• Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
King’s College London Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Leeds Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Bath Spa University Featured Masters Courses
0 miles
Environmental Sciences×

Masters Degrees in Hydrology

We have 48 Masters Degrees in Hydrology

Masters degrees in Hydrology offer advanced study of bodies of water, their physical properties and their distribution.

Taught MSc degrees are typical for the field, though research-based MRes and MPhil programmes may be available at some institutions. Entry requirements normally include an undergraduate degree in a relevant subject such as Geography or Marine Science.

Why study a Masters in Hydrology?

Read more...

  • Environmental Sciences×
  • Hydrology×
  • clear all
Showing 1 to 15 of 48
Order by 
MSc in Hydrology and Water Resources Management. MSc in Hydrology and Business Management. MSc in Hydrology and Sustainable Development. Read more
MSc in Hydrology and Water Resources Management

MSc in Hydrology and Business Management

MSc in Hydrology and Sustainable Development

Hydrology is concerned with assessment of the natural distribution of water in time and space, and with evaluating the impact of manmade changes on the distribution and quality of this water.

Applied hydrology has been traditionally concerned with floods and water resources.

However, hydrologists are focusing increasingly on the problems of pollutant transport in surface water, soils and groundwaters, and wider issues such as the effects of land use and climate change.

Hydrology is strongly multidisciplinary, and the course includes a basic treatment of relevant physical and life sciences, mathematical sciences, and systems analysis.

All of our MSc courses are career-orientated and cover both theoretical background and practical design considerations.

Lectures are given mainly by full-time staff but important contributions are made by visiting professors and guest lecturers who are eminent industrialists.

Many of our students continue their studies to undertake research towards a PhD.

Read less
PLEASE NOTE. This course is not currently open for new applications. If you'd like to be kept up to date, let us know using the Register Interest button. Read more
PLEASE NOTE: This course is not currently open for new applications. If you'd like to be kept up to date, let us know using the Register Interest button.

Water is a key resource globally, nationally and regionally. As the world's population increases governments are increasingly forced to act to protect and manage water resources more effectively, creating demand for scientists and managers to understand, monitor and manage natural and regulated water systems.

Why study Catchment Hydrology and Management at Dundee?

We offer an authoritative source of training for national and international students seeking to pursue careers within environmental and regulatory industries. Through a mixture of theory and practice this programme will provide you with training in aspects of applied hydrology, catchment management, environmental modelling (including risks such as flooding and water scarcity) and water law.

Facilities

The School of the Environment has recently completed a major investment in upgrading its hydrometric field equipment for use by SCM students. In addition to our already strong resource base in flow measurement equipment, covering ADCP, ADV, radar and more traditional impeller based instruments, we have now expanded our water level monitoring equipment to 25 instruments.

Fieldwork and problem-solving aspects of the course are being extended in 2012, with students being responsible for selecting, installing and operating their own sites and analysing the data from them. We have three experimental catchment facilites in Scotland, in the Cairngorms and the Scottish Borders, and students will gain valuable insights and experience through becoming directly involved in these projects.

Research-led teaching

Our experienced team of staff all engage in contemporary research and have considerable expertise in the science and regulatory frameworks affecting water management. Many of the academic staff on the programme are involved in the UNESCO Centre for Water Law, Policy & Science - the UK's only UNESCO Centre, based at the University of Dundee. The Centre is an exciting interdisciplinary centre providing many opportunities for water-related research in projects worldwide.

Field trips

We also provide you with many opportunities to put theory into practice with field trips to local catchments.

Aims of the Programme

This postgraduate degree programme will provide you with understanding and hands-on training in applied hydrology and catchment management. You will develop skills appropriate to a career within the water and environmental sectors, including technical skills in the use of hydrological and environmental modelling software, field skills in acquiring and subsequent analysis of hydrological data. You will also gain an awareness of the linkages between hydrology, ecology, legal and planning practice.

The programme will encourage you to think critically about the ways in which river catchments are managed. You will be trained in legal and regulatory aspects and management approaches balancing multiple stakeholders using case studies from around the world, part of a global network of basins built up by the IHP-UNESCO Centre for Water law, Policy and Science HELP programme. This management knowledge will be underpinned by an understanding of catchment hydrology, monitoring and modelling.

The course starts in September each year. The MSc lasts for 12 months on a full time basis and the PGDip for 9 months on a full time basis.

How you will be taught

Teaching on the course is delivered through a combination of lecture material and informal seminar-style discussion, which will encourage you to explore taught materials and interpret ideas individually.

Field classes are held in order to study monitoring and management strategies in realistic situations, with opportunities to meet the people involved in these activities.

What you will study

There are core modules (all 20 credits) in:

Research Training (Semesters 1 and 2)
Hydrological Monitoring and Modelling (Semester 1)
Catchment Management principlies (Semester 1)
Hydrological applications (Semester 2)


Plus you can choose two of the following option modules (20 credits):

Research in Practice (work placement) (Semester 2)
Applied GIS and Geospatial Data Analysis (Semester 2)
Fieldcourse (Semester 2)


Students enrolled on the MSc programme also complete a Dissertation (worth 60 credits) over the summer period. The research project may be completed in partnership with external environmental agencies.


All modules aim to provide you with as much application and hands-on practice as possible, both within the field and laboratory environments, as well as encouraging you to develop a wider range of research methods and skills.

How you will be assessed

Learning is assessed through a mixture of oral and written presentations, problem-solving assignments, feedback and a major research based project or dissertation.

Careers

Career prospects are good, due to a current shortage reported by environmental recruiters. A rising workload has been noted within Europe stemming from increased regulation in the water sector.

Globally, catchment hydrological management for meeting food security and water quality needs in the face of climate change is a major and growing issue. These drivers will increase substantially increase employment opportunities both nationally and internationally.

This course builds upon a previous course (MSc in Sustainable Catchment Management), which had an excellent record of students entering work in environmental agencies, consultancies and policy related areas upon graduation. The course also provides an excellent platform for further postgraduate study.

Contacts with employers

Dissertations may be organised using contacts within organisations employing graduate water specialists, and participants will have other opportunities during the year to make direct contact with employers. Staff are able to provide advice on many organisations within which graduates of other Dundee programmes are already employed, in conjunction with the University's Careers Service.

Read less
Through theoretical, practical and computational (informatics) training, the Hydrology and Climate Change MSc will enhance your knowledge of the water environment and its management in the context of climate change. Read more
Through theoretical, practical and computational (informatics) training, the Hydrology and Climate Change MSc will enhance your knowledge of the water environment and its management in the context of climate change.

The impact of climate change and past hydrological behaviour means that hydrological and water resource issues have to be looked at in a new way.

This course will encourage you to rethink hydrological problems and solutions in new and innovative ways. This training is quantitative and relevant to the needs of today's water industry.

Accreditation

The course is accredited by the Joint Board of Moderators (JBM) (comprising ICE, IStructE, CIHT and IHIE), as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for students with an Accredited CEng (Partial) BEng Honours degree or Accredited IEng (Full) BEng/BSc Honours degree.

The course is also accredited by the Chartered Institution of Water and Environmental Management (CIWEM) and the Royal Institution of Chartered Surveyors (RICS).

Read less
The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment. Read more

Why take this course?

The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment.

This course is designed to provide you with the particular expertise required for dealing with contaminated sites. Such expertise is essential to ensuring we maintain habitable, safe and sustainable communities.

What will I experience?

On this course you can:

Use our state-of-the-art geological and geotechnic labs for practical work
Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by recognised experts with extensive knowledge in groundwater hydrology, environmental geology and contaminated land

What opportunities might it lead to?

We will give you the knowledge and practical skills to ensure an interesting and rewarding career in the specialist area of contaminated land consultancy, regulation and remediation, both in the UK and overseas.

Here are some routes our graduates have pursued:

Environmental organisations
Geotechnical consultancies
Mining companies
Local authorities
Government agencies

Module Details

You can opt to take this course in full-time or part-time mode. The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

This course covers a mixture of topics including: groundwater hydrology, geochemistry, site investigation, geotechnics and contaminated land assessment.

Here are the units you will study:

Soil Mechanics: This unit is fundamental to understanding how contaminants behave and migrate in the ground. You will gain an advanced understanding of the geo-mechanical behaviour of soils, including the description and testing of soils to UK and international standards.

Desk Studies and Ground Models: These are an integral part of any contaminated land assessment. You will have training in the development of geological ground models and geomorphological terrain models through desk studies, walk-over surveys and site investigation.

Ground Investigation Techniques: You will gain advanced knowledge of ground investigation using invasive techniques, in-situ tests and geophysical methods.

Contaminated Land Risk Assessments: You will learn key techniques for site assessment, analytical testing and risk assessment.

Field Reconnaissance and Walk-Over Survey: This unit covers techniques which are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn integration and analysis of spatial datasets using GIS and interpretation of aerial photography and satellite imagery - key tools for terrain evaluation.

Independent Research Project: This provides an opportunity for you to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, workshops and practical laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Essays
Laboratory reports

Student Destinations

Contaminated land is listed as one of the key areas in which the UK has a skills shortage. This fact, combined with the vocational nature of this course, means that you will be in high demand from employers looking for newly qualified contaminated land specialists. You will find the majority of such roles in the environmental consultancy sector.

This course will provide you with a variety of transferable skills such as project planning, literature and data reviewing, report writing, along with the more general skills of presentation, communication and so on. It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
The University of British Columbia Geological Engineering programme is a postgraduate course awarding a research-based Master of Applied Science or a taught Master of Engineering. Read more

The University of British Columbia Geological Engineering programme is a postgraduate course awarding a research-based Master of Applied Science or a taught Master of Engineering.

Students complete training and research projects according to their qualification pathway.

Program Overview

The Geological Engineering Program is intended for students interested in the application of earth sciences principles to engineering problems. While most geological engineering degree programs are based in the Department of Earth, Ocean and Atmospheric Sciences, students may also base their studies in allied Applied Science departments such as Civil or Mining Engineering. The program is highly interdisciplinary and draws upon courses, laboratories, and faculty members from the departments of Earth, Ocean and Atmospheric Sciences, Civil Engineering, Mining Engineering, Forestry, Geography, and others. Graduate students are often co-supervised by faculty members from different departments.

Geological engineering faculty members in the Department of Earth, Ocean and Atmospheric Sciences have research interests in the following general areas:

- landslides, debris flows, engineering geology, slope stability

- groundwater hydrology, groundwater contamination and remediation, reactive transport modeling, environmental geochemistry

- rock engineering, rock slopes, and tunneling

Other research areas include geotechnical engineering, environmental geology, engineering geology, economic geology, and applied geophysics. The specific fields of study may involve geomorphology and terrain analysis, groundwater hydrology, natural hazards, slope stability, petroleum and coal geology, coalbed methane, mineral prospecting and valuation, and other similar subjects. Students are encouraged to consult individual faculty members for information about current research areas.

Admission to graduate studies in geological engineering is open only to students with an undergraduate degree in engineering or, at the discretion of the program director, to students with sufficient engineering work experience.

Quick Facts

- Degree: Master of Applied Science (research-based), Master of Engineering (course-based, 1 year)

- Specialization: Geological Engineering

- Subject: Engineering

- Mode of delivery: On campus

- Faculty: Faculty of Science

Funding

The following postgraduate funding may be available to study Geological Engineering at the University of British Columbia.

Canadian postgraduate funding

Funding from FindAMasters:



Read less
This practical, industry-focused course can help you develop the skills and knowledge you will need to improve water quality and supply in Australian and international communities. Read more
This practical, industry-focused course can help you develop the skills and knowledge you will need to improve water quality and supply in Australian and international communities.

Access to safe water is critical for economic growth, agriculture and food production, sustainable development and poverty reduction. However, many communities and governments now struggle to supply safe water and effectively manage their water resources.

If you are a recent graduate looking to launch your water quality career, or you are a practising water scientist or engineer, this course can position you as an expert in water chemistry. It is especially relevant to those who have studied chemistry, hydrology, water-related engineering courses, agriculture, environmental science or other related fields.

There is a growing need for water scientists who understand the chemistry of water. In this course, you can build advanced chemistry skills and specialised knowledge in water biology, microbiology, ecotoxicology, engineering, hydrogeology and environmental geoscience. Your studies will focus on water treatment, sanitation, water recycling and the sustainable supply of safe drinking water.

Career opportunities

If you are a recent graduate looking to enter a career in water quality, or a practising water scientist or engineer, this course can help you to develop your career as a specialist in water chemistry. It is especially relevant if you have studied chemistry, hydrology, water-related engineering courses, agriculture, environmental science or other related fields.

Graduates of this course may be employed in a wide range of industrial, commercial and government organisations involved in sourcing, treating and distributing water.

List of potential careers:

Chemist
Chemical engineer
Environmental scientist
Hydrologist
Water chemist
Water engineer
Water scientist.
Credit for previous study
Students entering with an honours degree or postgraduate diploma may receive credits for recognised learning.

Learn about Credit for Recognised Learning (CRL).
How this course will make you industry ready
This practical, industry-focused course can help you develop the skills and knowledge you will need to improve water quality and supply in Australian and international communities.

You will have access to high-tech science labs, modern equipment and collaborative learning spaces across the campus and within the purpose-built Resources and Chemistry Precinct.

You will also benefit from Curtin’s high reputation in water quality research, which has led to led to millions of dollars in funding, local and global research alliances and the recruitment of high calibre industry experts.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
This scheme combines modules in hydrology, water quality and ecology with a research project tailored towards developing skills relevant to a career in the UK or international water sector. Read more
This scheme combines modules in hydrology, water quality and ecology with a research project tailored towards developing skills relevant to a career in the UK or international water sector. You will be taught by world experts in the field, including staff from the Centre for Ecology and Hydrology (within LEC) and industry leader JBA Consulting. Your specialised project (including placements) benefits from our strong research links with organisations such as Dwr Cymru Welsh Water, United Utilities, JBA Consulting, Environment Agency, Defra and Government Research Councils.

Core modules

Lake Ecology
Groundwater Resources and Protection
Integrated Systems for Sustainable Surface Water Management
Catchment Protection (field course)
Modelling Environmental Processes
Forecasting and Extreme Event Response
Environmental Management
Dissertation Project

Optional modules

Contaminated Land and Remediation
Perspectives on Environment and Development
Data assimilation and integration
Geoinformatics
Behaviour of Pollutants in the Environment
Environmental Sampling and Analysis for Trace Organics
Pollution Microbiology
Environmental Auditing

Information contained on the website with respect to modules is correct at the time of publication, but changes may be necessary, for example as a result of student feedback, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes, and new research.

Open Days

Our upcoming Open Days will take place on:
Saturday 8th April 2017
Saturday 15th July 2017
You can find out more and register at: http://www.lancaster.ac.uk/lec/graduate-school/masters/open-days/

We also have a Virtual Open Day on Friday 17th March. For further information and to register please go to: http://www.lancaster.ac.uk/lec/graduate-school/masters/open-days/

Read less
This programme is delivered in close collaboration with our advisory board of representatives from the water industry, and provides fundamental and applied training in the science and management of freshwater environments. Read more

Overview

This programme is delivered in close collaboration with our advisory board of representatives from the water industry, and provides fundamental and applied training in the science and management of freshwater environments. Combining hydrology, geomorphology, biogeochemistry and ecology, the degree is designed to produce outstanding scientists capable of developing interdisciplinary environmental solutions to priority water resource and catchment issues. It involves fieldwork at our research sites including the near-natural Tagliamento River, Italy, and heavily impacted rivers within London and the south-east of England.

This programme:

- facilitates networking within the water and environmental sectors
- lets you develop core understanding of freshwater environmental systems and the key policy and legal frameworks that underpin their management
- provides hands-on training in flood estimation and inundation modelling using industry-standard software
- allows you to broaden your skills and knowledge in the monitoring and management of pollutants, nutrient levels and greenhouse gas emissions in aquatic systems
- provides training in river assessment methods
- develops your skills and knowledge in the theory and practice of river restoration
- learn transferable skills in field and lab methods, project management, statistical analysis, Geographical Information Systems (GIS) and the use of remotely sensed data, report writing, problem solving and presenting
- follow in the footsteps of our graduates who have secured positions in the water and environmental sectors including Jacobs, Halcrow Group, JBA Consulting, River Trusts, Thames Water, Environment Agency, Parish Geomorphic and ESIS Inc.

Why study at QMUL Geography?

- Professional and friendly environment: We are recognised as an international centre for excellence in teaching and research. Our work is at the forefront of human geography, shaping debates and providing significant new insight and understanding. We are also known for our friendly, collegial and welcoming ethos and are home to many of contemporary human geography's best known scholars.
- Research excellence: Almost 80 per cent of our research outputs (books and articles) are rated as world-leading (4*) or internationally excellent (3*) placing us 5th in the UK for this measure. Our research scores increased across all areas in the latest UK score of research excellence (REF 2014) and we're ranked joint 11th for geography in the UK overall. We're also proud to feature in the top 100 departments in the world to study geography (QS World University Rankings by Subject 2016)
- Employability: 94% of respondents from our postgraduates were in work or further study six month after graduation; 91% at graduate level (DLHE 2015).
- You will develop knowledge and understanding relevant to employment in organisations such as Environment Agency, Defra, Natural England, Centre for Ecology and Hydrology, British Geological Survey and environmental consultancies.

Funding:

A bursary of up to £4,000 is available from the Worshipful Company of Water Conservators for this programme. Contact Dr Gemma Harvey at to find out more.

Fieldwork

Students visit our researchers' site at the near-natural Tagliamento River in Italy as well as heavily-impacted rivers in London and the south east of England.

Read less
Are you interested in working on solutions for these and other environmental issues? The Wageningen University Master Earth & Environment was born from the necessity of helping the next generations of scientists find solutions for the issues confronting the way we look after our planet, now and in the future. Read more

MSc Earth and Environment

Are you interested in working on solutions for these and other environmental issues? The Wageningen University Master Earth & Environment was born from the necessity of helping the next generations of scientists find solutions for the issues confronting the way we look after our planet, now and in the future. Within the programme you can specialise in Hydrology and Water Resources, Meteorology and Air Quality, Biology and Chemistry of Soil and Water or Soil Geography and Earth Surface Dynamics.

Programme summary

Planet Earth is a complex, interactive and fascinating system. Protected by a thin layer of atmosphere, it provides all the essentials needed to sustain life and support living organisms. Natural processes and human needs often clash, leading to a wide range of environmental issues. Water scarcity and quality, soil degradation , food supply , loss of biodiversity, vulnerability to severe weather, and climate change are just a few examples of key issues that need to be addressed urgently.

As a Wageningen University geoscientist, you study Planet Earth and its ability to sustain life. Using tools from physics, chemistry, biology and mathematics, you build a quantitative understanding of the composition, structures and processes of the Earth and its atmosphere; as well as its resources and the influence of human activity. Thus, you have an important role to play in improving natural resource management and in removing obstacles to sustainable development.

Your study of the Earth system largely focuses on gaining an understanding of the interdependent physical, chemical and biological processes, and developing models that describe these processes on relevant scales. You develop scenarios that describe expected local, regional and/or global changes and the time scale on which they will occur. The Wageningen MEE focuses on the Earth’s ‘Critical Zone’ -including the atmospheric boundary layer, where flows of energy and matter determine the conditions for sustaining life; hence its name: Earth and Environment.

Specialisations

• Hydrology and Water Resources
The focus of this specialisation is to study the effects of climate change and other influences on the water balance of catchments to support optimal land management when dealing with hydrological extremes.

• Meteorology and Air Quality
Would you like to contribute to further understanding of atmospheric processes and their relevance for weather and climate? In this specialisation you learn about physical-chemical processes, the composition of the atmosphere and the exchange between the atmosphere and earth's surface and meteorology.

• Biology and Chemistry of Soil and Water
This specialisation allows you to develop an in-depth understanding of chemical and biological processes and their interactions in soils and natural waters, and their role in the functioning of terrestrial and aquatic ecosystems in a world that faces increasing anthropogenic pressures. You learn how these insights can contribute to develop effective strategies for the preservation and restoration of soil and water quality, biodiversity, and the functioning of natural ecosystems and the services they provide.

• Soil Geography and Earth Surface Dynamics
This specialisation allows you to explore the spatial and temporal processes that are active in soils, landscapes and the wider earth system. It uses an integrative approach that combines biophysical and human elements to gain insight in past, present and future system dynamics.

The combination of specific discipline training and the Earth System approach prepares you for working on the scientific and societal questions of the future. You can also choose from a selection of elective courses, and we also offer a special variant in preparation for a PhD.

Your future career

The MSc Earth and Environment programme offers our graduate scientists excellent opportunities to develop their career in research or as a science professional at universities, research institutes and consultancies. Our graduates can be found all over the world, working as meteorologists, hydrologists, water quality scientists or soil scientists, to name but a few disciplines.

Are you interested in working on solutions for these and other environmental issues? The master programme was born from the necessity of helping the next generations of scientists find solutions for the issues confronting the way we look after our planet, now and in the future.

Alumnus Nick Gorski.
NIck Gorski came from Canada to Wageningen because of the excellent reputation the Netherlands has in the field of water. He conducted two thesis research projects during his time here. The first dealt with the fluxes of sediment-bound contaminants in a river basin in southwestern Turkey. The second involved the development of a new modelling methodology for heterogeneous flow and solute transport in unsaturated soils. “I had the opportunity to take classes, do field work and research in other countries. It was an excellent way to put theory into practice.” After graduating Nick went on to work for the KWR Watercycle Research Institute in Nieuwegein, the Netherlands.

Related programmes:
MSc Biology
MSc Climate Studies
MSc Environmental Sciences
MSc International Land and Water Management
MSc Plant Sciences.

Read less
River systems are under ever increasing pressure through the growing demands of water abstraction and hydroelectric power generation, and suffer recurrent disturbance through diffuse and point source pollutants, drought, flooding and channel modification. Read more
River systems are under ever increasing pressure through the growing demands of water abstraction and hydroelectric power generation, and suffer recurrent disturbance through diffuse and point source pollutants, drought, flooding and channel modification.

The environmental management of rivers is required to mitigate the effects of these pressures. This requires a holistic understanding of how river systems are structured and function, and of how these systems have been altered by anthropogenic activities. To this end, the course will examine the interactions between climate, hydrology, geomorphology, ecology, biogeochemical cycling, water and habitat quality and biodiversity.

An important aspect of the training will be an understanding of how these interactions act at different spatial and temporal scales to influence the structure and function of ecosystems in running waters. This scientific and technical corpus will allow you to understand and quantify the consequences of natural and anthropogenic disturbance on river systems.

Using a combination of lectures, fieldwork, tutorials, laboratory classes, group projects and an individual research-based thesis, you will be provided with the necessary training and skills for a career in the successful environmental management of rivers, including techniques on assessing their status and approaches to rehabilitate and restore the condition of these globally threatened environments.

You will also gain training in legislation that drives the environmental management of rivers worldwide. In particular the EU Water Framework Directive provided an exceptionally strong driver in that all European member states were required draw up river basin management plans to achieve 'good ecological status' by 2015. This is certain to create many career opportunities in the future.

This degree will provide direct postgraduate training for students interested in this career direction, as well as providing advanced-level training suitable for further PhD studies in water science.

We are fortunate at Birmingham in having a wide variety of staff within the Water Sciences Research Group with interests in rivers, particularly in the arena of hydroecology, and it is this expertise that will inform the teaching of the modules in River Environments and their Management.

This course will examine the interactions between climate, hydrology, geomorphology, ecology, biogeochemical cycling, water and habitat quality and biodiversity.

Using a combination of lectures, fieldwork, tutorials, laboratory classes, group projects and an individual research-based thesis, you will be provided with the necessary training and skills for a career in the successful environmental management of rivers.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This taught one-year course will give students a thorough understanding of all aspects of wetland science and ecology. Students will also gain experience and knowledge on the complex conservation, restoration and management issues associated with wetlands. Read more
This taught one-year course will give students a thorough understanding of all aspects of wetland science and ecology. Students will also gain experience and knowledge on the complex conservation, restoration and management issues associated with wetlands. Field and laboratory work will cover the latest techniques in environmental analysis needed for contemporary wetland monitoring and experimentation.

Taught wetland and conservation modules

Wetland ecology
Classification of wetland types
Properties and functions of wetlands
Wetland zoology and botanical adaptations
Wetland hydrology and biogeochemistry
Carbon sequestration in wetlands
Use of wetlands for carbon offsetting
Wetland conservation and restoration techniques
Use and design of constructed wetlands
Wetland plant identification

Instrumental and environmental analysis

Students will learn a variety of instrumental analysis techniques suitable for ecologists interested in environmental analysis and those studying a wide variety of aquatic and terrestrial habitats – not just wetlands. The theory, practical use and basic maintenance of the instruments will be covered, along with sample collection and analysis.

The lab and field based techniques covered include:

pH, conductivity and Redox potential
Greenhouse gas (GHG) collection and analysis using a gas chromatograph (GC) and infra-red gas analysis (IRGA)
Cation and anion concentration analysis using ion chromatography (IC)
Stable isotope analysis with an isotope ratio mass spectrometer (IRMS)

Wetland-based research project

The research project comprises a third of the MSc and is supervised by research active staff with excellent publication record and experience in their field.
Career Options

Students choosing this MSc will enjoy a modular course that will teach both the practical and theoretical aspects of wetland science and conservation. Successful students will therefore develop the skills and experience required to enable progression onto PhD studies in a wide-range of biological, biogeochemical, environmental and conservation based subjects.

The course will also allow students to seek employment in areas related to wetlands, soil science, water treatment and quality, conservation and environmental consultancy.

Read less
Environmental earth science (or geoscience) covers a range of topics including hydrology, sedimentology and geomorphology. This course provides specialist skills and knowledge for science graduates wanting to pursue careers in environmental earth science. Read more

What is environmental earth science?

Environmental earth science (or geoscience) covers a range of topics including hydrology, sedimentology and geomorphology.

Who is this course for?

This course provides specialist skills and knowledge for science graduates wanting to pursue careers in environmental earth science. Environmental scientists undertake work such as developing ways to minimise the impacts of humans on the natural environment.

Course learning outcomes

The graduates of James Cook University are prepared and equipped to create a brighter future for life in the tropics world-wide.
JCU graduates are committed to lifelong learning, intellectual development, and to the display of exemplary personal, professional and ethical standards. They have a sense of their place in the tropics and are charged with professional, community, and environmental responsibility. JCU graduates appreciate the need to embrace and be acquainted with the Aboriginal and Torres Strait Islander Peoples of Australia. They are committed to reconciliation, diversity and sustainability. They exhibit a willingness to lead and to contribute to the intellectual, environmental, cultural, economic and social challenges of regional, national, and international communities of the tropics.
On successful completion of the Graduate Diploma of Science, graduates will be able to:
*Integrate and apply advanced theoretical and technical knowledge in one or more science disciplines
*Retrieve, analyse, synthesise and evaluate knowledge from a range of sources
*Plan and conduct reliable, evidence-based laboratory and/or field experiments/practices by selecting and applying methods, techniques and tools, as appropriate to one or more science disciplines
*Organise, analyse and interpret complex scientific data using mathematical, statistical and technological skills
*Communicate complex scientific ideas, arguments and conclusions clearly and coherently to a variety of audiences through advanced written and oral English language skills and a variety of media
*Identify, analyse and generate solutions to unpredictable or complex problems, especially related to tropical, rural, remote or Indigenous contexts, by applying scientific knowledge and skills with initiative and high level judgement
*Explain and apply regulatory requirements, ethical principles and, where appropriate, cultural frameworks, to work effectively, responsibly and safely in diverse contexts
*Reflect on current skills, knowledge and attitudes to manage their professional learning needs and performance, autonomously and in collaboration with others.

Award title

GRADUATE DIPLOMA OF SCIENCE (GDipSc)

Course articulation

Students who complete the Graduate Diploma of Science are eligible for entry to the Master of Science, and may be granted advanced standing for all subjects completed under the Graduate Diploma.

Entry requirements (Additional)

English band level 1 - the minimum English Language test scores you need are:
*Academic IELTS – 6.0 (no component lower than 5.5), OR
*TOEFL – 550 (plus minimum Test of Written English score of 4.0), OR
*TOEFL (internet based) – 79 (minimum writing score of 19), OR
*Pearson (PTE Academic) - 57

If you meet the academic requirements for a course, but not the minimum English requirements, you will be given the opportunity to take an English program to improve your skills in addition to an offer to study a degree at JCU. The JCU degree offer will be conditional upon the student gaining a certain grade in their English program. This combination of courses is called a packaged offer.
JCU’s English language provider is Union Institute of Languages (UIL). UIL have teaching centres on both the Townsville and Cairns campuses.

Minimum English language proficiency requirements

Applicants of non-English speaking backgrounds must meet the English language proficiency requirements of Band 1 – Schedule II of the JCU Admissions Policy.

Why JCU?

James Cook University brings together a team of academic and associate staff across multiple disciplines.
*Nationally-recognised leader in geoscience
*state-of-the-art research and teaching facilities
*internationally-acclaimed academic teaching staff
*strong collaboration with industry and research organisations, both locally and internationally.

Career Opportunities

A postgraduate qualification from JCU can enhance your career prospects, enable you to reskill and change careers completely, or develop a specialist area of expertise and personal interest.
Earth science and environmental science graduates enjoy well-paid careers in Australia and overseas. A range of opportunities await graduates in the academia as well as in private and public sectors.
As an Environ mental Scientist, for instance, you will measure and record features of the environment and study, assess and develop methods of controlling or minimizing the harmful effects of hum an activity on the environment.
Graduates can also get jobs as research assistants or support staff for teaching. With a PhD, you can gain research positions (Postdoctoral, Fellowships) that are often funded for a few years or apply for permanent positions as a lecturer and researcher.

Application deadlines

*1st February for commencement in semester one (February)
*1st July for commencement in semester two (mid-year/July)

Read less
Environmental earth science (or geoscience) covers a range of topics including hydrology, sedimentology and geomorphology. This coursework program provides specialist skills and knowledge for science graduates wanting to pursue careers in environmental earth science. Read more

What is environmental earth science?

Environmental earth science (or geoscience) covers a range of topics including hydrology, sedimentology and geomorphology.

Who is this course for?

This coursework program provides specialist skills and knowledge for science graduates wanting to pursue careers in environmental earth science. Environmental scientists undertake work such as developing ways to minimise the impacts of humans on the natural environment.

Course learning outcomes

On successful completion, graduates will be able to:
*Demonstrate an advanced level of scientific knowledge from with their chosen major
*Critically analyse scientific theory, models, concepts and techniques from within their chosen major
*Critically read and evaluate quantitative and qualitative research findings from within their chosen major
*Apply analytic tools and methodologies to define and describe scientific problems from within their chosen major
*Communicate effectively and persuasively, both orally and in writing.

Award title

MASTER OF SCIENCE (MSc)

Entry requirements (Additional)

English band level 1 - the minimum English Language test scores you need are:
*Academic IELTS – 6.0 (no component lower than 5.5), OR
*TOEFL – 550 (plus minimum Test of Written English score of 4.0), OR
*TOEFL (internet based) – 79 (minimum writing score of 19), OR
*Pearson (PTE Academic) - 57

If you meet the academic requirements for a course, but not the minimum English requirements, you will be given the opportunity to take an English program to improve your skills in addition to an offer to study a degree at JCU. The JCU degree offer will be conditional upon the student gaining a certain grade in their English program. This combination of courses is called a packaged offer.
JCU’s English language provider is Union Institute of Languages (UIL). UIL have teaching centres on both the Townsville and Cairns campuses.

Minimum English Language Proficiency Requirements

Applicants of non-English speaking backgrounds must meet the English language proficiency requirements of Band 1 – Schedule II of the JCU Admissions Policy.

Why JCU?

JCU brings together a team of academic and associate staff across multiple disciplines.
*Nationally-recognised leader in geoscience
*state-of-the-art research and teaching facilities
*internationally-acclaimed academic teaching staff
*strong collaboration with industry and research organisations, both locally and internationally.

Career Opportunities

A postgraduate qualification from JCU can enhance your career prospects, enable you to reskill and change careers completely, or develop a specialist area of expertise and personal interest.
Earth science and environmental science graduates enjoy well-paid careers in Australia and overseas. A range of opportunities await graduates in the academia as well as in private and public sectors.
As an Environ mental Scientist, for instance, you will measure and record features of the environment and study, assess and develop methods of controlling or minimizing the harmful effects of hum an activity on the environment.
Graduates can also get jobs as research assistants or support staff for teaching. With a PhD, you can gain research positions (Postdoctoral, Fellowships) that are often funded for a few years or apply for permanent positions as a lecturer and researcher.

Application deadlines

*1st February for commencement in semester one (February)
*1st July for commencement in semester two (mid-year/July)

Read less
An increasing number of chemicals is used by society today, which are also released into the environment. Ecotoxicology is concerned with their potential impacts on the ecosystem. Read more

About the Program

An increasing number of chemicals is used by society today, which are also released into the environment. Ecotoxicology is concerned with their potential impacts on the ecosystem. It aims to investigate and discover effects of chemicals on biological systems in order to develop methods for risk management, as well as to predict ecological consequences.

The international "Master of Science program in Ecotoxicology" integrates concepts of Environmental Chemistry, Toxicology and Ecology and includes Social Sciences and Economics as well. Due to its interdisciplinary and applied approach, the Program enables its graduates to analyze complex problems and to develop practical solutions.

As environmental problems reach far beyond national borders, an international approach is necessary and the situation in developing countries needs special solutions.

The Master in Ecotoxicology is carried out under the Institute for Environmental Sciences.

For the latest news about our Institute of Ecotoxicology you can also check our Ecotox-Blog under:
http://www.master-ecotoxicology.de/ecotox-blog

Program Structure

All students take the 9 required modules, as well as a 10-week Research Project Course and an Applied Module at External Organisations of 8 weeks to obtain a deep knowledge in the field of Ecotoxicology. Afterwards, studentes personalize the Program by choosing 2 Modules of the 5 Specialty Areas. The Master Thesis with colloquium round out the 4-semester Program.

Specialty Areas:

Applied Environmental Chemistry & Environmental Physics,
Chemistry,
Applied Ecology,
Geoecology and
Socioeconomics & Environmental Management

Applied Module at External Organizations (AMEO)

The module AMEO is an 8-week internship, which can be performed at an external university or a governmental or industrial research institute in Germany or abroad. Students become familiar with working practice, requirements of the job market and career opportunities and can establish business contacts. They apply, confirm and expand knowledge and competences achieved during their study.

Following an introductory discussion with the supervisors, the students perform the (research) work on their own and discuss the obtained results regularly with their supervisors. The content depends on the actual research questions in the selected research organizations. Topics or possible positions will be suggested by the staff of the Institute for Environmental Sciences or maybe suggested by the students. The topics should be directly related to applied problems relevant in these external organisations and should ideally offer the students opportunities to apply their knowledge and skills in areas, which are not the particular research areas at the Institute for Environmental Sciences in Landau. They include, but are not restricted to the following areas:

Engineering aspects (e.g. hydrology, mitigation techniques)
Multimedia modelling
Food web modelling
Fish, bird or mammal ecotoxicology and risk assessment
Agricultural sciences
Socioeconomics
Specific aspects in regulatory ecotoxicology
Risk communication, economic or societal aspects

Research Project Course (RPC)

The students work independently on a research topic of the university for a total time of about 10 weeks. The topics depend on the actual research conducted in the various research groups. However, all topics do have an interdisciplinary character covering at least two different disciplines (e.g. chemistry and ecology, or physics and risk assessment). The students submit proposals for topics selected from a list provided by the teaching staff including a time and resource planning as well as an independently conducted literature search. Following an introductory discussion with the supervisor, the students perform the research work on their own and discuss the obtained results regularly with their supervisor. Following the practical work, the students write a report including the theoretical background, the methods used, the results obtained and a discussion of the results based on the relevant scientific literature. The students present and defend the outcome of their work at an oral presentation. Following successful completion the students are able to plan a scientific work package, conduct the work, evaluate the results based on the relevant literature and present the outcomes.

The content depends on the actual research questions in the research groups associated with the Institute for Environmental Sciences. They include, but are not restricted to the following areas:

Chemical experiments in the lab
Environmental colloid chemistry
Environmental organic chemistry
Physical transport or transfer processes of environmental chemicals
Ecotoxicological lab tests
Ecotoxicological field studies
In situ or monitoring work in the field
Molecular genetics
GIS data analysis
Literature reviews
Exposure, effect or landscape modelling
Assessment or management of risks

More information on the program structure and contents can also be found under:
https://www.uni-koblenz-landau.de/en/campus-landau/faculty7/info-prospective-students/master-of-science-ecotoxicology/aims-and-contents

Employment outlook

The Program enables the graduates to conduct independent scientific work and prepares in particular for independent and leading positions in the numerous emerging fields of Ecotoxicology. The graduates are able to take responsibility in a professional manner in: Scientific facilities and research institutes, Authorities, public offices and ministries with a regulatory role, Non-governmental organizations, Industry and consulting enterprises. The international orientation of the program qualifies graduates for a global job market. In addition, the Master program prepares for a PhD study.

“I value very much the excellent education and the close individual support from the teaching staff during my studies that allowed me to pursue own research ideas and to find my field of interest. A cooperation of the university with the German Federal Environment Agency enabled me to gain experience in the environmental risk assessment of pesticides. I qualified for a traineeship in the European Food Safety Authority (EFSA) and am now working in the field of pesticide risk assessment.” Klaus Swarowsky (Master Ecotoxicology, EFSA)

Internationally Networked

The Institute for Environmental Sciences is globally connected through international research projects and student exchange programs. The international nature of the Program is achieved through numerous international research and teaching staff, regular seminars from guest lecturers from abroad, and possible internships all over the world.
You will find a map which displays the locations our cooperation partners under:

https://www.uni-koblenz-landau.de/en/campus-landau/faculty7/info-prospective-students/master-of-science-ecotoxicology/aims-and-contents#network

Read less
Land (soil) and water are two essential resources required to sustain the human goals of food security and maintenance of environmental goods and services, including all forms of useable energy. Read more

General Information

Land (soil) and water are two essential resources required to sustain the human goals of food security and maintenance of environmental goods and services, including all forms of useable energy. Managed, as an integrated system, provides a framework to aid society to achieve food security and environmental services.

The goal of the innovative Master of Science in Land and Water Systems is to offer a professional degree that will serve both practicing resource managers, and recent graduates from cognate undergraduate academic programs, the necessary credentials to address the emerging concerns of land and water resources conservation and management.

Quick Facts

- Degree: Master of Land and Water Systems
- Specialization: Land and Water Systems
- Subject: Specialty
- Mode of delivery: On campus
- Program components: Coursework only
- Faculty: Faculty of Land and Food Systems

The MLWS program provides an opportunity for students to obtain science-based skills, training and knowledge to address emerging environmental issues of food security, effects of increasing urbanization, maintenance of ecological services, restoration of degraded lands, adapting to climate change, and resource conservation. The program draws from a broad range of academic and professional expertise in disciplines including geochemistry, biology, soil science, hydrology, terrestrial and aquatic ecology, forest sciences and more. The program is aimed at both recent graduates and practicing professionals who are seeking additional academic qualification.

Learning Objectives

Upon successful completion of the program, graduates will:
1. Have the necessary background and analytical skills to address the issues related to land and water systems based on an understanding of the integration of the ecological, carbon (energy), hydrological and pedalogical cycles and the impacts of human activity.
2. Obtain proficiency in developing analytical frameworks for the identification, articulation and analysis of land and water resource issues and concerns.
3. Develop skills to develop, apply, evaluate, and adapt alternate practices through scenario frameworks.
4. Develop professional communication skills.

Read less

Show 10 15 30 per page



Cookie Policy    X