• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Reading Featured Masters Courses
Cranfield University Featured Masters Courses
University of London International Programmes Featured Masters Courses
0 miles
Geology×

Masters Degrees in Industrial Geology

We have 25 Masters Degrees in Industrial Geology

Masters degrees in Industrial Geology offer advanced study of geological and geotechnical processes relevant to industries such as construction and mining.

Related subjects include Mining Geology, and Applied Environmental Geology. Entry requirements normally include an appropriate undergraduate degree such as Geology or Structural Engineering.

Why study a Masters in Industrial Geology?

Read more...

  • Geology×
  • Industrial Geology×
  • clear all
Showing 1 to 15 of 25
Order by 
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. Read more
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. It is suitable for those who already have an honours degree in geology, mining/minerals engineering or a related subject.

You will attain a comprehensive understanding of the role of a geoscientist working in the mining industry. New skills include underground geological and geotechnical mapping, surveying, mineral exploration, ore microscopy, ore deposit modelling and mine planning. In-depth coverage of mineral resource estimation and grade control, mineral extraction and management, mining law and the environmental impact of mining, enable skills in quantifying the economic value of an ore body and assessing its potential for exploitation to be attained. There is emphasis on acquiring knowledge of the geological characteristics and genesis, methods of exploration, extraction and processing techniques of the major types of metalliferous ore deposit, bulk commodities and industrial minerals.

Taught modules are presented over two semesters and individual projects are undertaken throughout the summer vacation, often as industrial placements with a mining/exploration company. Recent projects have been carried out in all major mining countries on six continents, including Australia, Tanzania, Mongolia, Chile as well as in the UK.

Programme Structure

You will study 180 credits to obtain an MSc and 120 credits for a PgDip

Compulsory modules

The compulsory modules can include; Research Project and Dissertation; Resource Estimation; Ore Deposit Geology and Industrial Minerals; Techniques in Mining Geology ; Excavation and Geomechanics ; Economics, Processing & Environment

Optional modules

Some examples of the optional modules are; Advanced Techniques for Mineral Analysis and Mine Wastes: Principles, Monitoring and Remediation.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

Formal teaching ends in late April/May with a field excursion to examine the geology and visit mines in an area of the world famous for its mining activity. Extensive use is made of Camborne School of Mines' underground mine facilities, laboratories, mineral processing pilot plant, and the superb field geology and extractive industry operations in South West England.

Read less
Professional geologists working in consultancies, regulatory authorities and government environmental agencies are required to apply a wide range of transferrable skills to their jobs. Read more
Professional geologists working in consultancies, regulatory authorities and government environmental agencies are required to apply a wide range of transferrable skills to their jobs. Candidates who are able to demonstrate skills in public engagement, communication, professional research and report-writing, in addition to academic knowledge and field skills, are therefore highly sought after in these professions.

This full-time MSc Applied Environmental Geology is part taught and part professional project. We aim to develop your transferrable skills in a professional context and give you a head start in the geology profession of your choice or starting a PhD.

Distinctive features:

• Our location in South Wales provides us with a wide range of highly relevant geoenvironmental and geotechnical locations, which we visit during fieldtrips and use in case studies.

• Embed your skills in professional practice through a five month professional project, usually as part of a placement.

• Strong links with industry and government agencies ensure the quality and relevance of the course, and give you the opportunity to make contacts.

• Fully integrated with the professional development (CPD) lecture programme of the Southern Wales Group of the Geological Society of London.

Structure

There are two stages to the MSc Applied Environmental Geology.

Stage 1 lasts for 7 months (September – April), where you will complete taught modules and fieldwork, with significant contributions from industry professionals.

In these modules, we will investigate general themes, such as the principles of geotechnical engineering and geophysics. We will also look into environmental themes in more depth including land contamination, environmental regulation, behaviour of soils and water.

If you pass Stage 1 you will progress onto Stage 2, which is a 5-month professional project from May to September culminating in a dissertation. We will, wherever possible, offer you an industrial placement with a professional company either in the UK or overseas over the summer to complete your project.

For the first seven months, from September to April, you will complete taught modules and fieldwork at Cardiff University. After this, you will progress onto a 5-month placement in the UK or overseas where you will undertake a professional project and complete your dissertation.

Core modules:

Project Planning, Design and Management For Applied Environmental Geology
Geotechnical Engineering
Engineering Behaviour of Soils
Contaminated Land
Environmental Assessment and Regulation
Remote Sensing and Applied Geophysics
Transferable Skills
Water in the Environment
Dissertation AEG

Optional modules:

Environmental Geology/Hydrogeology Report

Teaching

The methods of teaching we employ may vary from module to module. Generally we teach using a mixture of lectures, practical work and fieldwork. We also have a series of lectures with invited speakers from across the profession, as well as strong links with the Geological Society.

On the course, you will undertake laboratory work in several modules. This includes standard laboratory tests covering the physical and mechanical properties of soils, and water flow experiments to learn hydrologic and hydrogeologic concepts.

You will also develop your knowledge of numerical tools to model real-world geotechnical problems. Application software, such as CorelDraw, Surfer, ArcGIS, as well as professional geoengineering software, such as Rockscience and Landsim, are used throughout the course.

Throughout the course we encourage communication and teamwork. For example, we may ask you to work in teams in laboratories and on field-trips. Our project training includes skills in supervision and co-ordination of a range of tasks designed to address specific geotechnical and geoenvironmental problems.

Assessment

We use a wide range of assessment methods, depending on the module. These include exams, coursework, presentations, practical assessment, your industrial placement and dissertation (20,000 words).

Placements

You will undertake a professional placement in industry as part of the second stage of the course. This placement will last for 5 months (May - September), during which you will undertake a research project and complete your dissertation.

We endeavour wherever possible to place students with industrial partners. This placement can be located in the UK or overseas as long as the project is deemed to be logistically safe and academically viable.

Fieldwork

South Wales provides a wide range of highly relevant geoenvironmental and geotechnical case studies and site visits. These include site visits to the Cardiff Bay Barrage, acid mine drainage from abandoned mines and active landslides in the south Wales Valleys. Field work includes surveying skills, rock engineering to the Rhondda Valley and Cardigan, site investigation visits to the Mumbles, Bournville landslide, as well as contaminated land studies at Barry Docks and Bryn Pica landfill site. All fieldwork on this course is compulsory.

Career prospects

Our graduates are widely sought after in industry and often have an advantage in the job market, due to the applied nature of the course and the transferrable skills they have been equipped with.

Following this degree you may choose to work in consultancy, regulatory authorities or government environmental agencies across the world. You may also decide to conduct further research and complete a PhD.

Former students can be found working for the likes of Network Rail, Mott McDonald, Natural Resources Wales, Environment Agency England, WSP, Ove Arup, Atkins and numerous other specialist geo-environmental consultancies and agencies based around the UK.

Read less
The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment. Read more

Why take this course?

The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment.

This course is designed to provide you with the particular expertise required for dealing with contaminated sites. Such expertise is essential to ensuring we maintain habitable, safe and sustainable communities.

What will I experience?

On this course you can:

Use our state-of-the-art geological and geotechnic labs for practical work
Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by recognised experts with extensive knowledge in groundwater hydrology, environmental geology and contaminated land

What opportunities might it lead to?

We will give you the knowledge and practical skills to ensure an interesting and rewarding career in the specialist area of contaminated land consultancy, regulation and remediation, both in the UK and overseas.

Here are some routes our graduates have pursued:

Environmental organisations
Geotechnical consultancies
Mining companies
Local authorities
Government agencies

Module Details

You can opt to take this course in full-time or part-time mode. The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

This course covers a mixture of topics including: groundwater hydrology, geochemistry, site investigation, geotechnics and contaminated land assessment.

Here are the units you will study:

Soil Mechanics: This unit is fundamental to understanding how contaminants behave and migrate in the ground. You will gain an advanced understanding of the geo-mechanical behaviour of soils, including the description and testing of soils to UK and international standards.

Desk Studies and Ground Models: These are an integral part of any contaminated land assessment. You will have training in the development of geological ground models and geomorphological terrain models through desk studies, walk-over surveys and site investigation.

Ground Investigation Techniques: You will gain advanced knowledge of ground investigation using invasive techniques, in-situ tests and geophysical methods.

Contaminated Land Risk Assessments: You will learn key techniques for site assessment, analytical testing and risk assessment.

Field Reconnaissance and Walk-Over Survey: This unit covers techniques which are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn integration and analysis of spatial datasets using GIS and interpretation of aerial photography and satellite imagery - key tools for terrain evaluation.

Independent Research Project: This provides an opportunity for you to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, workshops and practical laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Essays
Laboratory reports

Student Destinations

Contaminated land is listed as one of the key areas in which the UK has a skills shortage. This fact, combined with the vocational nature of this course, means that you will be in high demand from employers looking for newly qualified contaminated land specialists. You will find the majority of such roles in the environmental consultancy sector.

This course will provide you with a variety of transferable skills such as project planning, literature and data reviewing, report writing, along with the more general skills of presentation, communication and so on. It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
Study petroleum and subsurface geoscience in Ireland and benefit from a modern interdisciplinary training delivered by leading researchers and industry specialists at University College Dublin. Read more

Study petroleum and subsurface geoscience in Ireland and benefit from a modern interdisciplinary training delivered by leading researchers and industry specialists at University College Dublin.

UCD School of Earth Sciences provides a one-year full-time Petroleum Geoscience MSc. The course offers bright and motivated geoscience graduates a vocational training in the range of technical fields associated with hydrocarbon exploration and production, as a prelude to a career in the petroleum industry or to further studies at PhD level.

 

The UCD training experience:

·        Covers all aspects of exploration, appraisal and development geoscience from pore to basin scale.

·        Involves substantial field-based instruction (23 days) in classic outcrop locations including the Clare Basin, Ireland; Bristol Channel, UK; Pyrenees, Spain.

·        Provides first-hand experience of typical industry workflows, experience with key industry software and a dedicated workstation for each student during the course.

·        Involves problem-based learning drawing on a wide range of geophysical, subsurface, outcrop and ‘behind-outcrop’ datasets.

·        Includes a three-month applied research project and possible industry placement.

 Scholarships Available

Students accepted on to the course can apply for the Woodside Energy Masters Scholarship in Petroleum Geoscience (€15,000) and MSc Scholarship Opportunities in Petroleum-Related Courses from the Department of Communications, Climate Action and Environment (up to €12,000). Please see here for further details.

Career opportunities

Graduates from the course will be equipped with all the necessary technical and transferable skills for a career in the petroleum industry or further studies at PhD level. Past students have found employment with exploration and production companies (including Shell, Petronas and Providence). Ireland is an EU country, and has a 24-month stay-back option allowing non-EU MSc graduates to remain in Ireland, working or seeking employment, for two years following graduation.

Course Content

Semester 1 covers modules in Petroleum Systems, Basin Analysis and Modelling, Seismic Techniques, Petrophysics, Depositional Systems and Structural Geology.

Semester 2 then focusses on Exploration Geology and Production Geoscience with team-based exercises mimicking industry asset-team projects. Geological field excursions are a key component of the course with three trips to see classic outcrops of the Clare Basin (western Ireland), Bristol Channel and Wessex Basins (southern England) and the Ebro Basin (Pyrenees, Spain).

During the final semester students undertake a three-month independent research project on an exploration or development related theme with opportunities for summer internships working on company data. 

 

Staff

The course builds on significant in-house research expertise in frontier exploration, rift and hyper-extended basin evolution, reservoir sedimentology, geophysical imaging techniques, fault analysis and reservoir and fluid flow modelling. Teaching is delivered by highly experienced academic staff, many of who have previously worked within industry and are recognised international leaders in a variety of petroleum geoscience disciplines.

 

UCD School of Earth Sciences

The UCD School of Earth Sciences has an internationally recognised reputation for excellence in teaching and research. It is the lead participant and host for the Irish Centre for Research in Applied Geosciences (iCRAG) which conducts research in hydrocarbons, geophysics, 3D modelling and marine geoscience, as well as in geochemistry, geophysics, groundwater and raw materials.

Founded in 1854, University College Dublin is Ireland’s Global University with 235,000 alumni across 165 countries. The university is ranked number 1 in Ireland for Earth & Marine Sciences (QS World University Subject Rankings 2017‌). 

 

How to Apply?

Application can be made via the UCD webpage here. There is a rolling deadline for this course until such time as all places have been filled; therefore early application is advised. Course entry will generally require a minimum 2.1 Honours degree or equivalent in Geology, Geoscience, Earth Science, Geophysics or a cognate discipline but relevant industrial experience will also be taken into account.

Click here to visit the MSc Petroleum Geoscience page on the University College Dublin website to find out more and apply!



Read less
This programme will provide you with the necessary training and skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. Read more
This programme will provide you with the necessary training and skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. It also provides specialist knowledge in tunnel, surface and underground excavation design, and applied hydrogeology and risk assessment.

Taught modules take place at the Camborne School of Mines(CSM) over two semesters and individual projects are undertaken throughout the summer, often as industrial placements. The programme is suitable for geology and engineering graduates wishing to specialise in applied geotechnics.

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include; Project and Dissertation; Excavation and Geomechanics; Health and Safety in the Extractive Industry and Project Management

Optional modules

Some examples of the optional modules are; Resource Estimation; Economics, Processing & Environment; Hydrogeology; Surface Excavation Design; Tunnelling and Underground Excavation; Production and Cost Estimation; Mine Planning and Design; Geomechanics Computer Modelling for Excavation Design and Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

The project is undertaken from June to September, after the second semester examinations. You are encouraged to undertake projects directly linked with industry, which may result in industrial placements for the project period. The projects are normally design-based and allow further specialisation in a topic that is of particular interest to you. This could involve the use of state-of-the-art engineering design software, risk and hazard analysis and other analytical techniques.

Read less
Overview. Our MSc in Geoscience Research is a research-focused postgraduate taught master's course with industry and international placement opportunities designed for a career in research, academia or a discipline related work setting. Read more

Overview

Our MSc in Geoscience Research is a research-focused postgraduate taught master's course with industry and international placement opportunities designed for a career in research, academia or a discipline related work setting.

The course consists of six modules spread over three semesters, including an extensive research project in geoscience, environmental science or physical geography.

Project areas range from applied and environmental geophysics to igneous petrology, volcanology, Quaternary environments, palaeoclimates, palaeoceanography, biogeochemistry, landscape ecology, sedimentology, palaeontology, renewable and alternative energy, and petroleum geoscience.

A distinct feature of this master’s programme is the opportunity for UK students to complete a placement at one of several European, North American and Asian partner institutions, all of which have established research links with Keele staff. However, as a UK student, you can also choose to carry out your research project here at Keele or in collaboration with local or UK-based industry. As an international student, you will undertake your research and placement at Keele University under the supervision of international experts in their chosen research area.

The emphasis on the substantial ‘hands on’ research training with the provision of an international placement option makes this programme unique within the Higher Education Sector in the UK and will thus increase your employability. We believe that this will help to develop future employees with an international outlook.

The MSc Geoscience Research programme at Keele offers the added value of the Distinctive Keele Curriculum (DKC), which develops students' intellectual, personal and professional capabilities (Keele Graduate Attributes) through both subject-specific and generic workshops and activities.

See the website https://www.keele.ac.uk/pgtcourses/geoscienceresearch/

Course Aims

The principal aim of this Masters course is to develop your generic and specific research skills in an area of the Geosciences or related scientific disciplines, which will enhance your employment prospects. On completion of the programme you will:

- Have a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the forefront of the chosen research area in Geosciences;

- Gain a conceptual understanding to evaluate critically current research and advanced scholarship in the discipline area;

- Be able to evaluate methodologies and develop critiques of them and, where appropriate, to propose new hypotheses;

- Possess developed scientific skills and knowledge, and transferable skills, in a UK-based or international workplace setting;

- Have a comprehensive understanding of techniques applicable to your own research;

- Attain organisational and commercial awareness.

For those students undertaking a placement/research project in Europe the work and achievement on the programme will be documented in the EU Europass, a record of achievement signed by all parties. All students are required to pursue the University’s ‘Realise’ scheme which enables them to identify their personal and professional skills and development needs.

Course Content

The MSc programme is full-time for 12 months, starting in September.

The programme comprises six modules including a research project/placement which is undertaken either at Keele University or on placement with a host institution overseas:

- Research Skills (30 credits)

- Literature Review (15 credits)

- Modern Language Module* or Academic English for Postgraduate Students** or Geoscience Option Module*** (15 credits)

- Research Project Design and Management (30 credits)

- Dissertation (90 credits)

*Students undertaking their research project at a host institution overseas will choose a modern language module or a language and culture module for their international placement.

**International students for whom English is not their first language will take Academic English for Postgraduate Students to further improve their English language skills.

*** UK/Native English speaking international students undertaking their research project at Keele University or a host institution in the UK can take a selected Geoscience option module relevant to their research area. These may include: Natural Hazards; Glaciers & Glacial Geomorphology; Global Environmental Change; Water Resources; Hydrological & Engineering Geology; Structure and Geodynamics; Economic Geology; Advanced Topics in Sedimentology; Exploration Geophysics for the Hydrocarbon Industry; Petroleum Geology; Volcanic and Magmatic Processes.

Teaching & Assessment

You will be taught by experienced, well qualified and enthusiastic staff. All of the staff are research active within the discipline, accomplished at working on research funded work both nationally and internationally. The programme team are enthusiastic to share their teaching, research and professional experience to help you achieve success in your studies.

You will complete formal assessment on all modules. Assessments will include presentations, reflective diary, reports, reviews, portfolio and a dissertation. During your placement this will include keeping an extensive record of the training attended and skills obtained, with a reflective report (for the research training portfolio), as well as a dissertation on the project undertaken during the placement.

The research project/dissertation is based on the submission of a 20,000-25,000 word report that is undertaken in conjunction with an academic supervisor and, where appropriate, an industrial collaborator.

Additional Costs

There will be additional costs in terms of living expenses, travel and insurance related with the placement if you choose to undertake your research project with an overseas host institution. The amount required will be dependent on the cost of living associated with certain countries.

UK Students choosing a placement research project in an EU member state will be eligible to apply for an ERASMUS scholarship.

Employment Case Studies

Our research-focused course with industry and international placement opportunities leads our graduates into a diverse range of careers.

Our students have chosen careers in research, academia or a discipline related work setting, including geotechnical and environmental consultancies, and local, regional, national or multi-national corporations.

For examples of what graduates are doing now, see here - https://www.keele.ac.uk/gge/applicants/postgraduatetaughtcourses/mscgeoscienceresearch/employmentcasestudies/

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/



Read less
This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes. Read more

Why take this course?

This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes.

You will be fully trained by internationally recognised experts in hazard identification, terrain evaluation techniques as well as hazard modelling and risk assessment techniques. Providing you with the essential skills to monitor, warn and help control the consequences of natural hazards.

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, hazard modelling and mapping, soil mechanics and rock mechanics, contaminated land, flooding and slope stability.

Here are the units you will study:

Natural Hazard Processes: The topic of this unit forms the backbone of the course and give you an advanced knowledge of a broad range of geological and environmental hazards, including floods, landslides, collapsible ground, volcanoes, earthquakes, tsunamis, hydro-meteorological and anthropogenic hazards. External speakers are used to provide insights and expertise from an industry, regulatory and research perspective.

Numerical Hazard Modelling and Simulation: This forms an important part of the course, whereby you are trained in the application of computer models to the simulation of a range of geological and environmental hazards. You will develop skills in computer programming languages and use them to develop numerical models that are then used to simulate different natural hazard scenarios.

Catastrophe Modelling: On this unit you will cover the application of natural hazard modelling to better understand the insurance sector exposure to a range of geological and environmental hazards. It includes external speakers and sessions on the application of models for this type of catastrophe modelling.

Volcanology and Seismology: You will gain an in-depth knowledge of the nature of volcanism and associated hazards and seismology, associated seismo-tectonics and earthquake hazards. This unit is underpinned by a residential field course in the Mediterranean region that examines the field expression of volcanic, seismic and other natural hazards.

Flooding and Hydrological Hazards: These are a significant global problem that affect urban environments, one that is likely to increase with climate change. This unit will give you an in-depth background to these hazards and opportunities to simulate flooding in order to model the flood hazard and calculate the risk.

Hazard and Risk Assessment: This unit gives you the chance to study the techniques that are employed once a hazard has been identified and its likely impact needs to be measured. You will have advanced training in the application of qualitative and quantitative approaches to hazard and risk assessment and their use in the study of different natural hazards.

Field Reconnaissance and Geomorphological Mapping: These techniques are integral to the course and an essential skill for any graduate wishing to work in this area of natural hazard assessment. On this unit you will have fieldwork training in hazard recognition using techniques such as geomorphological mapping and walk-over surveys, combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn how to acquire and interpret aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS – all key tools for hazard specialists.

Geo-mechanical Behaviour of Earth Materials: You will train in geotechnical testing and description of soils and rocks to the British and international standards used by industry.

Landslides and Slope Instability: This unit will give you an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Impacts and Remediation of Natural Hazards: You will cover a growing area of study, including the impact of hazardous events on society and the environment, and potential mitigation and remediation methods that can be employed.

Independent Research Project: This provides you with an opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Student Destinations

This course provides vocational skills designed to enable you to enter this specialist environmental field. These skills include field mapping, report writing, meeting deadlines, team working, presentation skills, advanced data modelling and communication.

You will be fully equipped to gain employment in the insurance industry, government agencies and specialist geoscience companies, all of which are tasked with identifying and dealing with natural hazards. Previous destinations of our graduates have included major re-insurance companies, geological and geotechnical consultancies, local government and government agencies.

It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
Please visit the . school website.   for detailed information about the course. Teaching and learning. Please vist the  . Read more

Please visit the school website  for detailed information about the course.

Teaching and learning

Please vist the  school website  for further information.

Course unit list

The course unit details given below are subject to change, and are the latest example of the curriculum available on this course of study.

Scholarships and bursaries

Please visit the school website for information on funding opportunities.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The petroleum industry is the largest employer of earth science graduates, with good employment prospects in the United Kingdom and overseas in oil companies, consultancies, service companies, government bodies, the financial sector, and in teaching and research. During the research project students normally have the opportunity to work within sponsor oil company offices, gaining valuable industrial experience. The MSc course has a very strong track record for employability.

In semester 1, we typically have oil companies visiting the School to provide careers information and seek applications (typically BG, BP, Shell, ConocoPhillips, Exxon, Hess, Talsiman, Neftex, Fugro etc). Some also interview in the University. This is in addition to the University career fairs and other employment events.

Petroleum Geoscience and Engineering at the University of Manchester has well-established links with the petroleum industry. Research is funded by a large number of international oil companies. Guest speakers are invited on a regular basis to the department. There is also an AAPG Student Chapter , PESGB Student Chapter, SPE Chapter and EAGE Chapter, which arrange meetings throughout the year.

Many of the academic staff teaching on the course have considerable petroleum industry experience or consult for the oil industry. In addition the teaching team has a very strong group of external lecturers, who are all active consultants or employees in the petroleum industry, and who bring considerable expertise and industrial links.

BP staff teach on the course, Shell teaches the Malampaya oil game which offers an insight into the industry.



Read less
The degree is the leading Master's programme in remote sensing and environmental mapping available in the UK. Read more

The degree is the leading Master's programme in remote sensing and environmental mapping available in the UK. It offers the opportunity to study at an advanced level the ways in which remote sensing from ground-based to spaceborne platforms may be used to collect environmental information about the terrestrial biosphere, atmosphere, oceans and cryosphere at a range of scales and across wavelengths.

About this degree

Students develop an all-round knowledge of remote sensing, mapping and data analysis. including fundamental principles, current technological developments and applications to local, regional and global problems. They gain highly developed, marketable practical skills to enable them to take leading roles in academic, government and industrial sectors.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules in term one (60 credits), four optional modules in term two (60 credits) and a research project in term three (60 credits).

A Postgraduate Certificate (60 credits), full-time 12 weeks, flexible study up to two years is offered.

Core modules

  • Analytical and Numerical Methods
  • Scientific Computing
  • Geospatial Science* subject to approval
  • Principles and Practice of Remote Sensing

Optional modules

  • Terrestrial Carbon: Modelling and Monitoring
  • Global Monitoring of Environment and Society
  • Airborne Data Acquisition
  • Image Understanding
  • Ocean and Coastal Zone Management
  • Terrestrial Data Acquisition
  • Climate Modelling

Dissertation/report

All students undertake an individual research project. The department has links with industry, and projects may be carried out in collaboration with organisations outside UCL.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, individual and group coursework, and compulsory computer training. Student learning is supported by tutorials, transferable skills training and research supervision throughout the year. Assessment is through unseen written examinations, coursework, dissertation and an oral presentation.

Further information on modules and degree structure is available on the department website: Remote Sensing and Environmental Mapping MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates find jobs in diverse companies: from consultancies carrying out environmental and spatial analysis through to major international geospatial companies, or government and government-affiliated agencies. The programme is also suitable training for those wishing to undertake higher level work as a prelude to a PhD in a quantitative environmental discipline.

Recent career destinations for this degree

  • Remote Sensing Analyst, British Antarctic Survey
  • Remote Sensing Service Provider, Jacques Malaprade.
  • Research Scientist, National Physical Laboratory
  • Image Analyst, Civil Service
  • PhD in Geography, University of Cambridge

Employability

The range of generic, transferable skills provided by the degree programme are attractive to a range of employers. Students gain a fundamental understanding of the key principles of remote sensing, mapping, environmental data handling and analysis, as well as the ability to communicate their ideas. Such skills and knowledge are applicable across a wide range of careers. The long heritage of the programme - over 30 years - and its interdisciplinary, intercollegiate nature provides students with a unique perspective, not just from UCL, but across the wider world of remote sensing, mapping and environmental science.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The MSc is run by UCL Geography, which enjoys an outstanding reputation for its research and teaching, and has a long pedigree in producing highly employable graduates for industry, research, policy and many other areas.

A distinctive feature of the programme is its intercollegiate nature which exposes students to a range of university departments and expertise across fields including terrestrial vegetation and carbon stocks, solid earth and geology, fire impacts, new sensor technology and ocean processes.

The degree is integrated with other Geography MSc programmes providing greater flexibility when choosing optional modules.



Read less
The programme provides specialist analytical, design and management skills. The MSc provides skill enhancement for engineers and geologists already employed in the mining, minerals, quarrying and civil engineering industries. Read more
The programme provides specialist analytical, design and management skills. The MSc provides skill enhancement for engineers and geologists already employed in the mining, minerals, quarrying and civil engineering industries. It is also suitable for geology and engineering graduates wishing to specialise in either of the following main study areas: mine and general management; excavation (geotechnics and tunnelling).

Taught modules take place at the Camborne School of Mines; projects are often company-based.

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include; Project and Dissertation; Excavation and Geomechanics; Health and Safety in the Extractive Industry; Economics, Processing & Environment and Project Management

Optional modules

Some examples of the optional modules are; Surface Excavation Design; Resource Estimation; Tunnelling and Underground Excavation; Production and Cost Estimation; Mine Planning and Design; Geomechanics Computer Modelling for Excavation Design and Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. For up to date information please see the website at http://www.exeter.ac.uk/postgraduate/taught/mining-engineering/msc-mining-engineering/#Programme-structure

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

For the award of the Masters (MSc), you must pass four modules and complete a project and dissertation. To obtain a Postgraduate Diploma (PgDip), you must pass two modules and a project with dissertation.
Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.

Read less
Why this course?. Throughout the globe, the issues of water scarcity, water security, water economics and health and sanitation all rely on high-quality hydrogeology knowledge. Read more

Why this course?

Throughout the globe, the issues of water scarcity, water security, water economics and health and sanitation all rely on high-quality hydrogeology knowledge. This MSc will prepare you as a functional hydrogeologist to meet the needs of:

- industry

- regulators

- non-governmental organisations

- government

- consultants

The course provides you with the theoretical and practical skills to succeed in a career as a hydrogeologist. You’ll develop sound fieldwork skills which are sought-after by employers.

Study mode and duration:

- 12 months full-time

- 24 months part-time

- 36 months part-time, online

- 60 months Open access

See the website https://www.strath.ac.uk/courses/postgraduatetaught/hydrogeology/

You’ll study

The MSc involves a curriculum of seven core classes and a range of optional classes. Each module is taught two to three hours per week over eight to 12 weeks.

Alternatively, the Open Access programme allows professionals to take single modules for Continuous Professional Development (CPD) purposes, or build up towards six modules to gain a Postgraduate Certificate.

MSc research project

Following successful completion of the taught component, you’ll undertake a thesis project. We encourage you to complete this overseas. Our MSc course leader has extensive contacts in arid countries such as Malawi, Mozambique, Tanzania, Zambia, the Middle East and Asia, giving you valuable, varied learning opportunities and practical experience around the world.

Field camp

In the spring semester you go on a week-long field camp in Scotland. You’ll get the opportunity to put much of the learned theory into practice.

Site visits introduce you to the geology and hydrogeology of the study area. You’ll gain practical experience in conducting pump tests, recovery tests and chemical sampling.

Work placement

As part of the class Study in Collaboration with Industry you undertake a work placement where you report to the offices of a hydrogeological organisation and actively contribute to one of their ongoing projects.

This is a very valuable experience for you as it allows you to work as hydrogeologists for a number of weeks exposing yourself to a working environment as well as allowing you to build up contacts within industry.

Attendance

One year full-time study involves attendance at classes over two terms, plus a dissertation during the third term.

Part-time (open to UK/EU students only) involves class attendance in Years 1 & 2 and a dissertation in Year 2. Depending on timetables, just two days work release per week may be needed for 24 weeks in the year.

You can also study this course part-time through online distance learning, over 36 months, offering a flexible learning mode of study.

Facilities

In the Department of Civil & Environmental Engineering we have invested £6 million in state-of-the-art laboratories.

Teaching staff

The Department of Civil & Environmental Engineering at Strathclyde has one of the strongest Geo-Engineering focus of any related department in the UK.

- Professor Bob Kalin, Course Leader

- Dr Francesco Sindico, Reader in International Environmental Law at the School of Law

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Industrial placement

You've the opportunity to undertake a work placement class where you’ll work with a hydrogeological organisation and actively contribute to one of their ongoing projects.

Open Access

Home students can also choose to study through Open Access. This is initially a non-graduating route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification.

This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes.

Home students who do not meet the normal MSc entry requirements for this programme are welcome to apply through the Open Access route instead.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Careers

Graduates with an MSc in Hydrogeology are in very high demand as there is an expected shortage of hydrogeologists that will continue for the next decade.

- How much will I earn?

Starting salaries for a hydrogeologist typically range from £20,000 to £25,000 per year. Salaries for senior hydrogeologists range from £30,000 to £45,000 per year, while experienced professionals and managers can expect to earn £50,000 to £60,000 per year. Salaries tend to be higher in private companies/ consultancies than in the public sector.*

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Distance Learning

This MSc programme is also available via Distance Learning mode, which is based on three years part-time study of 60 credits per year.

This allow you to complete an MSc via online study at a time that suits you, without attending at our Glasgow campus. This means you can study while balancing your existing work and family commitments. This option is suitable for students located anywhere in the world.



Read less
The course is aimed at graduates from a variety of Geoscience backgrounds who wish to gain expertise in Micropalaeontology and Petroleum Geosciences. Read more
The course is aimed at graduates from a variety of Geoscience backgrounds who wish to gain expertise in Micropalaeontology and Petroleum Geosciences.

Applicants should ideally have a first degree in Geology or a closely related subject. Early Applications are encouraged as places on the course may be limited.

Key features:

Looking at specimens under the microscopeComprehensive coverage of the key microfossil groups used in hydrocarbon exploration
Focus on the role of microfossils in understanding major changes in global climate
Course taught by both academic staff and industrial partners
Opportunity to experience working with geological consultancies as well as an academic research environment
Individual research project tailored to your own skills and goals
The course has received financial support from BG Group, BP, Petrostrat and Shell.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The Environmental Mapping MSc is designed to appeal to students looking to map and understand the environment. Read more
The Environmental Mapping MSc is designed to appeal to students looking to map and understand the environment. It provides the opportunity to study at an advanced level the ways in which spatial data can be collected, processed and analysed to qualify and understand environmental issues across a wide range of applications.

Degree information

Students receive core training in mapping science, analytical methods, geographic information systems (GIS), image processing, and other fundamentals of geomatics. They develop techniques for the acquisition of data including satellite remote sensing, global navigation satellite systems (GNSS) and LIDAR, alongside techniques for the analysis, processing, interpretation, and display of spatial data.

Students undertake modules to the value of 180 credits. The programme consists of six core modules (60 credits), optional modules (60 credits) and a research project (60 credits). A Postgraduate Certificate (60 credits), full-time 12 weeks, part-time one year is offered.

Core modules
-Analytical and Numerical Methods
-Scientific Computing
-Mapping Science
-Principles and Practice of Remote Sensing

Optional modules - options may include the following:
-Climate Modelling
-Airborn Data Acquisition
-Surface Water Modelling
-Terrestrial Carbon: Monitoring and Modelling
-Global Monitoring of Environment and Society
-Image Understanding
-Dissertation/report

All students undertake an individual research project. The department has links with industry, and projects may be carried out in collaboration with organisations outside UCL.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, tutorials, transferable skills training, compulsory computer training and research supervision. Assessment is through unseen written examinations, coursework, and a dissertation (including a poster presentation).

Careers

The MSc will appeal to individuals interested in developing research training while acquiring vocational skills for work in mapping and monitoring positions in public and private sector institutions. The quantitative skills the degree provides have proved attractive to employers, particularly the grounding in programming, data handling and analysis, image processing and report writing. These skills are generic and have allowed graduates to go into a range of careers in mapping and spatial analysis but also areas such as conservation and management and policy. Environmental Mapping graduates find jobs in diverse companies from consultants and NGOs carrying out environmental and spatial analysis, and governmental and government-affiliated agencies such as DECC and the National Physical Laboratory. The programme is also a suitable training for those wishing to undertake higher-level work as a prelude to a PhD

Employability
The range of generic, transferable skills provided by the programme has proved to be attractive to a range of employers. Students acquire fundamental understanding of the key principles of mapping and data handling and analysis, as well as the ability to communicate their ideas. These principles can and are applicable across a wide range of career options. The interdisciplinary, intercollegiate nature of the degree gives students a unique perspective, not just at UCL, but across the wider world of mapping and environmental science.

Why study this degree at UCL?

The MSc is run by UCL Geography, which enjoys an outstanding reputation for its research and teaching, and has a long pedigree in producing highly employable graduates for industry, research, policy and many other areas.

This MSc offers students an all-round knowledge of monitoring methods and environmental understanding, including the fundamental principles, and current technological developments and applications to local, regional and global problems.

Graduates of the programme are equipped with highly developed practical skills to enable them to take leading roles in academic, governmental or industrial sectors. The degree is integrated with other Geography MSc programmes to provide greater flexibility when choosing optional modules.

Read less
The MSc in Geoinformatics addresses the growing need for science-trained postgraduates who are technically aware and competent to work in the field of geoinformatics, particularly as applied to environmental and resource management. Read more
The MSc in Geoinformatics addresses the growing need for science-trained postgraduates who are technically aware and competent to work in the field of geoinformatics, particularly as applied to environmental and resource management. This twelve month full-time course of study covers both the theoretical and practical aspects of geoinformatics, including Geographical Information Systems (GIS), Remote Sensing (RS), satellite navigation systems, cartography, visualisation, programming and web services.

The course consists of 60 credits of taught modules, followed by independent research towards a dissertation worth 30 credits. In addition to the taught modules, you will have the opportunity to meet practitioners through regular seminars led by experts in the discipline from Ireland and abroad, visits to local geoinformatics enterprises and attendance at relevant Irish conferences. With an MSc in GIS and RS, you will be highly sought after by employers on graduation.

Visit the website: http://www.ucc.ie/en/ckr09/

Course Detail

The course introduces you to the foundational concepts of GIS, RS and cartography in the first teaching period, with lectures and practical classes which explore the underlying principles of the subjects. These skills are developed in the second teaching period with more advanced digital image processing, spatial analysis and computer programming, again taught through lectures and practical classes.

Running throughout both teaching periods are modules which develop your research skills and explore the applications, technologies and systems of geoinformatics. These modules are taught through a variety of methods which include workshops, seminars, fieldtrips, conferences, site visits, group projects and independent study.

Leading national and international geoinformatics practitioners are invited to lead seminars highlighting industrial, commercial and governmental applications and, where applicable, to demonstrate different equipment used in the discipline. You are encouraged to explore your own interests in geoinformatics through self-directed studies, oral presentations, networking with professional researchers and attending the annual national GIS and RS conferences held each autumn.

One of the highlights of the teaching period is the weekend field trip which allows students to gain hands-on experience with a variety of different instruments and to experience the complete data acquisition, processing, evaluation and presentation chain.

When you complete the taught modules you are eligible to undertake the research project in an area of your own choice within the geoinformatics discipline over a four month period from May to September. This research may be undertaken in the university or with the support of a commercial placement organised by you and culminates in a 15,000 word thesis. All students have a dedicated computer in the masters’ lab in the Department of Geography and are provided with student copies of relevant software as well as access to departmental equipment as necessary for research projects.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#geographical

Format

During the two teaching periods, there are daily classes that typically consist of one to two hours of morning lectures followed by two to three hours of afternoon practical sessions in the computer lab. For every hour of taught classes, students are expected to spend two to three hours on self-directed study. An overnight stay may be required for attendance at the national conferences, depending on their location, but the weekend field trip is within easy travelling distance of Cork. Students are made aware of the dates of these events at the earliest opportunity and they are a compulsory part of the course.

Placement and Study Abroad Information

While there are no compulsory placement requirements as part of the course, you are actively encouraged to seek opportunities to develop your skills in a commercial environment as part of the independent research project. Several successful partnerships have been developed in this way, resulting in students having access to data and knowledge not available in-house and enabling them to undertake novel and innovative research that directly supports the work of a commercial or government enterprise.

Assessment

Because of the very practical nature of the subject, there is a large element of coursework with some of the taught modules assessed entirely through computer-based exercises, written reports, projects and practical activities. Some modules are also assessed through a combination of coursework and examination at the end of each of the two teaching periods. Students are assessed on valuable transferable skills that include written, mathematical, problem-solving and oral assignments, many of which are completed individually or in small groups.

Careers

You will gain a wide variety of technical skills on this programme, including computer-based activities and use of field instruments. You are also made aware of the importance of theoretical concepts, policy initiatives and commercial constraints and limitations which impact on the use of geoinformatics in the workplace. Many transferable skills are also fostered through different learning approaches, including critical thinking, problem-solving, report writing, oral presentations, statistical analysis, independent research and time management.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less

Show 10 15 30 per page



Cookie Policy    X