• University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Oxford Featured Masters Courses
Middlesex University Featured Masters Courses
Cass Business School Featured Masters Courses
Imperial College London Featured Masters Courses
University of Reading Featured Masters Courses
University of Surrey Featured Masters Courses
Ireland ×
0 miles
Engineering×

Masters Degrees in Engineering, Ireland

We have 80 Masters Degrees in Engineering, Ireland

  • Engineering×
  • Ireland ×
  • clear all
Showing 1 to 15 of 80
Order by 
1. Big Challenges being addressed by this programme – motivation. Human health and quality of life is one of the most critical challenges facing humanity. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Human health and quality of life is one of the most critical challenges facing humanity.
• The challenge is all the greater due to a rapidly increasing and rapidly aging global population that now exceeds 7 billion.
• Biomedical Engineering addresses these issues directly, with engineers innovating, analysing, designing and manufacturing new medical implants, devices and therapies for the treatment of disease, injuries and conditions of the human body, to restore health and improve quality of life.
• CNN lists Biomedical Engineering as No. 1 in the “Best Jobs in America” 2013.

2. Programme objectives & purpose

The objective of the programme is to generate graduates with a sound grounding in engineering fundamentals (analysis, design and problem solving), but who also have the multi-disciplinary breadth that includes knowledge of human biology and clinical needs and applications, to be able to make an immediate impact in the field on graduation, in either the academic research or medical technology industry domains. Ultimately the programme aims to generate the future leaders of the national and international medical technology industry, and of academic research and teaching in biomedical engineering.

3. What’s special about CoEI/NUIG in this area:

• NUI Galway pioneered the development of educational programmes in Biomedical Engineering in Ireland, introducing the country’s first bachelor’s degree in Biomedical Engineering in 1998, that was the first to achieve professional accreditation from Engineers Ireland in 2004, and at the graduate level with the Structured PhD programme in Biomedical Engineering and Regenerative Medicine (BMERM) in 2011.
• NUI Galway has been at the forefront of world-class research in biomedical engineering for over 20 years and has pioneered multi-disciplinary research in biomedical engineering and science, with the establishment of the National Centre for Biomedical Engineering Science (NCBES) in 1999, and up to the present day with the announcement of NUI Galway as the lead institution in a new Science Foundation Ireland funded Centre for Research in Medical Devices (CÚRAM).
• NUI Galway has a very close and deep relationship with the medical device industry locally, nationally and internationally, at many levels, from industry visits, guest lectures and student placements, up to major research collaborations.
• Many of our engineering graduates now occupy senior management and technical positions in the medical device industry nationally and internationally.

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Modules:

Advanced Finite Element Methods
Advanced Computational Biomechanics
Advanced Biomaterials
Mechanobiology
Bioinstrumentation Design
Medical and Surgical Practice
Stem Cells and Gene Therapy
Translational Medicine
Polymer Engineering
Advanced Engineering Statistics
Systems Reliability
Lean Systems
Research Methods for Engineers
Financial Management
Regulatory Affairs and Case Studies
Technology, Innovation and Entrepreneurship

6. Any special funding arrangements – e.g. Irish Aid

Comment (PMcH): CoEI scholarships a great idea.

7. Opportunity for number of Industrial & Research internships.

Students enrolled on this programme will have an opportunity to apply for a one-year post-graduation internship in either a related industry or research group in Ireland.

8. Testimonials.

“The Biomedical Engineering programme at NUI Galway has given me the fundamental engineering skills and multi-disciplinary background in biology and clinical application that I needed to be able to make an immediate impact in industry and to be able to design and develop new medical implants and devices. My graduate education through my PhD in bone biomechanics was also very important in this because I directly combined engineering and biological analysis techniques to better understand how stem cells generate new bone, showing me how biomedical engineers can play a critically important role in generating new knowledge on how the body works, and how new treatments can be developed for diseases and injuries, such as osteoporosis.” Evelyn Birmingham, BE Biomedical Engineering (2009), PhD Biomedical Engineering (2014), R&D Engineer, Medtronic Vascular, Galway.

For further details

visit http://nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC): https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Biomedical Engineering - PAC code GYE24

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Read less
Water security is a major concern facing humanity and engineers are the primary professionals tackling this issue. Read more

About the Course

Water security is a major concern facing humanity and engineers are the primary professionals tackling this issue. Annually, more than 3.4 million people die from water related diseases while 1 in 9 people world-wide do not have access to safe and clean drinking water and 1 in 3 people world-wide are affected by water scarcity. In addition, population growth, urbanisation, climate change and increasing energy demands, are placing unprecedented pressures on our finite water resources. This 1-year MSc programme aims to equip students with the skills needed to design solutions to deliver safe/clean water. The programme will also give opportunities to students to study the economics and management of large projects.

Programme Objectives

The MSc in Water resources Engineering will provide students with the technical competences to provide solutions to water security issues. Core modules will address technical aspects of water provision, water resource management and water / wastewater treatment. A primary objective of the programme is to ensure that students have a thorough understanding of modern hydrological modelling tools. The programme has a strong emphasis on the design of hydrological systems, with students working in groups to solve real-world problems. Graduates of this programme will be in a position to make significant contributions to solving water resource problems in both industry and academic roles worldwide.

Programme Structure and Content

This is a 90ECTS programme, one full year in duration, starting in September and finishing August. The programme comprises an individual research project and thesis (30 ECTS), an integrated group design project (15 ECTS) and a number of taught (core and elective) modules (55 ECTS).

The core taught modules include: Hydrology & Water Resources Engineering, Hydrological Modelling, Design of Sustainable Environmental Systems, Water Quality, Water Resources in Arid Regions, and Applied Field Hydrogeology. Sample elective modules include: Computational Methods in Engineering, Global Change, Offshore & Coastal Engineering, Environmental Economics, Project Management, and Estimates and Costing of Engineering Projects.

The Integrated Group Design Project involves the design of components of a water supply and/or treatment system and will be typical of real-world water resources engineering project. Each student will also complete an individual minor research thesis in the area of water resources engineering. This thesis accounts for one third of the overall programme mark.

What’s Special About CoEI/NUIG in this Area

• Water engineering has been taught at graduate level at NUI Galway for over 40 years. During this period students from over 50 countries have graduated from NUI Galway.
• The MSc in Water Resources Engineering is a re-launch of NUI Galway's International Postgraduate Hydrology Programme established by the late Prof Eamonn Nash. Many of the staff who lectured on the Hydrology Programme contribute to the current programme; so the recognised tradition of world-class teaching in water engineering at NUI Galway continues.
• Currently NUIG staff are involved in large-scale funded research projects in water resources, facilitated by the world-class research facilities at NUI Galway.

Testimonials

"It was a privilege and a pleasure to participate in the Galway MSc programme with world renowned hydrologists, excellent technicians and support staff, and Irish and international students. The comprehensive programme provided an excellent basis for my subsequent career in hydrology."
Charles Pearson, MSc Hydrology, NUIG, 1990 Graduating Class
Regional Manager, National Institute of Water and Atmospheric Research, New Zealand

"I am fortunate enough to have completed a world-class course in Hydrology at National University of Ireland, Galway which was taught by world-leading academics and researchers. Since my course completion in 1990, I have been able to play a key role in hydrologic application and research in Bangladesh and Australia based on the knowledge I gained from my studies in Galway."
Professor Ataur Rahman, MSc Hydrology, NUIG, 1990 Graduating Class
Water and Environmental Engineering, School of Computing, Engineering and Mathematics, University of Western Sydney

"NUI Galway gave me priceless experiences; it was my first travel outside the Philippines. Being a graduate of NUI Galway opened doors of opportunities for me. My being who I am now started with my NUI Galway experience and I will always be grateful to the institution, to my friends and to my former professors."
Dolores San Diego-Cleofas, MSc Hydrology, NUIG, 1995 Graduating Class,
Assistant Professor at University of Santo Tomas, Manila, Phillipines

How to Apply

Applications are made online via the Postgraduate Applications Centre (PAC): https://www.pac.ie
Please use the following PAC application code for your programme:
M.Sc. Water Resources Engineering - PAC code GYE23

Scholarship Opportunities

There are a number of funding opportunities for International Students planning to attend NUI Galway. Information on these can be found at: http://www.nuigalway.ie/international-students/feesfinance/internationalscholarships/

The College of Engineering and Informatics will also award the Nash Scholarship in Water Resource Engineering. This is in memory of our deceased colleague, Eamonn Nash who was our Professor of Engineering Hydrology for many years, and was a well-known in the international engineering community. The “Nash cascade” and “Nash-Sutcliffe coefficient” were named after him, and these still feature in scholarly publications. Over four hundred senior hydrologists throughout the world received their post-graduate hydrological education at this University. Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

The MSc in Water Resources Engineering is accredited by Irish Aid as an eligible course for their International Fellowship Training Programme (IFTP). Through the IFTP, Irish Aid provides funding for students from eligible developing countries to undertake postgraduate studies on selected courses in colleges and universities in Ireland. More information on Irish Aid Fellowships can be found on the website of the Irish Council for International Students at:
http://www.icosirl.ie/eng/irish_aid_fellowships/fellowship_training_programme

Further information is available on our website:
http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/mscwaterresourcesengineering/

Read less
The PG Dip in Pharmaceutical and Biopharmaceutical Engineering is a part-time modular degree which can be taken over 24 months to 60 months. Read more
The PG Dip in Pharmaceutical and Biopharmaceutical Engineering is a part-time modular degree which can be taken over 24 months to 60 months. You will have the opportunity to gain a formal qualification in areas of particular concern to the bio/pharmaceutical industry that you may not have benefited from before, including issues such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design and validation.

Visit the website: http://www.ucc.ie/en/ckp08/

Course Details

Many graduates working in the pharmaceutical industries with a scientific background find themselves working in areas which increasingly overlap with engineers and engineering. Many would like to develop an engineering-based understanding of processes and production in a formal manner. This course offers you the opportunity to do this, developing your skills set and employability across a wider range of roles.

The course also presents the pharmaceutical and biopharmaceutical industry with an opportunity to enable greater cohesion and understanding among inter- and multi-disciplinary teams as graduates with science backgrounds receive a formal qualification in engineering.

Format

The PGDip involves taking 12 modules to the value of ECTS 60 credits. Taught modules are offered on a cyclical basis. Six modules are taken per annum over a two year period if you opt for full registration, although the course can be taken over a maximum of five years. The choice of modules is subject to the approval of the course coordinator. Candidates who achieve an average of 50% in all taught modules may apply for entry to the MEngSc to complete a thesis.

Part I

Students take 60 credits from the following:

Offered in 2015/16

PE6010 Pharmaceutical Engineering (5 credits)
PE6011 Biopharmaceutical Engineering (5 credits)
PE6012 Pharmaceutical Process Equipment, Materials and Mechanical Design (5 credits)
PE6013 Powder & Particle Technology and Unit Operations (5 credits)
PE6014 Chemical Kinetics, Reactor Design and Bioreactor Engineering (5 credits)
PE6015 Environmental Engineering in the Pharmaceutical Sector (5 credits)
PE6023 Pharmaceutical and Biopharmaceutical Utilities (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Offered in 2016/17

PE6016 Pharmaceutical Industry, Manufacturing and Optimisation (5 credits)
PE6017 Pharmaceutical Plant Design and Project Management (5 credits)
PE6018 Pharmaceutical Process Validation and Quality (5 credits)
PE6019 Process Analytical Technology (5 credits)
PE6022 Aseptic Manufacturing Design (5 credits)
PF6302 Introduction to Pharmaceutics: Formulation Science (5 credits)
PE6024 Advanced Process Design & Safety Engineering (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Part II (MEngSc only)

PE6021 Dissertation in Pharmaceutical and Biopharmaceutical Engineering (30 credits)

These are subject to change. For full course information see programme website - http://www.ucc.ie/en/processeng/postgrads/taughtmasters/mengsc//

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page08.html

Placement and study abroad

Students will study at a UCC partner university in China and take the equivalent of 60 credits there in the Third Year.

Assessment

Assessment is by continuous assessment and end of period exams.

Careers

The course offers graduates working in the pharmaceutical industry the opportunity to further develop your skills set and employability across a wider range of roles in the industry through enhanced continuing professional development.

Through the opportunities provided by participation on the programme, you are provided with opportunities to enable greater cohesion and understanding among inter-and multi-disciplinary teams while earning a formal qualification in engineering.

Read less
This is a one year full-time or two year part-time postgraduate course designed to provide graduate engineers with specialist understanding in one of. Read more
This is a one year full-time or two year part-time postgraduate course designed to provide graduate engineers with specialist understanding in one of: Environmental Engineering; Structural Engineering; or Transport Engineering. In addition, the course offers students the opportunity to obtain knowledge in complimentary subject areas within Civil Engineering.

Course Organisation:

The MSc course can be undertaken as either a one year full-time or a two-year part-time postgraduate course.

The degree programme is divided into three parts: two semesters of taught courses (September - April inclusive) with an average of 12 lectures per week. A major dissertation is undertaken during the second half of the course (April - September inclusive).

It is possible to work full-time and do the course as a part-time option, providing you have the agreement of your employer.

Course Content:

Candidates must take eleven modules, namely the three mandatory modules (M1, M2 and M3) together with at least four of the modules in their chosen specialisation and four other modules, which in total amounts to 90 ECTS.

In the first semester, candidates pursuing the course full time must take modules M1 and M2 along with four other modules selected from options (including at least two from their selected specialisation), listed below. In the second semester, candidates pursuing the course full time must take module M3 along with four other modules selected from options (including at least 2 from their selected specialisation), also listed below:

Mandatory

M1. Civil Engineering Management (10 ECTS)

M2. Research Methodology (10 ECTS)

M3. (Environmental / Structural / Transport) Engineering Dissertation (30 ECTS)

Environmental Engineering

E1. Engineering Hydrology (5 ECTS)

E2. Environmental Monitoring and Assessment (5 ECTS)

E3. Environmental Processes and Technology (5 ECTS)

E4. Waste and Environmental Management (5 ECTS)

E5. Water Quality and Hydrological Modelling (5 ECTS)

E6. Water Resource Planning ( ECTS)

Structural and Geotechnical Engineering

S1. Geotechnical Engineering (5 ECTS)

S2. Advanced Structural Analysis (5 ECTS)

S3. Structural Dynamics and Earthquake Engineering (5 ECTS)

S4. Bridge Engineering (5 ECTS)

S5. Advanced Concrete Technology (5 ECTS)

S6. Soil-Structure Interaction (5 ECTS)

S7. A Unified Theory of Structures (5 ECTS)

S8. Concrete Durability and Sustainability (5 ECTS)

S9. Advanced Theory of Structures (5 ECTS)

Transport Engineering

T1. Transportation Engineering ( ECTS)

T2. Transport Modelling (5 ECTS)

T3. Highway Engineering (5 ECTS)

T4. Applied Transportation Analysis (5 ECTS)

Common

C1. Renewable Energy 1 (5 ECTS)

C2. Renewable Energy 2 ( ECTS)

C3. Modelling of Civil Engineering Systems (5 ECTS)

C4. Facade Engineering (5 ECTS)

C6. Construction Innovation and Research (5 ECTS)


Some of the module options in either semester may be withdrawn from time to time and some new modules may be included, subject to demand. In addition to passing the prescribed examinations, each student must submit a dissertation on an approved topic relating to their chosen specialisation.

Part Time Option:

For candidates taking the course part-time over two years, during the first year, candidates take seven modules, namely: the mandatory modules M1 and M2 along with five of the module options (including at least two from their chosen specialisation) which amounts to 45 ECTS. During the second year, candidates must complete the compulsory M3 module together with three other module options (including at least two from their chosen specialisation) which amounts to 45 ECTS. During the second year, candidates must complete the compulsory M3 module together with three other module options (including at least two from their chosen specialisation) which amounts to another 45 ECTS. By the end of the course, part-time candidates must have completed at least four of their specialisation module options and four of the other options, amounting to a total of 90 ECTS credits. The part time option runs in parallel with the full time course. Full and part time students attend the same lectures which are typically scheduled Monday-Friday, 9-5pm. During the teaching periods, students taking the part time option are typically required to attend 9-12 hours per week during year 1 and 3-6 hours during year 2.

Assessment:

Examination of course modules and completion of a Major Dissertation.

Read less
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. Read more
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. On completion of the course, you will be able to:

- show a thorough understanding of the principles and theoretical bases of modern manufacturing techniques, automation, and production processes
- identify appropriate manufacturing systems for different production requirements and analyse their performance
- apply appropriate technology, quality tools and manufacturing methodology to design, re-design and continuously improve the manufacturing operations of engineering companies
- plan, research, execute and oversee experiments and research projects, critically analyse and interpret data, and effectively disseminate results
- work effectively as a member of a multidisciplinary team, be self-motivated, able to work independently and demonstrate leadership

Visit the website: http://www.ucc.ie/en/ckr27/

Course Details

The course is 12 months in duration starting in September and consists of 60 credits in Part I from September to March, and 30 credits in Part II from June to September. You take 10 taught modules from the list below to the value of 50 credits and also undertake a preliminary research project (ME6019) worth 10 credits in Part I. If you obtain a minimum of 50% in the taught modules and the preliminary project, you will be eligible to progress to Part II and undertake a major four-month research project (ME6020) worth 30 credits, and submit a dissertation leading to the award of the MEngSc degree.

ME6001 Manufacturing Systems (5 credits)
ME6002 CAD/CAM (5 credits)
ME6003 Production Management (5 credits)
ME6004 Operations Research and Project Economics (5 credits)
ME6007 Mechanical Systems (5 credits)
ME6008 Mechatronics and Robotics (5 credits)
ME6009 Industrial Automation and Control (5 credits)
ME6010 Technology of Materials (5 credits)
ME6012 Advanced Robotics (5 credits)
PE6002 Process Automation and Optimisation (5 credits)
PE6003 Process Validation and Quality (5 credits)
PE6007 Mechanical Design of Process Equipment (5 credits)
PE6009 Pharmaceutical Engineering (5 credits)
CE3010 Energy in Buildings (5 credits)
CE4016 Energy Systems in Buildings (5 credits)
CE6024 Finite Element Analysis (5 credits)
EE4012 Biomedical Design (5 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page05.html

Format

Each module typically consists of 24 lectures, 12 hours of continuous assessment, plus additional supplemental reading and study, carried out over one of two 12-week semesters from September to December (Semester 1), or January to March (Semester 2). The exact workload in each teaching period will depend on the choice of modules. In addition, a substantial weekly commitment to the project module ME6019 is expected over both semesters.

Assessment

Individual modules have different methods of assessment but this typically consists of a single end-of-semester examination in December or April/May, plus continuous assessment throughout the relevant semester. This continuous assessment may consist of a combination of in-class tests, formal laboratories or practicals, design exercises, project work, written reports and presentations. Any repeat examinations are held in August.

Students who pass but fail to achieve an average mark of at least 50% across the taught modules excluding the Preliminary Research Project (ME6019) or do not achieve a mark of at least 50% in the Preliminary Research Project (ME6019) will be eligible for the award of a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems). Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems).

Careers

In response to increasing demand for highly skilled graduates in the field of mechanical engineering applied to the manufacturing and pharma-chem industries, this course will produce mechanical engineering postgraduates who are proficient in the development and realisation of modern manufacturing, process and automation systems. This is achieved through developing an understanding of the concepts of manufacturing systems, and the skills to analyse, design and implement manufacturing systems in practice. This is combined with an understanding of process automation and operational management. The course will equip you with an-up-to date knowledge of manufacturing techniques and processes.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MEngSc/PG Dip in Pharmaceutical and Biopharmaceutical Engineering are part-time modular degrees which can be taken over 24 months (for award of a Postgraduate Diploma) to 60 months. Read more
The MEngSc/PG Dip in Pharmaceutical and Biopharmaceutical Engineering are part-time modular degrees which can be taken over 24 months (for award of a Postgraduate Diploma) to 60 months. You will have the opportunity to gain a formal qualification in areas of particular concern to the bio/pharmaceutical industry that you may not have benefited from before, including issues such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design and validation.

Visit the website: http://www.ucc.ie/en/ckr35/

Course Details

The aim of this course is to fill a need for the continuing professional development (CPD) and postgraduate education of engineers working in the pharmaceutical industry. This course covers issues of particular concern to the pharmaceutical industry such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design, validation, etc.

Format

The MEngSc course is in two parts. Part I (which constitutes the PG Diploma) involves taking 12 modules to the value of ECTS 60 credits. Taught modules are offered on a cyclical basis. Six modules are taken per annum over a two year period if you opt for full registration, although the course can be taken over a maximum of five years. Part II consists of a research thesis to the value of 30 credits. The choice of modules is subject to the approval of the course coordinator.

Part I

Students take 60 credits from the following:

Offered in 2015/16
PE6010 Pharmaceutical Engineering (5 credits)
PE6011 Biopharmaceutical Engineering (5 credits)
PE6012 Pharmaceutical Process Equipment; Materials and Mechanical Design (5 credits)
PE6013 Powder and Particle Technology and Unit Operations (5 credits)
PE6014 Chemical Kinetics, Reactor Design and Bioreactor Engineering (5 credits)
PE6015Environmental Engineering in the Pharmaceutical Sector (5 credits)
PE6023 Pharmaceutical and Biopharmaceutical Utilities (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Offered in 2016/17
PE6016 Pharmaceutical Industry; Manufacturing and Optimisation (5 credits)
PE6017 Pharmaceutical Plant Design and Project Management (5 credits)
PE6018 Pharmaceutical Process Validation and Quality (5 credits)
PE6019 Process Analytical Technology (5 credits)
PE6022Aseptic Manufacturing Design (5 credits)
PF6302 Introduction to Pharmaceutics: Formulation Science (5 credits)
PE6024 Advanced Process Design & Safety Engineering (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Part II (MEngSc only):

PE6021 Dissertation in Pharmaceutical and Biopharmaceutical Engineering (30 credits)

These are subject to change. For full course information see programme website - http://www.ucc.ie/en/processeng/postgrads/taughtmasters/mengsc//

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page08.html

Assessment

Assessment is by continuous assessment and end of period exams.

Careers

The course offers graduates working in the pharmaceutical industry the opportunity to further develop your skills set and employability across a wider range of roles in the industry through enhanced continuing professional development.

Through the opportunities provided by participation on the programme, you are provided with opportunities to enable greater cohesion and understanding among inter-and multi-disciplinary teams while earning a formal qualification in engineering.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. Read more
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. The aim of the MEngSc (Electrical and Electronic Engineering) programme is to provide advanced coursework with options for a research element or industrial element, and additional professional development coursework. Students choose from a range of courses in Analogue, Mixed Signal, and RF Integrated Circuit Design, VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, Adaptive Signal Processing and Advanced Control. A range of electives for the coursework-only stream includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship

Visit the website: http://www.ucc.ie/en/ckr47/

Course Details

The MEngSc (EEE) has three Streams which include coursework only, coursework with a research project, or coursework with an industrial placement. Students following Stream 1 take course modules to the value of 60 credits and carry out a Minor Research Project to the value of 30 credits. Students following Stream 2 take course modules to the value of 60 credits and carry out an Industrial Placement to the value of 30 credits. Students following Stream 3 take course modules to the value of 90 credits, up to 20 credits of which can be in topics such as business, law, and innovation.

Format

In all Streams, students take five core modules from the following range of courses: Advanced Analogue and Mixed Signal Integrated Circuit Design, Advanced RF Integrated Circuit Design, Advanced VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, and Adaptive Signal Processing and Advanced Control. In addition, students following Stream 1 (Research Project) and Stream 2 (Industry Placement) carry out a Research Report. Following successful completion of the coursework and Research Report, students in Streams 1 and 2 carry out a research project or industry placement over the summer months.

Students who choose the coursework-only option, Stream 3, take additional courses in lieu of the project or placement. These can be chosen from a range of electives that includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship.

Assessment

Part I consists of coursework modules and mini-project to the value of 60 credits. These are assessed using a combination of written examinations and continuous assessment. Successful completion of the initial tranche of coursework modules qualifies the student to progress to Part II, the research project, industrial placement, or additional coursework to the value of 30 credits in the cases of Streams 1, 2, and 3, respectively.

Placement and Study Abroad Information

For students following Streams 1 and 2, research projects and industrial placements are normally in Ireland. Where the opportunity arises, a research project or work placement may be carried out outside Ireland.

Careers

MEngSc (Electrical and Electronic Engineering) graduates will have a competitive advantage in the jobs market by virtue of having completed advanced coursework in Electrical and Electronic Engineering and, in the case of Streams 1 and 2, having completed a significant research project or work placement.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The Electronic Engineering Department offers a structured Research Masters programme in Electronic Engineering. Read more

Overview

The Electronic Engineering Department offers a structured Research Masters programme in Electronic Engineering. The objective of this programme is to produce high quality graduates with the skills and advanced engineering knowledge to operate as independent researchers and take on leadership roles in research and development both in academia and in industry. Our structured approach to postgraduate education provides students with an excellent foundation in a variety of technical areas that are targeted towards the research area of the student combined with training in research, communication and business skills. We will also encourage engagement with the global research community, in academia and industry, through research visits, internships and attending conferences.

The structured Research Masters in Electronic Engineering is also offered by the Callan Institute. The Institute is focused on the use of information, computing and communications technologies to address challenges arising from our increasingly complex world – our communications and technology driven environment and the impact on our personal lives. The Institute’s area of expertise is in electronic and software systems, wireless communications and in data mining, knowledge extraction and cognition. As a group, we wish to blend focused basic research with a systems perspective that drives cross-disciplinary developments, essential in tackling the new challenges arising from the need for a more sustainable, knowledge-driven society. Innovation, and the transfer of the knowledge gained from our research, is a fundamental principle for the Institute.

A key element of achieving this is the construction of demonstrators and experimental platforms for demonstrating our achievements. We welcome engagement with all companies, local and international and we have demonstrated success in transferring knowledge and technology to assist new startup companies and product development. The Callan Institute provides research students with the skills and advanced engineering knowledge to operate as independent researchers and take on leadership roles in research and development.

Closing date:
Research applications are generally accepted at any time

Course Structure

Students must take a minimum of 10 credits in taught modules (at least 5 in generic/transferable modules and at least 5 in subject specific/advanced specialist modules) from the Structured PhD programme.

Career Options

The programme offered by Electronic Engineering provide students with an excellent foundation for a wide variety of careers. The core of the structured programme is the research programme that will be undertaken by the student. This will allow the student to gain deep insight and expertise in their specific focus area. In engineering, there is normally a strong correspondence between our research areas and career opportunities – be it in industry or continuing in the academic arena.

The taught element of the structured programme broadens the skills and perspective of the student with modules on entrepreneurship, communication and presentation skills. The experience our postgraduate research students will be enhanced by the Department’s excellent and in-depth relationships with industry partners nationally and internationally.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHJ04 Full-time
MHJ05 Part-time

All applicants to Research programmes must contact the Academic they wish to work with before applying to PAC. Please see the ‘Research Interests’ section for a list of academic staff and specialisms within the Department.

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

A Personal statement is required as part of the application process. Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Applicants may be required to attend for interview as part of the admissions process.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. Read more
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. This programme is open to Engineering graduates of all disciplines with an 8 month programme option leading to a Postgraduate Diploma in Sustainable Energy.

Visit the website: http://www.ucc.ie/en/ckr26/

Course Details

In Part I students take modules to the value of 50 credits and a Preliminary Research Report in Sustainable Energy (NE6008) to the value of 10 credits. Part II consists of a Dissertation in Sustainable Energy (NE6009) to the value of 30 credits which is completed over the summer months.

Part I

Students take 50 credits as follows:

NE3002 Energy in Buildings (5 credits)
EE3011 Power Electronic Systems (5 credits)
EE4010 Electrical Power Systems (5 credits)
NE3003 Sustainable Energy (5 credits)
NE4006 Energy Systems in Buildings (5 credits)
NE6003 Wind Energy (5 credits)
NE6004 Biomass Energy (5 credits)
NE6005 Ocean Energy (5 credits)
NE6006 Solar and Geothermal Energy (5 credits)
NE6007 Energy Systems Modelling (5 credits)

Depending on the background of the student, the Programme Coordinator may decide to replace some of the above taught modules from the following list of modules up to a maximum of 20 credits:

CE4001 The Engineer in Society (Law, Architecture and Planning) (5 credits)
EE3012 Electromechanical Energy Conversion (5 credits)
EE4001 Power Electronics, Drives and Energy Conversion (5 credits)
EE4002 Control Engineering (5 credits)
EE6107 Advanced Power Electronics and Electric Drives (5 credits)
ME6007 Mechanical Systems (5 credits)
NE4008 Photovoltaic Systems (5 credits)
PE6003 Process Validation and Quality (5 credits)

In addition, all students must take 10 credits as follows:

NE6008 Preliminary Research Report in Sustainable Energy (10 credits)

Part II

NE6009* Dissertation in Sustainable Energy (30 credits)

*must be submitted on a date in September as specified by the Department

Detailed Entry Requirements

Candidates must have a BE(Hons) or BEng (Hons) Degree or equivalent engineering qualification, with a minimum grade 2H2. However, candidates with equivalent academic qualifications and suitable experience may be accepted subject to the approval of College of Science, Engineering and Food Science. In all cases, the course of study for each candidate must be approved by the Programme Coordinator.
Candidates, for whom English is not their primary language, should possess an IELTS of 6.5 (or TOEFL equivalent) with no less than 6.0 in each individual category.

Candidates from Grandes Écoles Colleges are also eligible to apply if they are studying a cognate discipline in an ENSEA or EFREI Graduate School and are eligible to enter the final year (M2) of their programme.

Assessment

- Postgraduate Diploma in Sustainable Energy -

Students who pass but fail to achieve the requisite grade of 50% across the taught modules and the Preliminary Research Report will be eligible for the award of a Postgraduate Diploma in Sustainable Energy. Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Sustainable Energy.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This taught postgraduate programme offers an exciting range of modules in topical electronic sciences combined with a state-of-the-art engineering facility. Read more

Overview

This taught postgraduate programme offers an exciting range of modules in topical electronic sciences combined with a state-of-the-art engineering facility. Most programme modules can be taken online, on campus, or a mixture of both providing great flexibility to learners.

Course Structure

Post Graduate Diploma Programme comprising: 60 Credit Taught Modules (7.5 credits each) 8 Taught Modules completed over two semesters. Approximately 3 hours of lectures per week per module. It may be possible to progress to the ME programme, subject to satisfying certain academic requirements and availability of places on the ME programme.

As module availability may change year on year, applicants should check the Department web site for the most up to date list of modules available for 2016-2017, see web address below:

https://www.maynoothuniversity.ie/electronic-engineering/current-students

Career Options

Engineering graduates will enhance their qualifications and update their knowledge of modern cutting-edge techniques and technology. For science graduates it is an excellent transition into the Electronic Engineering disciplines.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHJ52 Full-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Applicants may be required to attend for interview as part of the admissions process.

Applicants who do not hold a degree in Electronics, Electrical, Computer or Telecommunication Engineering should include a complete syllabus describing the content of their primary degree.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
There is a great need for suitably qualified engineers to fulfill the existing and future needs of the global smart economy. This course addresses that need by providing an exciting range of topical modules and a state-of-the-art engineering facility. Read more

Overview

There is a great need for suitably qualified engineers to fulfill the existing and future needs of the global smart economy. This course addresses that need by providing an exciting range of topical modules and a state-of-the-art engineering facility. The programme also offers the student a chance to develop their research skills in a full-time three month project.

In the world of increasingly connected things and people, electronic engineers develop the technology that is the interface between the digital and the physical worlds. With the increasing pervasiveness of electronics enhanced things, and the need for ever-present wire-free communication, there is an increasing demand for engineers with experience in wireless communications systems and embedded computing systems.

The internet of things will lead to billions of wirelessly connected devices that will fundamentally change our approach to wireless systems and networks. To address this, there is a need for well qualified graduates who can design solutions based on solid understanding of the wireless environment and electronic hardware.
Similarly, as we continue to embed intelligence in everything from home appliances to cars and wearable sensors to robotic systems, there is growing need for engineers who understand the unique problems of real time application deadlines, resource constrained computing environments, and embedded intelligence.
The ME Electronic Engineering has been designed to provide two specialized module sets that introduce advanced techniques and topical content: one focusing on wireless communications and the other on embedded systems. These are supported by core modules which provide techniques that are widely applied and reusable across a range of engineering applications.
The programme has been designed to have a large project element to allow students to demonstrate their expertise in their chosen specialism. In addition students will be invited to present their work in an open day to invited local industry leaders. A small number of placements may be available for students graduating in 2016 (to be confirmed).

Course Structure

Note: As module availability may change year on year, applicants should check the Department web site for the most up to date list of modules available for 2016-2017, see web address below:

https://www.maynoothuniversity.ie/electronic-engineering/current-students

Career Options

Graduates will have enhanced qualifications and up to date knowledge of modern cutting-edge techniques and technology suitable for a range of electronic and ICT positions in the smart economy.

Graduates of this course are well qualified to work in wireless communications and embedded systems space. Both of these areas are seeing business growth and, despite the demand, both areas are experiencing a shortage of suitably skilled engineers. Therefore this programme will significantly enhance your job prospects in these fields.
The region around Maynooth and the Greater Dublin Region is host to one of the greatest concentrations of ICT companies – ranging from large multinational companies such as Intel, IBM and Google to a very active and strong ecosystem of specialist and start-up companies. Maynooth University is at the heart of this industry and this programme will provide opportunities for students to engage with the community.
As a result of the advanced techniques introduced and the substantial project, this programme also provides a suitable foundation for students who may be considering undertaking further research in the area of the internet of Things, embedded systems and wireless communication.
International students from outside the European Economic Area may also avail of the Third Level Graduate Scheme which allows graduates to remain in Ireland for up to 12 months after graduation to seek employment and if successful to apply for a Work Permit or Green Card Permit.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHJ50 Full-time


The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Applicants may be required to attend for interview as part of the admissions process.

Applicants who do not hold a degree in Electronic, Electrical, Computer, or Telecommunications Engineering should include a complete syllabus describing the content of their primary degree.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
The MSc is a 12-month, 90 ECTS Level 9 Masters in Mechanical Engineering. This 90 ECTS programme includes a substantial 30 ECTS research project, complemented by 60 ECTS of modules (including 10 ECTS of optional modules). Read more
The MSc is a 12-month, 90 ECTS Level 9 Masters in Mechanical Engineering. This 90 ECTS programme includes a substantial 30 ECTS research project, complemented by 60 ECTS of modules (including 10 ECTS of optional modules). The research project is directly supervised by a member of academic staff for the full 12-month period on a selected industry or research topic and is assessed on the basis of a written thesis. The modules focus on advanced engineering research methods and technology, where students will combine design, computational methods and modelling, as well as experimental testing and prototyping activities, utilizing state-of-the-art research facilities in the New Engineering Building in NUI Galway. Over two semesters, students will take a total of 10 mandatory advanced modules in mechanics, materials, and applied mathematics for engineering and research methods. In addition, students will choose 2 further modules from a choice of 9 specialist modules including turbo machines, offshore engineering and advanced energy systems.

Read less
The Diploma is a one-year postgraduate course designed to provide civil engineers and other suitably qualified graduates with a sound knowledge of present day practice in environmental engineering. Read more
The Diploma is a one-year postgraduate course designed to provide civil engineers and other suitably qualified graduates with a sound knowledge of present day practice in environmental engineering. The course has special relevance for local authority engineers but it has also been designed for those in the private sector who have a particular interest in environmental management with a particular emphasis on measures of quantitative assessment. Topics covered in the course include air quality, noise, hydrological processes, water and wastewater treatment, solid and toxic waste management, fire safety engineering and environmental monitoring and control. Environmental Impact Studies and analysis of risk, as an inherent part of infrastructural development, are also considered. This course has been approved by Engineers Ireland as meeting its requirements for continuing professional development.

Course organisation:

Lectures are normally held on Friday evening 7 - 10 p.m. and Saturday morning 9.30 a.m. - 12.30 p.m. each week throughout the two semesters (September to April). In addition to attending lectures, participants are required to submit coursework as part of the students' assessment.

Course content:

Environmental legislation, EIA and EIS

Hydrology for environmental management

Water and wastewater engineering

Air quality and noise monitoring and management

Solid and hazardous wastes

Fire safety engineering

Renewable energy

Special topics including water borne diseases, radiation hazards

Assessment:

The award of a Postgraduate Diploma in Environmental Engineering is based on a combination of the results of two examination papers and coursework. Each paper constitutes one third of the overall assessment. The mark for the coursework also constitutes one third of the overall grade. Students must pass each paper and the coursework element independently; there is no system of compensation. The pass mark for the examination papers is 40%. A Distinction is awarded to those who obtain an overall average mark of 70% or over in both the coursework and two papers combined at the summer examination. The Diploma awarding ceremony takes place in November.

Recommended texts:

Extensive notes are provided by individual lecturers, who may also recommend texts.

Read less
The Masters Degree in Electronic Engineering provides tuition and practice in state of the art technology areas such as wireless communications, nanotechnology, mixed-signal IC design. Read more
The Masters Degree in Electronic Engineering provides tuition and practice in state of the art technology areas such as wireless communications, nanotechnology, mixed-signal IC design. It will extend the student's capabilities in a number of established topic areas, e.g. semiconductor engineering and digital communication systems.

A module entitled Mathematical Modelling will enhance the analytical skills of students while important engineering management skills will be dealt with in the Technology Management module. The programme is designed to develop the student's knowledge and skills through a study programme which links theory and practice.

The programme will also provide students with experience of carrying out post-graduate level research in selected topic areas. The Masters degree requires successful completion of ten compulsory modules and two out of four elective modules. The student must also complete an applied programme consisting of the design project plus dissertation, the mini-project and the workshop seminar series.

Typical career opportunities for graduates of this programme can be found in the following industry sectors;
- computer engineering,
- computer networking,
- telecommunications,
- semiconductor devices,
- IC circuit design,
- analogue and digital system design,
- and many others.
Typical job functions include Design Engineer, Research Engineer, Project Engineer, Project Manager, Technical Manager.

Read less
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. Read more
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. The course is particularly suited to engineers involved in the provision, preservation and operation of highways, but it is open to all those holding a degree or equivalent in Civil Engineering or any other relevant branch of engineering.

The topics covered include: transportation economics; highway planning and programming and route selection; survey methods and instrumentation; computer applications in local authorities; construction law; transportation modelling; theory of traffic flow; impacts of road traffic facilities; traffic: methods for planning, capacity analysis and design; traffic control and management; design of flexible and concrete pavements; pavement maintenance and rehabilitation; surface and sub-surface drainage; bridge design and management; quality assurance plans for road schemes; descriptions of soils and rocks; earthworks technology; stability of fills, slope stability; construction of embankments on soft ground; procurement of civil engineering works; road asset management plans; environmental impact assessment.

Lectures are normally held on Friday evening and Saturday morning each week throughout the two semesters (September to April).

Read less

Show 10 15 30 per page



Cookie Policy    X