiratory disorders. Read more
Respiratory Physiotherapy is one of the core areas of Physiotherapy Practice. The aim of this course is to develop physiotherapists knowledge and skills in the physiotherapy management of the patient with respiratory disorders. The course will take place on a part-time basis to facilitate physiotherapists working in clinical practice. The MSc course is run on a full-time (1 year) and part-time (2 year) basis. The PG Diploma is completed in 1 year. All students will attend 3 days per month for the first year. A 5-week clinical placement will either be timetabled for the end of year 1 (full-time MSc students and diploma students) or during year 2 (part-time MSc students). A research project will be undertaken in year 1 for full-time MSc students and in year 2 for part-time MSc students. Teaching will include lectures, laboratory practicals, seminars and tutorials. Clinical experience in Respiratory Physiotherapy will also be provided. Specialist themes covered include:Cardiovascular and Respiratory Physiology Exercise prescription Clinical Exercise Prescription Research Methods and Statistics Physiotherapy in Respiratory Medicine Clinical Practice in Respirator Physiotherapy. Health Policy and Management Research Dissertation. .
An individual research project on some aspect of Respiratory Physiotherapy shall be completed by MSc students. Students shall be assigned a supervisor with whom the research topic must be agreed. The proposal must be accepted by the course committee prior to commencement. Ethical approval for research projects will be sought as necessary. The dissertation will involve regular meetings between the student and supervisor. MSc students will present their research findings in a report in a paper format of no more than 3,500 words.

Students performance will be assessed by coursework that is completed throughout the year and by their performance during a clinical placement. Coursework will include case-based questions, case studies, essays, laboratory reports and literature reviews.

Read less
The MSc in Healthcare Infection Management is a postgraduate qualification that is offered by the School of Medicine, Trinity College Dublin, to meet the need for a multi-disciplinary approach to modern healthcare infection control. Read more
The MSc in Healthcare Infection Management is a postgraduate qualification that is offered by the School of Medicine, Trinity College Dublin, to meet the need for a multi-disciplinary approach to modern healthcare infection control. The course provides specialist teaching in conjunction with St. James's Hospital, Tallaght Hospital, the Health Service Executive, and invited international experts. The MSc in Healthcare Infection Management is primarily offered to medical microbiologists, infectious disease physicians, antimicrobial pharmacists, biomedical scientists, infection control specialists and public health workers and can be taken as either a 1-year full-time degree, or as a 2-year part-time degree. The MSc in Healthcare Infection Management aims to provide graduates with a comprehensive understanding of the multiple disciplines that must align to deliver effective control of human pathogens in the hospital and community settings. The course will provide foundation and advanced knowledge on the monitoring, prevention, diagnosis, and treatment of infectious diseases and is delivered as lectures, demonstrations, seminars, practicals and workshops. In terms of structure, the course is delivered in the form of 4 taught modules, which comprise a total of 60 ECTS, on the following themes: Module 1: Clinical Microbiology and Infectious Diseases (15 ECTS); Module 2: Antimicrobial Therapy and Resistance (15 ECTS); Module 3: Epidemiology and Infection Control (15 ECTS); Module 4: Multidisciplinary Management of Infection (15 ECTS). There is also a Research Dissertation module (30 ECTS) that will enable students to acquire new laboratory skills and perform research on a topic that is relevant to contemporary healthcare.

Read less
The aim of this course is to enable students to build on their current skills set, through teaching and their own research, in order to work at an advanced level within the radiotherapy department and/or the radiotherapy treatment planning area. Read more
The aim of this course is to enable students to build on their current skills set, through teaching and their own research, in order to work at an advanced level within the radiotherapy department and/or the radiotherapy treatment planning area. The course will develop students' knowledge and skills in the advanced radiation therapy management of cancer patients and to enable students to critically evaluate and participate in research in this area.

The M.Sc. uses a range of authentic assessments which give students the opportunity to produce assessed work which is highly relevant to the clinical environment and which develops independent life-long learning skills.

This M.Sc. course has two separate strands:

1. Advanced Radiotherapy Practice

2. Radiation Therapy Treatment Planning

Strand 1: Advanced Radiotherapy Practice

This course aims to develop students' knowledge and skills in the advanced radiotherapy management of cancer patients and to enable students to critically evaluate and participate in research in this area. The course will provide knowledge of advanced clinical practice for radiation therapists, develop the role of the radiation therapist and provide skills required to further research into cancer management in the radiotherapy department.

On completion of this strand, students will be able to demonstrate:
The ability to use evidence-based medicine to underpin their radiation therapy practice
Proficiency in undertaking research in the field of radiation therapy
An understanding of management processes and their application in oncology
An understanding of the biological consequences of ionising radiation exposure and its potential in cancer treatment
Familiarity with radiological anatomy and the acquisition of optimal imaging for radiotherapy.
Understand the principles of contouring and become proficient in contouring for prostate radiotherapy.

Strand 2: Radiation Therapy Treatment Planning

This course develops students' skills in the area of radiotherapy treatment planning. All components of treatment planning are taught from 3D Conformal Radiotherapy to IMRT treatment planning and treatment planning for specialist techniques such as stereotactic radiotherapy and brachytherapy.

On completion of this strand, students will be able to:
Prepare 3D and IMRT treatment plans
Analyse and discuss treatment plans for specialist techniques
Undertaking research in the field of radiation therapy treatment planning
Identify radiological anatomy and discuss optimal imaging for radiotherapy, from diagnosis to on-treatment verification.
Understand the principles of contouring and become proficient in contouring for prostate radiotherapy.

For both strands, Year 1 consists of six taught modules (60 ECTS). Students who progress to Year 2 will undertake a research dissertation (30 ECTS). Students who pass the taught component and have completed 60 ECTS may exit with a postgraduate diploma if they do not wish to proceed to the dissertation in Year 2.

Read less
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. Read more
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. A major focus of the programme is the cellular genetic and epigenetic basis of cancer. The course also covers the scientific and clinical challenges pertinent to the management of site specific cancers, and all aspects of cancer treatment from standard therapies to 'individualised' molecular targeted therapies. The focus of the course is research led teaching in the practical aspects of translational cancer research. This innovative M.Sc. program in Translational Oncology is aimed at scientists and doctors in training who wish to:

Develop their research skills
Broaden their expertise in oncology
Develop advanced knowledge in specific areas of scientific, translational and clinical oncology.

The proposed course will offer an opportunity for graduates from a variety of backgrounds to specifically train in translational oncology in advance of undertaking an MD or PhD. Modules are taught using a variety of methods including lectures, tutorials, workshops and laboratory practicals. Lectures are provided by leaders in the field of translational oncology from both scientific and medical backgrounds. The core modules are Cellular and Molecular Oncology, Cancer Epigenetics, Disease Specific Cancers, Radiation / Chemotherapy and Molecular Targeted Therapies, Tumour Immunology, Molecular Pathology and Imaging, Clinical Statsitics and Research Skills. Students can tailor the course to their interests with optional modules in Obesity, metabolism and Cancer, Gemomic Instability, Cancer Drug Development, Tumour Microenvironment, Clinical Pharmacology, and Surgical Oncology and Economics. Students will be required to submit a dissertation based on an emperical research project conducted in one of the many oncology groups located within or affiliated with Trinity College Dublin and the Institute of Molecular Medicine. Opportunities for national and international placements to conduct research projects will also be available in collaborating universities, hospitals and industry.

All applicants should provide two academic or clinical references confirming their eligibility and suitability for the course, before their application can be considered. Applicants should also include a 500 word personal statement addressing why they are interested in the course, their suitability for the programme and how it will impact on their future career development. Applications for admission to the course should be made through the online system no later than July 31st. Late applications will be considered provided places are available.

Read less
Neuroscience is a discipline concerned with the scientific study of the nervous system in health and disease. Research in the neurosciences is of considerable clinical impact considering the debilitating and costly effects of neurological and psychiatric disease. Read more
Neuroscience is a discipline concerned with the scientific study of the nervous system in health and disease. Research in the neurosciences is of considerable clinical impact considering the debilitating and costly effects of neurological and psychiatric disease. In this regard, a major goal of modern neuroscience research is to elucidate the underlying causes (genetic or environmental) of major brain diseases, and to produce more effective treatments for major psychiatric disorders such as schizophrenia and depression, and neurological disorders such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, motor neurone disease and epilepsy. Improved treatment strategies for brain disorders relies entirely on increased understanding gained from research which integrates molecular, cellular and clinical aspects of disease. In this regard it is clear that interdisciplinary approaches are necessary to understand the complex processes which underlie brain function in health and disease. This interdisciplinary philosophy is adopted in the delivery of our M.Sc. programme in Neuroscience, which is underpinned by the diverse research expertise available within Trinity College Institute of Neuroscience (TCIN).

Course Content:

This one-year M.Sc. course aims to provide a multidisciplinary training in the neurosciences, in topics ranging from molecular to behavioural. The course is ideal for students wishing to extend their specialised knowledge, and for those wishing to convert from their original degree discipline. The programme will equip participants with the skills necessary to progress into a career in biomedical, pharmaceutical or neuropsychological research. Instruction for the course consists of approximately 200 contact hours over two academic Terms to include lectures, laboratory practical sessions, journal club workshops and student-based seminars. Modules are assessed by a mixture of in course assessment and written examinations.

Specialist modules covered include:

Form and Function of the Nervous System, Biochemical Basis of Neuropharmacology, Neuropharmacology, Drug Development, Advanced Neuroimmunology, Experimental Neuroscience, Scientific Literature Skills, Neural Engineering, Neuroimaging Technology, Current Topics in Neuroscience, Cellular Neuroscience, and Research Skills.

The third Term consists of a research project on novel aspects of Neuroscience. Trinity College Institute of Neuroscience is a dynamic research environment with research spanning molecular/cellular neuroscience to clinical/translational neuroscience. Projects across these research areas may be undertaken in consultation with an expert supervisor. For students interested in a project in cellular/molecular neuroscience a range of cellular techniques such as tissue culture, immunocytochemistry, western immunobloting and immunoprecipitation, confocal microscopy, Immunoassays, flow cytometry, Real-time PCR, and high performance liquid chromatography are available. In addition, some projects will involve assessing behavioural, electrophysiological and neurochemical endpoints using in vivo models of neurological and psychiatric disease. For those with an interest in experimentation on human subjects, projects will be offered utilizing techniques such as functional magnetic resonance imaging and neurocognitive testing. A selection of national and international projects is also available, which involve collaboration with other academic institutes and pharmaceutical companies, in Ireland, UK and across Europe.

Read less

Show 10 15 30 per page



Cookie Policy    X